
Pegasus on the Virtual Grid: A Case Study of Workflow Planning over
Captive Resources

Yang-Suk Kee
Oracle USA Inc.

yang.seok.ki@oracle.com
Eunkyu Byun

Division of Computer Science, Korea Advanced Institute of Science and Technology
ekbyun@camars.kaist.ac.kr
Ewa Deelman, Karan Vahi

Information Sciences Institute, University of Southern California
{deelman, vahi }@isi.edu

Jin-Soo Kim
School of Information and Communication Engineering, Sungkyunkwan University

jinsookim@skku.edu

Abstract

As scientific applications in a variety of disciplines
are being actively developed and computing environ-
ments become ever more complicated and dynamic, it
is becoming challenging to leverage existing cyber-
infrastructures and achieve robust and efficient com-
puting. This paper presents a case study of planning
and executing application workflows over provisioned
resources. This work integrates the Pegasus workflow
framework with the Virtual Grid resource provisioning
system. Through this preliminary study, we have iden-
tified two key issues that need to be addressed: 1) de-
veloping a resource capacity estimate which synthe-
sizes efficient resource descriptions for the Virtual
Grid from application workflows and 2) execution site
information publication which provides resource con-
figurations for Pegasus through the devirtualization of
provisioned resources. In addition, we discuss the
challenges and research opportunities that we need to
explore in order to exploit the advanced features of the
systems.

1. Introduction

The advance of cyber-infrastructures has enabled
scientists to explore complicated natural phenomena.
Many success stories inspire researchers to solve more
complex problems in a variety of disciplines [1-5]. One

of key challenges in this exploration is how to transi-
tion the scientific knowledge and legacy software to
new computing environments. A solution gaining in
popularity is the use of high-level application descrip-
tions such as workflows that can specify the structure
and overall behavior of applications in a platform-
independent manner. Typically, a workflow is repre-
sented as a Directed Acyclic Graph (DAG) that con-
sists of nodes, representing tasks, and edges, which
denote data/control dependencies between tasks. When
an application is specified via a workflow, workflow
management systems such as Pegasus [6], Askalon [7],
Triana [8], and others manage and execute workflows
on distributed resources.

Coordination and management of distributed re-
sources are challenging issues for a number of com-
munities in computer science. The noticeable achieve-
ments in distributed computing are the state-of-art re-
source virtualization technologies such as the Virtual
Grid [9], the virtual cluster [10], and compute clouds
[11], which take into account a variety of factors such
as availability, performance, cost, etc and enable on-
demand resource provisioning. Regardless of the base
technology that implements virtualization, these tech-
nologies commonly encapsulate the complexity of re-
source management and provide uniform interfaces to
resources.

Workflow management systems can potentially
benefit from these resource provisioning technologies.
First, workflow management systems can be insulated

from the resource management complexity, which sub-
sequently reduces the design complexity of workflow
management systems. Second, workflow management
systems can take advantage of the benefits of efficient
resource management of provisioning systems since
the provisioning systems can optimize resource alloca-
tions and assure the quality of resources in terms of
computing and communication performance, reliability,
availability, and so on. Finally, workflow management
systems can exploit an extended resource universe
with minimal efforts through resource provisioning. At
the same time, provisioning systems can have well-
defined interfaces to applications via the workflow
management systems. In addition, provisioning sys-
tems can experience a variety of structural and behav-
ioral characteristics of applications via the workflow
management systems which can contribute to the im-
provement of the provisioning systems themselves.
Finally, provisioning systems can extensively evaluate
their performance and the quality of provisioning tech-
niques in real settings against the applications already
supported by existing workflow management systems.

In this paper we focus on two representative work-
flow management and resource provisioning systems.
Pegasus-WMS [6] is a workflow management system
which conducts workflow planning with detailed in-
formation about computation and data against a given
resource set. The Virtual Grid (VG) [9] is a program-
mable resource provisioning framework, which en-
ables users to instantiate resources of quality (perform-
ance, reliability, availability, etc.) on demand. We be-
lieve that the integration of Pegasus with the Virtual
Grid can not only deliver the aforementioned benefits
but can also have significant synergetic effects on sci-
entific computing. As a result, Pegasus can conduct
more efficient workflow planning in terms of cost,
performance and quality with the resources provi-
sioned by the Virtual Grid.

As a preliminary study, this paper focuses only on a
basic integration and discusses two critical issues to be
solved. The paper identifies two core interfaces for the
interactions between Pegasus-WMS and the Virtual
Grid: resource capacity estimation and execution site
information publication. We implement these inter-
faces in a proxy system named Pegasus-VG proxy
which orchestrates Pegasus-WMS and the Virtual Grid
and enables workflow execution over provisioned re-
sources. Finally, we present several challenges and the
new research opportunities identified through this
study.

The rest of this paper is organized as follows. In
Section 2, we give a brief overview of Pegasus-WMS
and the Virtual Grid. Then, we discuss a simple work-
ing scenario and the integration issues in Section 3. We

summarize the related studies in Section 4 and finally
conclude this paper, discussing the future research
directions in Sections 5 and 6.

2. Background

The common design philosophy of Pegasus and the
Virtual Grid is that of separation of concerns, which
can simplify complex problems and can provide feasi-
ble or even better solutions. Specifically, Pegasus as-
sumes that an application can be developed and exe-
cuted independently of the target execution system
using a high-level representation (i.e., application
workflow) while the Virtual Grid aims for resource
management to be isolated from the application and be
virtualized via a resource abstraction (i.e., the Virtual
Grid). Since these two systems compliment each other,
the integration of the two systems can simplify the
overall design complexity of scientific computing,
make applications portable, and achieve good per-
formance. In the following subsections, we give a brief
overview of Pegasus and the Virtual Grid.

2.1. Pegasus-WMS

Pegasus [6] is a workflow management system

which maps abstract workflows onto resources. The
abstract workflow describes the logical topology and
functionality of the application and executes workflow
tasks using Condor’s DAGMan [12]. Figure 1 illus-
trates a typical lifecycle of application workflow in the
Pegasus framework. Pegasus takes an abstract work-
flow, maps it onto the available resources, and invokes
DAGMan to execute the workflow. DAGMan then
walks through the workflow and releases the workflow
tasks in the right order to Condor-G [12]. The latter
submits the tasks to the remote resources (via Globus
[13]) for execution.

2.1.1. Workflow Creation. The first phase of the
workflow lifecycle is to create an abstract workflow
for the application. An abstract workflow [6] is a logi-
cal representation of control and data flow of the ap-
plication, independent of resources. An abstract work-
flow is composed of the tasks described in terms of
logical transformations and logical input and output
filenames. Depending on their backgrounds, circum-
stances, expertise in workflow technologies, scientists
can create abstract workflows, directly using prede-
fined XML schemas, using the Pegasus Java API, or
using the intelligent workflow editor, Wings [14].

2.1.2. Workflow Planning. The goal of Pegasus is to
find a good mapping of workflow tasks to available
execution sites. Pegasus transforms an abstract work-
flow through a series of refinements to a concrete
workflow which can be executed on the resources.
Pegasus first indentifies the resources available to the
user. Second, Pegasus simplifies the workflow based
on the historic computation results that Pegasus keeps
track of. If the results of workflow tasks are already
available (for example when the data were previously
computed and stored), such computations can be re-
placed with simple data transfers. Pegasus then sched-
ules the tasks by selecting appropriate resources, based
on the available resources and their characteristics as
well as the location of input data. Pegasus relies on
information services such as MDS (Meta-computing
Directory Service) [15] and others to retrieve resource
characteristics and RLS (Replica Location Service)
[16] to locate historic data. For efficient execution,
Pegasus can cluster jobs together in cases where a
number of small granularity jobs are destined for a
same computing resource. Next, Pegasus augments the
workflow with tasks that explicitly perform data trans-
fers. The final step is to write out the mapping results
in a Condor input file and the associated submit files
which can be interpreted by Condor DAGMan [12].

2.1.3. Workflow Execution. Pegasus uses DAGMan
for workflow execution. DAGMan is a workflow exe-
cution engine which submits jobs to Condor in an or-
der represented by a Condor DAG. DAGMan proc-
esses a DAG input file and the associated Condor sub-

mit file(s). It is responsible for scheduling, recovery,
and reporting on the set of tasks submitted to Condor.

Figure 1. Workflow lifecycle in the Pegasus frame-
work

Cloud

A

B C

D

Application

Virtual Grid
Resource Abstraction VG

Cloud

Batch
VGES

PBS

P4 P4

VGDL

vgdl=clusterof (node) [2] {
node = [Processor==“P4”]

}
program run

A
B C

D

Classification Selection Linking Environment

ok

Lease

Figure 2. Scientific Computing via Virtual Grid

In the case of distributed resources such as Grids,
DAGMan submits jobs to Condor-G. Condor-G [12] is
a job management system which locates resources and
submits, cancels, and monitors jobs on the behalf of
the users. Condor-G provides a uniform resource inter-
face over heterogeneous resources via a Condor pool
and enables users to transparently access resources and
manage jobs. For remote execution, Condor-G relies
on the Globus Toolkit [13] which enables secure ac-
cesses to resources, uniform accesses to a variety of
batch systems, file staging, status monitoring, and so
on.

2.2. The Virtual Grid

The Virtual Grid (VG) [9, 17] is a high-level re-
source abstraction enabling virtualized distributed
computing across heterogeneous resources. Separated
by the VG abstraction layer, a user specifies the char-
acteristics of the desired execution target while the
Virtual Grid execution system (VGES) [17, 18] ren-
ders the abstraction. VGES manages the uncertainty
and dynamics associated with queuing delays, failures,
and contention effects underneath the abstraction. As
such, VG can isolate application development, sched-
uling, and optimization procedures from the complex-
ity of managing resources.

Figure 2 illustrates a computing scenario in the con-
text of VG. First, users abstract their resource require-
ments and program the structure and properties of de-
sired execution target in the resource description lan-
guage named VGDL [17]. VGES then analyzes the
VGDL description and compiles a collection of quality
resources into a VG instance through resource selec-
tion, binding, and environment setup. Once a VG is
created, users can operate on the VG to retrieve re-

source information, to execute the application tasks,
and to manage the resource collection. In the following
sections, we highlight three components that imple-
ment the Virtual Grid concept.

2.2.1. Resource description language. VGDL (Vir-
tual Grid Description Language) [17] is a resource
description language, which provides constructs for
expressing constraints on the attributes associated with
computing resources. Users can describe resource re-
quirements in terms of desired values of attributes (e.g.,
process type, memory capacity). The key advances of
VGDL are the capability of hierarchical qualitative
specification of resource aggregates and network prox-
imity. The qualitative approach enables applications to
construct simple and robust specifications regardless of
technology advances.

Users can capture simple widely-used resource ab-
stractions to achieve the portability in design and to
manage the complexity of resource environments via
VG resource aggregates. Moreover, VG connectivity
operators express the coarse notions of network prox-
imity between aggregates in terms of latency and
bandwidth. Resource aggregates and network connec-
tivity operators enable users to compose individual
resources into an arbitrary structure. At the same time
users can specify application-specific resource quality
in a user-defined resource ranking function. Users can
specify the temporal resource availability for time-
constrained applications [9]. Moreover, users can spec-
ify the availability probability of resources at a certain
time (i.e., start time) and the reliability probability of
resources for a certain duration.

Figure 3 illustrates how a program that consists of a
pair of a producer and a consumer can be described in
VGDL. In this example, the user needs two tightly
coupled clusters in a temporal order, each of which has
16 Itanium processors and 4 Opteron processors, re-
spectively. In addition, the user requires a high level of
confidence that the resources will be allocated in a
timely manner and should be highly reliable while the

application is running. Two ClusterOf aggregates are
used to represent clusters and a HighBW connectivity
operator is used to tightly couple two clusters.

Producer
(16 x Itanium2)

Consumer
(4 x Opteron)

High BW

From 10:00 A.M. to 11:00 A.M. From 11:00 A.M. to 11:30 A.M.

Producer-consumer =
 Producer = ClusterOf (nd1) [16]
 <12/12/2006@10:0:0[EXEL], 1:0:0[EXEL]>
 { nd1 = [Processor == “Itanium 2”] }
 HighBW
 Consumer = ClusterOf (nd2) [4]
 <12/12/2006@11:0:0[EXEL], 0:30:0[EXEL]>
 { nd2 = [Processor == “Opteron”] }

(a) Resource requirement (b) Resource specification

Figure 3. An example of resource specification in VGDL
(ClusterOf denotes a set of homogeneous resources; HighBW represents a high bandwidth network; <xx/xx/xx@xx:xx:xx[avail_prob],
xx:xx:xx[rel_prob]> describes the start time and the availability of resource arrival and the duration and the reliability of resource allocation.)

2.2.2. Resource compilation. Compiling a VG in-
stance from a VGDL specification is the process of
configuring a network of resources for the specifica-
tion [9]. A VG compilation consists of selection and
binding. Selection is used to identify the possible re-
sources satisfying the specification in the resource uni-
verse while binding it to secure the resource allocation
with a certain confidence.

The Virtual Grid reformulates the resource selection
problem through a resource classification and an
online search for efficient selection and implements the
fast resource selection by exploiting the relational da-
tabase technology [18]. On the other hand, the likeli-
hood of binding success is contingent upon the re-
source management policy of the resource manager.
VG exploits the compositional structure of resource
specification and identifies the components that can be
allocated independently. The Virtual Grid probabilisti-
cally guarantees the success of resource binding by
identifying multiple solutions for each component [18].

2.2.3. Personal cluster. A personal cluster is a virtual
cluster instantiated on demand from physical re-
sources. This gives users an illusion that the instant
cluster is dedicated to the user for a certain time period
[20]. A personal cluster reserves a partition of re-
sources and enables a uniform, cost-effective use of
batch resources. The user has a dedicated cluster under
the control of a private resource manager. As such a
personal cluster can provide a uniform job/resource
management environment over heterogeneous re-
sources regardless of system-level resource manage-
ment paradigms.

The current implementation is based on the WS-
based Globus Toolkit [22] and a PBS [21] installation.
The Personal cluster uses the similar mechanism to
Condor glidein [12]. Once a system-level resource

manager allocates a partition of resources, a user-level
PBS scheduled on the resources holds the resources for
a user-specified time and a user-level WS-GRAM
(configured at runtime for the partition) accepts jobs
from the user and relays them to the user-level PBS.
As a result, users can bypass the system-level resource
manager and benefit from the low scheduling overhead
with the private scheduler.

3. Pegasus-WMS on the Virtual Grid

The intuition behind integrating Pegasus-WMS
with the Virtual Grid is that a workflow planning sys-
tem can benefit from the advanced resource manage-
ment services of the provisioning system and conse-
quently enable robust and efficient computing. How-
ever, the scope of this paper is limited to a simple sce-
nario of interactions between Pegasus and the Virtual
Grid. To minimize impacts on both systems and enable
independent development, we propose a proxy system
named Pegasus-VG proxy which implements the inter-
faces and the services required for integration, insulat-
ing the systems from each other. In this section, we
present our computing scenario and detail the issues of
this study.

3.1. Computing Scenario

As discussed in Section 2.1, a workflow basically

goes through three phases in the Pegasus framework:
creation, planning, and execution. Workflow creation
is a totally application-specific phase, independent of
target resources. Pegasus only interacts with the Vir-
tual Grid at the planning and execution phases. An
issue here is that the resources in VG are presented in a
virtualized manner. However, Pegasus needs concrete
resource information such as hostname, port number,
directory name, and so on. Therefore, the Pegasus-VG
proxy devirtualizes the provisioned resources and al-
lows Pegasus to follow the normal planning and execu-
tion processes without modifying the Pegasus internals.

Figure 4 illustrates how Pegasus interacts with the
Virtual Grid in a simple devirtualization scenario. First,
the user specifies application-specific knowledge about
resource requirements (e.g., processor type, memory
capacity) and the application-level information (e.g.,
locations of executable, data, and replica) needed to
run his/her application in the Pegasus framework.
When Pegasus’ planning is invoked with this abstract
workflow, a wrapper program for the Pegasus planning
command intercepts the resource information before
the ordinary planning of Pegasus takes place and con-
tacts the Pegasus-VG proxy. The proxy then synthe-

sizes a vgDL description through a resource capacity
estimate and instantiates a VG on behalf of Pegasus.
The proxy devirtualizes the VG instance and generates
a new site catalog which is a formal input of Pegasus
describing the information of the VG-provisioned re-
sources. The site catalog is then sent back to the wrap-
per and finally the wrapper invokes the ordinary Pega-
sus planner with the site catalog. Pegasus now contin-
ues its normal planning process. Since a site catalog
contains the detailed information about how to access
resources such as hostname, GRAM port number,
scheduling adaptor, and so on, Pegasus can run appli-
cations directly on the resources via DAGMan as usual.

Creation

Planning

Scheduling/
Execution

A

B C

D

CC

A

B C

D

CC

Executable
workflow

Abstract
workflow BTS

VGVG

Virtual G
rid

Virtual G
rid

VGDL

Devirtualization
S

ite catalog

vgdl =
ClusterOf (nd) [2] {

nd = [Proc==“Xeon”]
}

GT4+PBS

Pegasus VG-Pegasus Proxy

Figure 4. Pegasus on Virtual Grid

3.2. Issues

3.2.1. Resource capacity estimation. A critical capa-
bility required for this integration is to synthesize a
vgDL specification from application workflow(s). The
most dominant attribute from the perspective of high-
level workflows is the number of processors required
by the application because the resource size is one of
the important factors in determining the makespan of
workflow application and the cost of resource alloca-
tion. If the number of resources is large, the parallel
execution of independent tasks can reduce the execu-
tion time while too many resources can cause low re-
source utilization, high scheduling overhead, and high
cost. On the other hand, if the number of resources is
too small, the execution time of the workflow can in-
crease. Therefore, it is important to estimate the num-
ber of resources as small as possible so as to complete
a workflow within a given deadline. This problem is
different from the conventional workflow scheduling
or cost-optimization problems, which aim at minimiz-
ing the application’s runtime against a fixed set of re-
sources.

This issue was already addressed by several studies
[23, 24]. In particular, the BTS algorithm estimates the
resource capacity very efficiently [24]. The algorithm
scales well even with very complex workflows and
provides a good estimate of resources needed - close to
the optimal for a variety of workflows. Moreover, the
resource estimate is abstract and independent of de-
scription languages and selection mechanisms so it can
be easily integrated with any resource description lan-
guage and provisioning system.

The Pegasus-VG proxy has a wrapper of BTS
which takes the abstract workflow (DAX) from Pega-
sus and generates a vgDL description. For example,
Figure 5 (a) depicts a simple synthetic application. The
user can describe the structure and behavior of the ap-
plication in a DAX as shown in Figure 5 (b). Then, the
BTS wrapper extracts the workflow information (e.g.
task and link) and invokes BTS. BTS then estimates
the number of processors required for the workflow
and synthesizes a vgDL description as shown in Figure
5 (c) using the resource requirements (e.g., processor
type, clock rate, memory capacity) given by the client.
In this example, the workflow needs a cluster consist-
ing of 2 Xeon processors. The processor requirements
are embedded into the node definition while the cluster
size is determined automatically by BTS.

preprocess

findrange findrange

analyze

f.input

f.output

<!-- part 1: list of all files used (may be empty) -->
<filename file="f.input" link="input"/>
<filename file="f.intermediate" link="input"/>
<filename file="f.output" link=”output"/>
<filename file=“keg” link=“input”>

<!-- part 2: definition of all jobs (at least one) -->
<job id="ID000001" namespace=”pegasus" name="preprocess" version="1.0" >
<argument>
 -i <filename file=”f.input"/> -o <filename file=”f.intermediate"/>
</argument>
<uses file=”f.input" link="input" register="false" transfer=”true"/>
<uses file=”f.intermediate" link="output" register=”false" transfer=“false”>
</job>

<job id="ID000002" namespace=”pegasus" name=”analyze" version="1.0" >
<argument>
 -i <filename file=”f.intermediate"/> -o <filename file=”f.output"/>
</argument>
<uses file=”f.intermediate" link="input" register="false” transfer=”true"/>
<uses file=”f.output” link="output" register=”true" transfer=”true"/>
</job>
…

(a) Black-diamond workflow

(b) A fragment of Pegasus DAX

Diamond = ClusterOf [2] (nd) [, 01:00:00]{ nd = [Processor == “Xeon”] }

(c) A synthesized vgDL description requesting a cluster consisting of 2 Xeon processors

Figure 5. vgDL synthesis for a black-diamond application workflow

3.2.2. Site catalog publication. Pegasus conducts
workflow planning against resources described in site
cataloges. The BTS wrapper generates a complete
vgDL specification through the resource capacity esti-
mate and then the proxy acquires resources via the
Virtual Grid. Once a VG instance is successfully cre-
ated, the proxy devirtualizes the Virtual Grid and cre-
ates a site catalog describing the provisioned resources.

Figure 6 (a) is a site catalog created for the vgDL
specification presented in Figure 5 (c). As discussed in
Section 2.3, the Virtual Grid deploys a personal cluster
based on Globus Web Services and PBS to the provi-
sioned resources. The key information that the proxy
retrieves is the information related to the WS-GRAM
service such as the Globus version, service endpoint,
batch scheduler type, and so on. In this example, the
cluster has 2 processors and provides a GRAM web
service for PBS available at https://cat7.kaist.ac.kr:
9000.

Pegasus then generates a Condor input file and the
associated Condor submit files. The key information in
a submit file is universe, grid_type, globusscheduler,
and jobmanager_type. Universe specifies the Condor
execution environment, grid_type, the Globus version
installed on the remote resource, globusscheduler, the

end point information to access the GRAM web ser-
vice, and jobmanager_type, the batch scheduler name
of the remote resource manager. Figure 6 (b) illustrates
a Condor submit file generated by Pegasus 2.1.0 ver-
sion. In this example, universe is grid, grid_type is gt4,
globusscheduler is https://cat7.kaist.ac.kr:9000/wsrf/
services/ManageJobFactoryService, and jobman-
ager_type is PBS; this information is extracted from
the site catalog presented in Figure 6 (a).

Pegasus can conduct normal planning for the DAX
presented in Figure 5 (b) with this site catalog and gen-
erate an executable workflow (Condor DAG) as shown

in Figure 6 (b). Since Globus Web Services and a PBS
job manager are already deployed on the provisioned
resources, Condor DAGMan can run the workflow
tasks directly on the resources by using the GT4 op-
tions of Condor submit command.

<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog" …>
<site handle="cat7" gridlaunch="/home/globus/pegasus-2.1.0/bin/kickstart" sysinfo="INTEL32::LINUX">
<profile namespace="env" key="PEGASUS_HOME">/home/globus/pegasus-2.1.0</profile>
<profile namespace="env" key="GLOBUS_LOCATION">/usr/local/globus-4.0.7</profile>
<profile namespace="env" key="LD_LIBRARY_PATH">/usr/local/globus-4.0.7/lib</profile>
<profile namespace="env" key="JAVA_HOME">/opt/jdk</profile>
<profile namespace="condor" key="grid_type">gt4</profile>
<profile namespace="condor" key="jobmanager_type">PBS</profile>
<lrc url="rlsn://cat7.kaist.ac.kr" />
<gridftp url="gsiftp://cat7.kaist.ac.kr:2811" storage="/home/globus" major="4" minor="0" patch="7" />
<jobmanager universe="transfer" url="https://cat7.kaist.ac.kr:9000/wsrf/services/ManagedJobFactoryService" major="4" minor="0"
patch="7" total-nodes="2" />
<jobmanager universe="vanilla" url="https://cat7.kaist.ac.kr:9000/wsrf/services/ManagedJobFactoryService" major="4" minor="0" patch="7"
total-nodes="2" />
<workdirectory>$HOME/workdir</workdirectory>
</site>
…
</sitecatalog>

(a) A simplified site catalog published for the provisioned cluster consisting of 2 Xeon processors

environment = GLOBUS_LOCATION=/usr/local/globus-4.0.7;JAVA_HOME=/opt/jdk;PEGASUS_HOME=/home/globus/pegasus-2.1.0;
LD_LIBRARY_PATH=/usr/local/globus-4.0.7/lib;
arguments = "-n black::preprocess:1.0 -N black::top:1.0 -R cat7 /home/globus/pegasus-2.1.0/…/black-preprocess-1.0 -a top -T60 -i f.a -o f.b1
f.b2"
error = /home/globus/pegasus-2.1.0/temp/dags/globus/pegasus/black-diamond/run0001/preprocess_ID000001.err
executable = /home/globus/pegasus-2.1.0/bin/kickstart
globusrsl = (jobtype=single)
globusscheduler = https://cat7.kaist.ac.kr:9000/wsrf/services/ManagedJobFactoryService
grid_type = gt4
jobmanager_type = PBS
output = /home/globus/pegasus-2.1.0/temp/dags/globus/pegasus/black-diamond/run0001/preprocess_ID000001.out
remote_initialdir = /home/globus/pegasus-2.1.0/temp/$HOME/workdir/pegasusexec/globus/pegasus/black-diamond/run0001
transfer_error = true
transfer_executable = false
transfer_output = true
universe = grid
+pegasus_generator = "Pegasus"
+pegasus_version = "2.1.0"
+pegasus_wf_name = "black-diamond-0"
+pegasus_wf_time = "20080909T182531+0900"
+pegasus_job_id = "preprocess_ID000001"
+pegasus_site = "cat7"
Queue

(b) A simplified Condor submit file generated by Pegasus for the DAX against the site catalog

Figure 6. Planning of abstract workflow against provisioned resources

4. Related Work

In [25], we discussed workflow planning over pro-
visioning resources across multiple sites or VOs (Vir-
tual Organization) [26]. We used Pegasus as a work-
flow management framework and Condor-G [12] as a

provisioned framework. Condor-G working with Con-
dor [27] can be regarded as a resource provisioning
framework which can support advance reservation [28]
and dynamic resource acquisition using the glidein
mechanism [12]. However, this integration was done
ad-hoc. In contrast to Condor-G, the Virtual Grid is not
only a resource provisioning framework but also a
resource programming and virtualization framework.
In addition, VG supports a variety of resource man-
agement paradigms such as best-effort space-sharing,
advance reservation, price-based reservation [29],
compute cloud [11], and time-sharing resources.
Moreover, the Virtual Grid can deploy any user-level
job manager including PBS on demand.

In addition to the system-level integration, there
have been several studies on scheduling application
workflows on provisioned resources [30-32]. These
studies demonstrate the potential of integrating work-
flow management systems with resource provisioning
systems. A common lesson from these studies is that
provisioning resources can deliver good and predict-
able performance to applications, compared to the best
effort space-sharing of resources. The Virtual Grid can
instantiate resource collections that have specific char-
acteristics across distributed resources. As such it can
meet the assumption that the application-level schedul-
ers have.

5. Conclusions & Discussions

This paper presented a case study of workflow
planning and execution over provisioned resources
through integrating the Pegasus workflow framework
with the Virtual Grid resource provisioning system.
We identified that the resource capacity estimate and
the site catalog publication through resource devirtu-
alization are two key features required for this basic
integration. As an implementation, we introduced the
Pegasus-VG proxy as a common ground where Pega-
sus interacts with the Virtual Grid. This proxy-based
implementation enables an easy integration without
changing the internals of either of the systems. We
believe this integration enables scientists to explore
their problems more efficiently over distributed re-
sources. Since resource provisioning is opaque to the
user, the application development cycle is the same
even with more advanced resource allocation.

This study is the first step in understanding the is-
sues of integrating workflow management systems
with resource provisioning systems. Through this inte-
gration, we also identified several challenges. Pegasus
can partition a workflow into multiple subworkflows
which can be planned and executed separately over

time. Since allocating a large set of resources for a
long time is expensive, difficult and exposes applica-
tions to resource failures, provisioning resources over
time can be cost-efficient and even provide better per-
formance and reliability. For temporal resource provi-
sioning for multiple subworkflows, users can specify
time constraints on their resource specifications and let
the Virtual Grid allocate resources according to the
user-specified schedules. On the other hand, users can
allocate resources on-the-fly for each subworkflow
whenever Pegasus conducts planning. In either case,
the Virtual Grid will optimize resource allocation, tak-
ing into account resource characteristics. In the future,
we will explore to what extent the temporal resource
provisioning can improve application performance as
compared to the static resource allocation.

Even though the resource devirtualization makes
this integration easy, it sacrifices the advanced features
of the Virtual Grid. For instance, DAGMan repeats the
same computation in case of computation failures until
it reaches to the maximum retries. However, repeating
computation on the same resource is not likely to suc-
ceed if the failures do not result from transient errors.
Unless Pegasus provides multiple plans for a workflow
or a dynamic re-planning feature at failures, DAGMan
cannot handle non-transient runtime failures. Restart-
ing the failed job on different resources, on the other
hand, is more likely to succeed. The Virtual Grid sup-
ports a variety of functionalities for fault-tolerance.
First of all, VG can provision more reliable resources
so it can proactively minimize the likelihood of fail-
ures. Moreover, the Virtual Grid can swap resources
dynamically after resource failures and restart the
failed tasks on the new resources.

Finally, the overall performance of applications is
influenced by a variety of factors such as resource
quality, resource reliability, data location, etc. We are
also exploring how to improve the effective perform-
ance, which represents not only the performance of
successful executions but also the penalty due to fail-
ures, against dynamic resource environments.

Acknowledgements

The authors and research described here were sup-
ported by the National Science Foundation under
grants: OCI-0722019 (Pegasus) and supported in part
by the National Science Foundation under NSF Coop-
erative Agreement NSF CCR-0331645 (VGrADS).

References

[1] B. Plale, D. Gannon, et al., "CASA and LEAD: Adaptive

Cyberinfrastructure for Real-Time Multiscale Weather Fore-
casting," IEEE Computer, vol. 39, pp. 56–64, 2006.

[2] W. W. Li, R. W. Byrnes, et al., "The Encyclopedia of Life
Project: Grid Software and Deployment," New Generation
Computing, vol. 22, pp. 127-136, 2004.

[3] W. Chrabakh and R. Wolski, "GridSAT: A Chaff-based Dis-
tributed SAT Solver for the Grid," in IEEE International Con-
ference on High Performance Computing and Communication
(SC'03): IEEE, 2003.

[4] S. J. Ludtke, P. R. Baldwin, and W. Chiu, "EMAN: Semiau-
tomated Software for High-Resolution Single-Particle Recon-
structions," Journal of Structural Biology, vol. 128, pp. 82-97,
1999.

[5] G. B. Berriman, E. Deelman, et al., "Montage: a Grid Enabled
Engine for Delivering Custom Science-Grade Image Mosaics
on Demand," in SPIE Conference on Astronomical Telescopes
and Instrumentation, vol. 5493: SPIE, 2004.

[6] E. Deelman, G. Singh,et al. , "Pegasus: a Framework for Map-
ping Complex Scientific Workflows onto Distributed Sys-
tems," Scientific Programming Journal, vol. 13, pp. 219-237,
2005.

[7] T. Fahringer, A. Jugravu, et al., "ASKALON: a Tool Set for
Cluster and Grid Computing," Concurrency and Computation:
Practice and Experience, vol. 17, pp. 143-169, 2005.

[8] D. Churches, G. Gombas, et al., "Programming Scientific and
Distributed Workflow with Triana Services," Concurrency
and Computation: Practice and Experience, vol. 18, pp. 1021-
1037, 2006.

[9] Y.-S. Kee and C. Kesselman, "Grid Resource Abstraction,
Virtualization, and Provisioning for Time-targeted Applica-
tions," in ACM/IEEE International Symposium on Cluster
Computing and the Grid (CCGRID'08): IEEE, 2008.

[10] D. Irwin, J. Chase, et al., "Sharing Networked Resources with
Brokered Leases," in USENIX Annual Technical Conference
(USENIX): Usenix, 2006.

[11] "Amazon Elastic Compute Cloud."
[12] J. Frey, T. Tannenbaum, et al., "Condor-G: A Computation

Management Agent for Multi-Institutional Grids," in IEEE In-
ternational Symposium on High Performance Distributed
Computing (HPDC-10): IEEE, 2001, pp. 55-63.

[13] I. Foster and C. Kesselman, "Globus: A Metacomputing Infra-
structure Toolkit," International Journal of Supercomputer
Applications, vol. 11, pp. 115-128, 1997.

[14] Y. Gil, V. Ratnakar, et al., " Wings for Pegasus: Creating
Large-Scale Scientific Applications Using Semantic Represen-
tations of Computational Workflows," in The 19th Annual
Conference on Innovative Applications of Artificial Intelli-
gence (IAAI). Vancouver, British Columbia, Canada, 2007.

[15] S. Fitzgerald, I. Foster, et al., "A directory service for config-
uring high-performance distributed computations," in Interna-
tional Symposium on High Performance Distributed Comput-
ing (HPDC '97). IEEE Computer Society Press, 1997, pp. 365-
375.

[16] A. L. Chervenak, N. Palavalli,et al., "Performance and Scal-
ability of a Replica Location Service," in Proceedings of the
International IEEE Symposium on High Performance Distrib-
uted Computing (HPDC-13): IEEE, 2004.

[17] Y.-S. Kee, D. Logothetis,et al., "Efficient Resource Descrip-
tion and High Quality Selection for Virtual Grids," in
ACM/IEEE International Symposium on Cluster Computing
and the Grid (CCGRID'05). Cardiff, United Kingdom: IEEE,
2005, pp. 598-606.

[18] Y.-S. Kee, K. Yocum, et al., "Improving Grid Resource Allo-
cation via Integrated Selection and Binding," in ACM/IEEE
International Conference on High Performance Computing
and Communication (SC'06). Tampa, United States: IEEE,
2006.

[19] C. Liu and I. Foster, "A Constraint Language Approach to
Matchmaking," in IEEE International Workshop on Research
Issues on Data Engineering: Web Services for E-Commerce
and E-Government Applications (RIDE'04): IEEE, 2004, pp.
7-14.

[20] Y.-S. Kee, C. Kesselman, et al., "Enabling Personal Clusters
on Demand for Batch Resources Using Commodity Software,"
in International Heterogeneity Computing Workshop
(HCW'08) in conjunction with IEEE IPDPS'08, 2007.

[21] R. L. Henderson, "Job Scheduling Under the Portable Batch
System," in Lecture Notes in Computer Science, vol. 949,
IPPS '95 Workshop on Job Scheduling Strategies for Parallel
Processing: Springer, 1995, pp. 279-294.

[22] I. Foster, "Globus Toolkit Version 4: Software for Service-
Oriented Systems," in Lecture Notes in Computer Science, vol.
3779, IFIP International Conference on Network and Parallel
Computing: Springer, 2005, pp. 2-13.

[23] R. Huang, H. Casanova, and A. A. Chien, "Automatic Re-
source Specification Generation for Resource Selection," in
ACM/IEEE conference on Supercomputing (SC'07): IEEE,
2007.

[24] E.-K. Byun, Y.-S. Kee, et al., "Efficient Resource Capacity
Estimate of Workflow Applications for Provisioning Re-
sources," in IEEE International Conference on e-Science (e-
Science08). Indiana: IEEE, 2008.

[25] E. Deelman, S. Callaghan, et al., "Managing Large-Scale
Workflow Execution from Resource Provisioning to Prove-
nance tracking: The CyberShake Example," in IEEE Interna-
tional Conference on e-Science and Grid Computing (e-
Science'06): IEEE, 2006.

[26] I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of the
Grid: Enabling Scalable Virtual Organizations," International
Journal of High Performance Computing Applications, vol.
15, pp. 200-222, 2001.

[27] M. Litzkow, M. Livny, and M. Mutka, "Condor - A Hunter of
Idle Workstations," in IEEE International Conference on Dis-
tributed Computing Systems (ICDCS-8): IEEE, 1988, pp. 104-
111.

[28] L. C. Wolf and R. Steinmetz, "Concepts for Resource Reser-
vation in Advance," Multimedia Tools and Applications, vol.
4, pp. 255 - 278, 1997.

[29] G. Singh, C. Kesselman, and E. Deelman, "Adaptive Pricing
for Resource Reservations," in IEEE/ACM International Con-
ference on Grid Computing (Grid 2007). Austin, Texas, 2007.

[30] G. Singh, C. Kesselman, and E. Deelman, "Performance Im-
pact of Resource Provisioning on Workflows," University of
Southern California, Technical Report CS05-850, 2005.

[31] R. Huang, H. Casanova, and A. A. Chien, "Using Virtual
Grids to Simplify Application Scheduling," in IEEE Interna-
tional Parallel & Distributed Processing Symposium
(IPDPS'06): IEEE, 2006.

[32] Y. Zhang, A. Mandal, et al., "Scalable Grid Application
Scheduling via Decoupled Resource Selection and Schedul-
ing," in ACM/IEEE International Symposium on Cluster Com-
puting and the Grid (CCGRID'06). Singapore: IEEE, 2006.

	1. Introduction
	2. Background
	2.1. Pegasus-WMS
	2.2. The Virtual Grid

	3. Pegasus-WMS on the Virtual Grid
	3.1. Computing Scenario
	3.2. Issues

	4. Related Work
	5. Conclusions & Discussions
	Acknowledgements
	References

