
Memory Characterization of a Parallel Data Mining Workload

Jin-Soo Kim�, Xiaohan Qin, and Yarsun Hsu

IBM T. J. Watson Research Center
P. O. Box 218, Yorktown Heights, NY 10598
fjinsoo, xqin, hsu g@watson.ibm.com

Abstract

This paper studies a representative of an important
class of emerging applications, a parallel data mining
workload. The application, extracted from the IBM Intel-
ligent Miner, identifies groups of records that are math-
ematically similar based on a neural network model
calledself-organizing map. We examine and compare in
details two implementations of the application: (1) tem-
poral locality or working set sizes; (2) spatial locality
and memory block utilization; (3) communication char-
acteristics and scalability; and (4) TLB performance.

First, we find that the working set hierarchy of the
application is governed by two parameters, namely the
size of an input record and the size of prototype array;
it is independent of the number of input records. Sec-
ond, the application shows good spatial locality, with
the implementation optimized for sparse data sets hav-
ing slightly worse spatial locality. Third, due to the batch
update scheme, the application bears very low communi-
cation. Finally, a 2-way set associative TLB may result
in severely skewed TLB performance in a multiproces-
sor environment caused by the large discrepancy in the
amount of conflict misses. Increasing the set associativ-
ity is more effective in mitigating the problem than in-
creasing the TLB size.

1 Introduction

The performance of microprocessors or systems is
highly dependent upon the characteristics of applications
for which the hardware supports. A number of stud-
ies have been performed to evaluate commercial as well
as scientific applications [1, 2, 3, 4]. Recently, several
classes of new applications, such as multimedia appli-

�Jin-Soo Kim is a graduate student in department of computer engi-
neering at Seoul National University, Korea, and was supported in part
by the Korea Research Foundation.

cations, web-based software, data warehousing and data
mining, have emerged to gain market share rapidly. Un-
derstanding these new applications is crucial to success-
ful design and optimization of future products. In this
paper, we study a representative of an important class of
emerging applications—data mining workloads.

Data mining is the process of extracting valid, previ-
ously unknown information from large databases to sup-
port critical business decisions [5, 6]. Its application and
importance have been recognized in retail, marketing,
banking, insurance, etc. For example, data mining can
be used to classify “loyal” customers or to identify the
set of people that are the most likely candidates to buy
a new product. It can also be used by insurance com-
panies to predict property or casualty losses for a given
set of policy holders. It is expected that data mining will
become one of the major applications in the near future.

The specific data mining workload we choose is a par-
allel implementation of self-organizing map (SOM) neu-
ral network model used in IBM Intelligent Miner [7].
Since the input data of the application often contain a
large percentage of zero entries, the original SOM algo-
rithm has also been optimized for sparse data sets. This
paper examines the memory characteristics of the two
SOM implementations (for dense and sparse data sets
respectively). First, we study the temporal locality or
working set sizes of the application and how they may be
influenced by the application’s parameters. Second, we
measure the spatial locality by varying thecache block
size and computing the memory block utilization. Third,
we characterize the communication and scalability of the
application with the increasing number of processors. Fi-
nally, we investigate the TLB performance in a 4-way
SMP environment.

The rest of the paper is organized as follows. Section
2 describes the self-organizing map algorithm. Section 3
explains the methodology and application and simulation
parameters. Section 4 presents workload characteristics.
Finally, we conclude in Section 5.

2 A Parallel Data Mining: Self-Organizing
Map

The self-organizing map (SOM) [8] is a neural net-
work model used in IBM Intelligent Miner for database
segmentation and clustering. The objective is to find
records that share similar properties. An important appli-
cation of this operation is in database marketing, which
is to drive promotional campaign through the mining of
corporate databases that record customer product pref-
erences and public information about customer demo-
graphics and lifestyles. It is an area that data mining has
been applied with singular success. Different from con-
ventional neural network models that train the network
against input data with known outputs, SOM identifies
“clusters” of input records that have similar characteris-
tics with no knowledge of their classes or outcomesa
priori .

The input of the SOM algorithm is a set of records
X = fx1;x2; : : : ;xNg, each of which hasF fieldsor
attributes, i.e., jxij = F . The main output of the al-
gorithm is a set of prototypes organized as a 2-D lattice
W = fw1;w2; : : : ;wKg (K � N andjxij = jwkj =
F) and a classification of the input records based on the
prototypes. Initially, the value of the prototypes are set
to the firstK input records. Then, foreach input record,
the algorithm iteratively computes its distance to every
prototype, determines the closest prototypewci , and up-
dates the fields of the prototypes.

There are two ways to update the prototypes: (1) on-
line update (online SOM), where updates are performed
after processing each record, and (2) batchupdate (batch
SOM), where updates are performed at the end ofeach
iteration (orepoch) by Eq.(1):

w
0

k = wk +

PN

i=1 h(ci; k) � [xi �wk]PN

i=1 h(ci; k)

=

PN

i=1 h(ci; k) � xiPN

i=1 h(ci; k)
=
Tk

Bk
(1)

h(ci; k) is the neighboring function that controls the ex-
tent to whichwk is allowed to adjust in response to an
input record based on the distance ofwk andwci in the
2-D lattice. Figure 1 shows an outline of the batch SOM
(BSOM) algorithm. Note that vector variables (xi, wk,
andTk) are printed in bold face, while scalar variables
(Bk, dk, etc.) in italic in Eq.(1) and Figure 1.

A big advantage of the batch SOM over the online
SOM is that the former facilitates the development of
data-partitioned parallel methods. We use a parallel
implementation of the BSOM algorithm developed by
Lawrenceet al.[9]. The input data of the parallel BSOM
algorithm are partitioned across processors, whileTk,

1: Initialize wk with xk (k = 1; : : : ;K)
2: for each epoch e (e = 1; : : : ; E) do
3: for each input record xi (i = 1; : : : ;N) do
4: for each prototype wk (k = 1; : : : ;K) do
5: Compute distance dk = k xi �wk k

2

6: end for
7: Find the closest prototype wci for xi
8: for each prototype wk (k = 1; : : : ;K) do
9: Accumulate Bk Bk + h(ci; k),

Tk Tk + h(ci; k) � xi
10: end for
11: end for
12: for each prototype wk (k = 1; : : : ;K) do
13: Update w0

k Tk=Bk

14: end for
15: end for

Figure 1. Outline of the BSOM algorithm

Bk, and the prototype arraywk are shared by all proces-
sors. In addition, each processorp has private copies of
Tk andBk, namelyTk(p) andBk(p), to store partial
summation calculated based on its own input records. At
the end of each epoch, these values are collected and used
to update the shared prototypes.

Computing the distance (lines 4–6 in Figure 1) to find
the closest prototype is one of the most time consuming
computations in the BSOM algorithm. Since the input
data of the application often contain a large fraction of
zero entries [9], we can accelerate the distance computa-
tion by pre-computing

PF

f=1 wkf
2 (between line 2 and

3) and adjusting for the non-zero fields. We will com-
pare and contrast the two implementations: the origi-
nal (BSOM-D) and the optimized version (BSOM-S) for
sparse data sets. ForBSOM-S, only the non-zero fields
are stored in memory.

3 Methodology

We use the front-end of an execution-driven simu-
lation tool to generate memory reference traces. The
simulation tool has been adapted from the Augmint
toolkit [10] for the PowerPC architecture. To instrument
the application, we modifiedBSOM-D andBSOM-S us-
ing M4 macros [11]. We select a set of values as the de-
fault application parameters. To analyze the working set
sizes and their relations to the application parameters, we
perform a series of experiments by changing one applica-
tion parameter at a time. Table 1 displays the application
parameters that have potential impact on the workload
characteristics and their values, with the default values

Table 1. Application parameters

parameters values

Number of records (N) 512,1024, 2048, 4096
Number of fields (F) 64, 128,272
Number of prototypes (K) 16, 64

highlighted in bold face. Unless otherwise stated, the re-
sults presented in this paper are for the first two epochs.

To identify the working set size, we calculated the
stack distance [12] for each memory reference by imple-
menting a variation of stack simulation algorithm [13].
The stack distance corresponds to the number of dis-
tinct memory blocks referenced between two successive
memory references to the same memory block. We use
the stack simulation because it is capable of generat-
ing miss ratios for various sizes of fully-associative LRU
caches in one pass. This method is particularly effective
in the identification of working set sizes, where the cache
sizes of interest are unknown. We considercache sizes
from 1KB to 1MB.

For the spatial locality, we measurecache miss ra-
tios and average memory block utilizations under vari-
ous block sizes, where the utilization of a memory block
is defined as the percentage of the block being touched
when it is selected for replacement. The block sizes we
simulated range from 8B to 256B. To study the commu-
nication characteristics, we measure the communication
volume per processor using 1 to 8 processors. Finally,
TLB miss ratios are measured by simulating 2-way, 4-
way, and fully-associative TLBs with either 128 or 256
entries. We assume that the page size is 4KB.

4 Workload Characteristics

This section presents four aspects of memory charac-
teristics for the data mining application: (1) temporal lo-
cality or working set sizes; (2) spatial locality and mem-
ory block utilization; (3) communication characteristics
and scalability; and (4) TLB performance.

4.1 Temporal locality and working set sizes

Figure 2 displays, for the dense and sparse implemen-
tations, the cache miss ratios of fully-associative LRU
caches using the default and altered application parame-
ters.

First we notice from Figure 2(a) thatBSOM-D has two
working sets at 8KB and 128KB for the default applica-
tion parameters (the solid line). Recall that the innermost
loops of the dense BSOM algorithm are computing the

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

Cache size

0

1

2

3

4

5

M
is

s
ra

tio
 (

%
)

RETAIL1 on BSOM-D (Fully associative, 32B Line size)

Base
N = 512
N = 2048

F = 64
F = 128
K = 64

(a) BSOM-D

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

Cache size

0

1

2

3

4

5

M
is

s
ra

tio
 (

%
)

RETAIL1 on BSOM-S (Fully associative, 32B Line size)

Base
N = 512
N = 2048

F = 64
F = 128
K = 64

(b) BSOM-S

Figure 2. The working sets and the impact
of application parameters

distance between one input record and the prototype ar-
ray and accumulating partial summation (lines 4–6 and
8–10 in Figure 1), in which the input record is reused
for each prototype. Therefore the first working set size
hinges on the size of one input record which is propor-
tional to the number of fields (F). As we reduceF to
128 (the dashed line) and 64 (the dotted line), i.e., 1/2
and 1/4 of the default value (272), the first working set
size is reduced to 4KB and 2KB respectively.

The second working set size appears to be determined
by the size of the prototype arrayO(KF). Thus, when
the number of prototypes (K) is quadrupled, the second
working set size becomes four times as large (the dotted
dash line in Figure 2(a)). And when the number of fields
changes from 272 to 128 and 64, the second working
set size is reduced to 1/2 and 1/4 of that for the default
parameters. However, when we increase the number of

input records (N), neither of the two working set sizes is
affected. This is because all input records are referenced
in each epoch. Unless the cache is big enough to hold
the entire input records, a particular record will not find
itself in the cache when it is reused in the next epoch.

Now we analyze the results forBSOM-S. Figure 2(b)
shows thatBSOM-S has higher miss ratios thanBSOM-
D for caches smaller than 16KB. This is because cache
lines are less efficiently used inBSOM-S due to its worse
spatial locality (cf. Section 4.2). In contrast toBSOM-
D, BSOM-S has only one well-defined working set size,
which, similar to the second working set ofBSOM-D, is
also governed by the size of prototype array (O(KF)).
Therefore, when varying the number of fields or the num-
ber of prototypes, the point at which the miss ratio curve
turns flat shifts accordingly. The reason thatBSOM-S
does not have a clear-cut first working set size is because,
in computing the distance,BSOM-S only accessesnon-
zero fields whose numbers vary from one record to an-
other.

Notice that the working set size ofBSOM-S is only
one-half of the second working set size ofBSOM-D.
For example, using the default application parameters,
BSOM-D has the second working set at 128KB, while the
corresponding working set ofBSOM-S occurs at 64KB.
To identify the data structures that are responsible for
this working set, we collect statistics on memory refer-
ences directed to important data structures.BSOM-D and
BSOM-S employ three major data structures whose sizes
are all proportional toO(KF): wk;Tk, andTk(p) (cf.
Section 2). The shared data structureTk is used only at
the end of each epoch, thus its accesses do not contribute
much to the overall miss ratio. The remaining two data
structures are heavily used in the innermost loops, hence
have the greater impact on the miss ratio. We plot the
distribution of their stack distances (for the default appli-
cation parameters) in Figure 3. Since we only care about
cache sizes that are power of 2, we classify a reference
with a stack distance in the range of (2k�1, 2k] into the
bin of 2k. In the figure, they-axis displays the percent of
references of a certain stack distance to the total number
of memory references.

Figure 3(a) shows that, inBSOM-D, all the mem-
ory references towk andTk(p) have the stack distance
of 128KB in the window of 1KB to 1MB. This is be-
cause every element inwk andTk(p) is referenced and
they each are of 34KB. When the two data structures
are reused to compute the distance for the next input
record, more than 64KB but less than 128KB memory
have been touched. In the case ofBSOM-S, only the
fields corresponding to the non-zero fields in the input
record are accessed, and thenon-zero fields vary among
input records. As a result, the stack distances of the ref-

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

Stack distance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
he

 p
er

ce
nt

 to
 th

e
to

ta
l m

em
or

y
re

fe
re

nc
es

RETAIL1 on BSOM-D

Tk(p)
wk

(a) BSOM-D

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

Stack distance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
he

 p
er

ce
nt

 to
 th

e
to

ta
l m

em
or

y
re

fe
re

nc
es

RETAIL1 on BSOM-S

Tk(p)
wk

(b) BSOM-S

Figure 3. The distribution of the stack dis-
tances for wk and Tk(p) using the default
application parameters

erences towk andTk(p) are distributed over the range
of 4KB to 128KB, and most references (95.5%) have dis-
tances less than or equal to 64KB. Notice that the distri-
bution of the stack distances of the references to the two
data structures corresponds very well with the derivative
of the overall miss ratio vs. log(cache size) for caches
between 8KB and 1MB. In other words, references to
wk andTk(p) are directly responsible for the changes in
the miss ratio when the cache size increases in the range.
They constitute the second working set.

To compare the stack simulation results with those
of realistic caches, we simulated 4-way set associative
caches using the default application parameters. Fig-
ure 4 shows the comparative cache miss ratios forBSOM-
D and BSOM-S. When the cache size is very small (<
4KB), conflict mapping results in higher miss ratios for
the 4-way set associative cache. An interesting point

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

Cache size

0

1

2

3

4

5
M

is
s

ra
tio

 (
%

)
RETAIL1 on BSOM-D (32B Line size)

Fully associative
4-way set associative

(a)BSOM-D

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

Cache size

0

1

2

3

4

5

M
is

s
ra

tio
 (

%
)

RETAIL1 on BSOM-S (32B Line size)

Fully associative
4-way set associative

(b) BSOM-S

Figure 4. Comparison of miss ratios in fully
and 4-way set associative caches

is that, in the dense BSOM implementation, the fully-
associative cache performs worse at 4KB and 64KB,
where the cache size is close to but smaller than the
working set size. This is because the fully-associative
cache constantly replaces the frequently-used cache lines
due to the limited capacity, while the set associative
cache divides the cache lines into sets and exercises the
LRU policy for each set independently. Overall, the two
sets of results match very well. For that reason, we only
present the results of fully-associative caches in the re-
maining of the paper.

4.2 Spatial locality and memory block utiliza-
tion

Figure 5 depicts the miss ratios for different cache
block sizes and different cache sizes. An application

that has perfect spatial locality reduces the miss ratio by
half when doubling thecache block size due to prefetch-
ing effects. From Figure 5, we can see thatBSOM-D
has almost perfect spatial locality, whileBSOM-S has
slightly worse spatial locality mainly because of its ir-
regular memory access pattern in the innermost loops.
In order to measure the spatial locality quantitatively, we
defineaverage memory block utilizationU as follows:

U =
1

M

MX

m=1

1

n(m)

n(m)X

i=1

u(m; i)

B
(2)

whereB andM denote the cache block size and the total
number of memory blocks touched by the application re-
spectively.u(m; i) is the number of bytes touched in the
memory blockm since the block is brought in thecache
thei-th time until it is expelled from the cache.n(m) is
the number of cache misses due to the blockm, i.e., the
number of times the block is transferred from memory to
the cache.

We plot the average memory block utilization for four
cache sizes (8KB to 64KB) in Figure 6. It shows that
BSOM-D has almost 100% memory block utilization,
while the corresponding number forBSOM-S is slightly
lower. The very good memory block utilization is due
to the sequential access pattern in the shared-memory
region, which accounts for a large portion of memory
blocks used by the application (98.3% forBSOM-D and
83.7% forBSOM-S).

The benefit of using larger cache block sizes not only
depends on that the working set has good spatial locality,
also the cache needs to be large enough to hold applica-
tion’s working set. If the cache size is too small (< 4KB),
a larger cache block may result in high capacity misses
(shown in Figure 5(a) and (b)). When the cache is at
least 4KB, the miss ratios forBSOM-D monotonically
decreases as the block size doubles (cf. Figure 5(a)).
On the other hand,BSOM-S still suffers from lacking of
sufficient cache blocks up to 32KB. As shown in Fig-
ure 6(b), for a given block size, increasing the cache size
brings a slight improvement in the memory block utiliza-
tion for 8KB to 32KB caches. However, once the cache
reaches 64KB, the capacity to hold the critical working
set (cf. Figure 2(b)), the memory blocks stay in the cache
long enough to benefit from the spatial locality, hence,
the block utilization is increased significantly.

4.3 Communication and Scalability

In this section, we consider the communication char-
acteristics as we increase the number of processors. We
assume that the problem size or the number of input data
records will increase at the same rate as the number of

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

Cache size

0

2

4

6
M

is
s

ra
tio

 (
%

)
RETAIL1 on BSOM-D (Fully-associative)

9.8 9.8 9.8
40.8
54.7 25.5

8B
16B
32B
64B
128B
256B

(a)BSOM-D

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

Cache size

0

2

4

6

M
is

s
ra

tio
 (

%
)

RETAIL1 on BSOM-S (Fully-associative)

11.9
46.4

8B
16B
32B
64B
128B
256B

(b) BSOM-S

Figure 5. The impact of cache block size
on miss ratios for the default application
parameters

processor increases. In other words, the data assigned to
each processor remain the same. In section 4.1, we have
observed that the miss ratios and the working set sizes are
independent of the number of input records. Therefore,
increasing the number of processors has little impact in
those regards (cf. Figure 7).

We now examine the communication volume as a
function of the number of processors. We define the
communication volume by the average amount of data
(cache blocks) exchanged between one processor and the
other processors. Figure 8 illustrates the communication
volume normalized to a 2-processor system. In the 2-
processor system, we observe that the communication
accounts for only 2.3% of the misses forcaches larger
than 128KB. The very low communication volume can
be attributed to the batch update scheme. As the num-

8K 16K 32K 64K

Cache Size

0

20

40

60

80

100

A
ve

ra
ge

 M
em

or
y

B
lo

ck
 U

til
iz

at
io

n
(%

)

RETAIL1 on BSOM-D (Fully-associative)

8B
16B
32B
64B
128B
256B

(a) BSOM-D

8K 16K 32K 64K

Cache Size

0

20

40

60

80

100

A
ve

ra
ge

 M
em

or
y

B
lo

ck
 U

til
iz

at
io

n
(%

)

RETAIL1 on BSOM-S (Fully-associative)

8B
16B
32B
64B
128B
256B

(b) BSOM-S

Figure 6. The average memory block utiliza-
tions for the default application parameters

ber of processor increases, the communication volume
monotonically increases, however, the amount quickly
converges.

In the BSOM algorithm, communication occurs at the
end of each epoch when processorsupdate the prototype
array in parallel and when processors read the updated
prototypes for the distance computation. Each proces-
sor is responsible for updating a portion, i.e.,1=P , of the
prototypearray using the partial summation computed by
itself and the other processors (cf. Eq.(1)). Therefore, the
amount of communication incurred byeach processor is
O(P�1

P
), which is bounded by some constant value no

matter how many processors are used. The same com-
munication scheme is employed in the two BSOM im-
plementations, which explains why they have the similar
communication characteristics.

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

Cache size

0

1

2

3

4

5
M

is
s

ra
tio

 (
%

)
RETAIL1 on BSOM-D (Fully-associative, 32B Line size)

N = 512, P = 1
N = 1024, P = 1
N = 4096, P = 4
N = 4096, P = 8

(a)BSOM-D

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

Cache size

0

1

2

3

4

5

M
is

s
ra

tio
 (

%
)

RETAIL1 on BSOM-S (Fully-associative, 32B Line size)

N = 512, P = 1
N = 1024, P = 1
N = 4096, P = 4
N = 4096, P = 8

(b) BSOM-S

Figure 7. The impact of the number of pro-
cessors on the working sets

4.4 TLB Performance

The performance of TLB is crucial to the overall sys-
tem performance especially if the L1 cache isphysically
addressed since the TLB access would be on the critical
path of every memory reference. In this section, we ex-
amine the TLB behavior ofBSOM-D andBSOM-S run-
ning under a 4-way SMP environment. We consider six
TLB configurations by varying the number of TLB en-
tries from 128 to 256 and by varying the associativity
from 2-way to 4-way and fully-associative. As in the
previous experiments, we also vary the application pa-
rameters. However, only whenF = 272 andK = 64,
the applications yield considerable TLB misses. There-
fore, we present and discuss the results using the above
application parameters. Figure 9 shows the TLB miss
ratios for the six TLB configurations. In each configu-

2 3 4 5 6 7 8

Number of processors

0.6

0.8

1.0

1.2

1.4

N
or

m
al

iz
ed

 c
om

m
un

ic
at

io
n

vo
lu

m
e

RETAIL1 (Fully associative, 32B Line size)

BSOM-D
BSOM-S

Figure 8. The normalized communication
volume for the default application parame-
ters

ration, the four bars represent the miss ratios of the four
processors.

When a fully associative TLB is used, the miss ra-
tios are very small or negligible regardless of the TLB
size. It appears that the TLB performance benefits more
from increasing the set associativity than from increasing
the TLB size. For instance, when a 2-way set associa-
tive TLB is employed, increasing the number of entries
from 128 to 256 reduces the TLB miss ratio forBSOM-
D slightly, while employing a 4-way set associative TLB
with 128 entries, the TLB miss ratio decreases signifi-
cantly.

The most surprising result is that the TLB miss ratios
of the four processors differ substantially in a number
of configurations. For example, when using the 2-way
128-entry TLB,P2 has 8.6 times more TLB miss ratios
thanP3 in the case ofBSOM-D. For BSOM-S, it is even
worse thatP2 has 77.6 times more misses thanP3 does.
The discrepancy in the TLB performance among the four
processors introduces severe skew in what was perfectly
balanced (per processor) workload. Since all processors
have to barrier-synchronize to update the prototypes, the
uneven TLB performance is propagated and eventually
limits the overall speedup.

To understand what causes the significant difference
in the TLB performance, we collect detailed statistics on
the TLB entries. Figure 10 displays the number of re-
placements occurred in each set of the 2-way128-entry
TLB for P2 andP3 (the processors that have the high-
est and lowest miss ratios respectively) forBSOM-D. The
picture forBSOM-S looks similar. In the figure,y-axis is
displayed in log scale. The replacements have been clas-
sified into two groups:sharedfor replacements due to

128 2-way 128 4-way 128 Fully 256 2-way 256 4-way 256 Fully

TLB configurations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
T

LB
 m

is
s

ra
tio

 (
%

)
RETAIL1 on BSOM-D (4 Processors)

P0
P1
P2
P3

(a)BSOM-D

128 2-way 128 4-way 128 Fully 256 2-way 256 4-way 256 Fully

TLB configurations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
LB

 m
is

s
ra

tio
 (

%
)

RETAIL1 on BSOM-S (4 Processors)

0.85

P0
P1
P2
P3

(b) BSOM-S

Figure 9. TLB miss ratios for various TLB
configurations (4 processors, K=64)

shared references (shared pages) andprivatefor replace-
ments due to private references either to stack variables
(local pages) or to static variables and dynamically al-
located structures (global pages). Usually, (local) stack
variables consume a very small amount of memory. The
majority of the memory pages are either shared or global
pages.

We observe that the TLB misses are distributed un-
evenly among the sets. InP2, the number of replace-
ments in one set (set 11) accounts for 99% of the to-
tal TLB misses of that processor. In-depth analysis re-
veals that, onP2, there are 1 local page, 3 global pages,
and 4 shared pages simultaneously mapped into the set
11. OnP3, however, the set that incurs the highest re-
placement has only 2 global pages and 4 shared pages.
The plausible cause for the difference is that the applica-
tion employs the thread model in which threads share the
same virtual address space. Although the addresses of

0 8 16 24 32 40 48 56 63

TLB set index

0

10

100

1000

10000

100000

T
he

 n
um

be
r

of
 r

ep
la

ce
m

en
ts

RETAIL1 on BSOM-D (2-way 128-entry TLB)

1848568

525224 Private
Shared

(a)P2

0 8 16 24 32 40 48 56 63

TLB set index

0

10

100

1000

10000

100000

T
he

 n
um

be
r

of
 r

ep
la

ce
m

en
ts

RETAIL1 on BSOM-D (2-way 128-entry TLB)

Private
Shared

(b)P3

Figure 10. The number of replacements in
2-way 128-entry TLB for BSOM-D (4 proces-
sors, K=64)

the shared data are the same on the four processors, the
addresses of the private data (local and global pages) will
be different. If a processor happens to map a local page
and several global and shared pages into the same set, its
TLB is likely to suffer from a large number of conflict
misses. This is the case withP2. Since most of the TLB
misses are caused by the conflicting mapping, increasing
the set associativity eases the problem significantly.

5 Concluding Remarks

This paper studies the memory characteristics for
a representative of an important class of emerging
applications—data mining workloads. The particular
workload, chosen from the IBM Intelligent Miner, im-
plemented the self-organizing map neural network model
in parallel, and employed batch update to minimize the

communication. The core algorithm has been imple-
mented in two versions with one suitable for dense data
sets and the other optimized for sparse data sets.

We examine and compare in details four characteris-
tics of two implementations of the BSOM algorithm: (1)
temporal locality, or more specifically, working set sizes
and their relations to the application’s parameters; (2)
spatial locality and memory block utilization; (3) com-
munication characteristics and scalability with varying
number of processors; and (4) TLB performance.

First, we have found the working set hierarchies of
BSOM-D and BSOM-S are governed by the size of an
input record and the size of prototype array. Neither
of the working sets is sensitive to the number of input
records. Second,BSOM-D has almost 100% of memory
block utilization, i.e., good spatial locality, whileBSOM-
S has slightly worse spatial locality. Third, the data min-
ing application appears to have very low communication.
The amount is bounded by some constant value no mat-
ter how many processors are used. Finally, the 2-way set
associative TLB can result in skewed TLB miss ratios in
a multiprocessor environment and increasing the set as-
sociativity is more effective than increasing the TLB size
in the improvement of the TLB performance.

Due to the diversity and complexity of data ware-
houses, a single data mining technique is not sufficient
to reveal all the relationships among the data. It is thus
necessary that several data mining techniques are avail-
able to the business and data analysis. We plan to investi-
gate other data mining techniques to fully understand the
behavior of this class of applications.

6 Acknowledgments

The authors would like to thank George Almasi and
Richard Lawrence in IBM T. J. Watson Research Center
for providing the data mining application studied in this
paper.

References

[1] A. M. G. Maynard, C. M. Donnelly, and B. R.
Olszewski, “Contrasting Characteristics and Cache
Performance of Technical and Multi-User Com-
mercial Workloads,” inProc. of the 6th Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems,
pp. 145–156, 1994.

[2] L. A. Barroso, K. Gharachorloo, and E. Bugnion,
“Memory System Characterization of Commercial
Workloads,” inProc. of the 25th International Sym-
posium on Computer Architecture, pp. 3–14, 1998.

[3] D. C. Lee, P. J. Crowley, and J.-L. Baer, “Exe-
cution Characteristics of Desktop Applications on
Windows NT,” in Proc. of the 25th International
Symposium on Computer Architecture, pp. 27–38,
1998.

[4] S. C. Wooet al., “The SPLASH-2 Programs: Char-
acterization and Methodological Considerations,”
in Proc. of the 22nd International Symposium on
Computer Architecture, pp. 24–36, 1995.

[5] IBM, “IBM’s Data Mining Tech-
nology.” White Paper, available at
http://www.software.ibm.com/data/iminer/, 1996.

[6] D. S. Tkach, “Information Mining with the
IBM Intelligent Miner Family.” An IBM
Software Solutions White Paper, available at
http://www.software.ibm.com/data/iminer/, 1998.

[7] IBM, “Intelligent Miner Family.”
http://www.software.ibm.com/data/iminer/, 1998.

[8] T. Kohonen, “The Self-Organizing Map,”Proc. of
the IEEE, vol. 78, pp. 1464–1480, Sep. 1990.

[9] R. D. Lawrence, G. S. Almasi, and H. E. Rush-
meier, “A Scalable Parallel Algorithm for Self-
Organizing Maps with Applications to Sparse
Data Mining Problems.” Submitted for publication,
1997.

[10] A.-T. Nguyen, M. Michael, A. Sharma, and J. Tor-
rellas, “The Augmint Multiprocessor Simulation
Toolkit for Intel x86 Architectures,” inProc. of
1996 International Conference on Computer De-
sign, 1996.

[11] J. Boyleet al., Portable Programs for Parallel Pro-
cessors. Holt, Rinehart and Winston, Inc., 1987.

[12] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L.
Traiger, “Evaluation Techniques for Storage Hier-
archies,”IBM Systems Journal, vol. 9, pp. 78–117,
Feb. 1970.

[13] Y. H. Kim, M. D. Hill, and D. A. Wood, “Imple-
menting Stack Simulation for Highly-Associative
Memories,” inProc. of 1991 ACM SIGMETRICS
Conf. on Measurement and Modeling of Computer
Systems, pp. 212–213, 1991.

