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Abstract 
 

As scientific applications in a variety of disciplines 
are being actively developed and computing environ-
ments become ever more complicated and dynamic, it 
is becoming challenging to leverage existing cyber-
infrastructures and achieve robust and efficient com-
puting. This paper presents a case study of planning 
and executing application workflows over provisioned 
resources. This work integrates the Pegasus workflow 
framework with the Virtual Grid resource provisioning 
system. Through this preliminary study, we have iden-
tified two key issues that need to be addressed: 1) de-
veloping a resource capacity estimate which synthe-
sizes efficient resource descriptions for the Virtual 
Grid from application workflows and 2) execution site 
information publication which provides resource con-
figurations for Pegasus through the devirtualization of 
provisioned resources. In addition, we discuss the 
challenges and research opportunities that we need to 
explore in order to exploit the advanced features of the 
systems. 
 
1. Introduction 
 

The advance of cyber-infrastructures has enabled 
scientists to explore complicated natural phenomena. 
Many success stories inspire researchers to solve more 
complex problems in a variety of disciplines [1-5]. One 

of key challenges in this exploration is how to transi-
tion the scientific knowledge and legacy software to 
new computing environments. A solution gaining in 
popularity is the use of high-level application descrip-
tions such as workflows that can specify the structure 
and overall behavior of applications in a platform-
independent manner. Typically, a workflow is repre-
sented as a Directed Acyclic Graph (DAG) that con-
sists of nodes, representing tasks, and edges, which 
denote data/control dependencies between tasks. When 
an application is specified via a workflow, workflow 
management systems such as Pegasus [6], Askalon [7], 
Triana [8], and others manage and execute workflows 
on distributed resources. 

Coordination and management of distributed re-
sources are challenging issues for a number of com-
munities in computer science. The noticeable achieve-
ments in distributed computing are the state-of-art re-
source virtualization technologies such as the Virtual 
Grid [9], the virtual cluster [10], and compute clouds 
[11], which take into account a variety of factors such 
as availability, performance, cost, etc and enable on-
demand resource provisioning. Regardless of the base 
technology that implements virtualization, these tech-
nologies commonly encapsulate the complexity of re-
source management and provide uniform interfaces to 
resources. 

Workflow management systems can potentially 
benefit from these resource provisioning technologies. 
First, workflow management systems can be insulated 



from the resource management complexity, which sub-
sequently reduces the design complexity of workflow 
management systems. Second, workflow management 
systems can take advantage of the benefits of efficient 
resource management of provisioning systems since 
the provisioning systems can optimize resource alloca-
tions and assure the quality of resources in terms of 
computing and communication performance, reliability, 
availability, and so on. Finally, workflow management 
systems can exploit an extended resource universe 
with minimal efforts through resource provisioning. At 
the same time, provisioning systems can have well-
defined interfaces to applications via the workflow 
management systems. In addition, provisioning sys-
tems can experience a variety of structural and behav-
ioral characteristics of applications via the workflow 
management systems which can contribute to the im-
provement of the provisioning systems themselves. 
Finally, provisioning systems can extensively evaluate 
their performance and the quality of provisioning tech-
niques in real settings against the applications already 
supported by existing workflow management systems. 

In this paper we focus on two representative work-
flow management and resource provisioning systems. 
Pegasus-WMS [6] is a workflow management system 
which conducts workflow planning with detailed in-
formation about computation and data against a given 
resource set. The Virtual Grid (VG) [9] is a program-
mable resource provisioning framework, which en-
ables users to instantiate resources of quality (perform-
ance, reliability, availability, etc.) on demand. We be-
lieve that the integration of Pegasus with the Virtual 
Grid can not only deliver the aforementioned benefits 
but can also have significant synergetic effects on sci-
entific computing. As a result, Pegasus can conduct 
more efficient workflow planning in terms of cost, 
performance and quality with the resources provi-
sioned by the Virtual Grid.  

As a preliminary study, this paper focuses only on a 
basic integration and discusses two critical issues to be 
solved. The paper identifies two core interfaces for the 
interactions between Pegasus-WMS and the Virtual 
Grid: resource capacity estimation and execution site 
information publication. We implement these inter-
faces in a proxy system named Pegasus-VG proxy 
which orchestrates Pegasus-WMS and the Virtual Grid 
and enables workflow execution over provisioned re-
sources. Finally, we present several challenges and the 
new research opportunities identified through this 
study. 

The rest of this paper is organized as follows. In 
Section 2, we give a brief overview of Pegasus-WMS 
and the Virtual Grid. Then, we discuss a simple work-
ing scenario and the integration issues in Section 3. We 

summarize the related studies in Section 4 and finally 
conclude this paper, discussing the future research 
directions in Sections 5 and 6. 
 
2. Background 
 

The common design philosophy of Pegasus and the 
Virtual Grid is that of separation of concerns, which 
can simplify complex problems and can provide feasi-
ble or even better solutions. Specifically, Pegasus as-
sumes that an application can be developed and exe-
cuted independently of the target execution system 
using a high-level representation (i.e., application 
workflow) while the Virtual Grid aims for resource 
management to be isolated from the application and be 
virtualized via a resource abstraction (i.e., the Virtual 
Grid). Since these two systems compliment each other, 
the integration of the two systems can simplify the 
overall design complexity of scientific computing, 
make applications portable, and achieve good per-
formance. In the following subsections, we give a brief 
overview of Pegasus and the Virtual Grid. 
 
2.1. Pegasus-WMS 

 
Pegasus [6] is a workflow management system 

which maps abstract workflows onto resources. The 
abstract workflow describes the logical topology and 
functionality of the application and executes workflow 
tasks using Condor’s DAGMan [12]. Figure 1 illus-
trates a typical lifecycle of application workflow in the 
Pegasus framework. Pegasus takes an abstract work-
flow, maps it onto the available resources, and invokes 
DAGMan to execute the workflow. DAGMan then 
walks through the workflow and releases the workflow 
tasks in the right order to Condor-G  [12]. The latter 
submits the tasks to the remote resources (via Globus 
[13]) for execution. 
 
2.1.1. Workflow Creation. The first phase of the 
workflow lifecycle is to create an abstract workflow 
for the application. An abstract workflow [6] is a logi-
cal representation of control and data flow of the ap-
plication, independent of resources. An abstract work-
flow is composed of the tasks described in terms of 
logical transformations and logical input and output 
filenames. Depending on their backgrounds, circum-
stances, expertise in workflow technologies, scientists 
can create abstract workflows, directly using prede-
fined XML schemas, using the Pegasus Java API, or 
using the intelligent workflow editor, Wings [14]. 
 



2.1.2. Workflow Planning. The goal of Pegasus is to 
find a good mapping of workflow tasks to available 
execution sites. Pegasus transforms an abstract work-
flow through a series of refinements to a concrete 
workflow which can be executed on the resources. 
Pegasus first indentifies the resources available to the 
user. Second, Pegasus simplifies the workflow based 
on the historic computation results that Pegasus keeps 
track of. If the results of workflow tasks are already 
available (for example when the data were previously 
computed and stored), such computations can be re-
placed with simple data transfers. Pegasus then sched-
ules the tasks by selecting appropriate resources, based 
on the available resources and their characteristics as 
well as the location of input data. Pegasus relies on 
information services such as MDS (Meta-computing  
Directory Service) [15] and others to retrieve resource 
characteristics and RLS (Replica Location Service) 
[16] to locate historic data. For efficient execution, 
Pegasus can cluster jobs together in cases where a 
number of small granularity jobs are destined for a 
same computing resource. Next, Pegasus augments the 
workflow with tasks that explicitly perform data trans-
fers. The final step is to write out the mapping results 
in a Condor input file and the associated submit files 
which can be interpreted by Condor DAGMan [12]. 
 
2.1.3. Workflow Execution. Pegasus uses DAGMan 
for workflow execution. DAGMan is a workflow exe-
cution engine which submits jobs to Condor in an or-
der represented by a Condor DAG. DAGMan proc-
esses a DAG input file and the associated Condor sub-

mit file(s). It is responsible for scheduling, recovery, 
and reporting on the set of tasks submitted to Condor. 

 

 
Figure 1. Workflow lifecycle in the Pegasus frame-
work 
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Figure 2. Scientific Computing via Virtual Grid 

In the case of distributed resources such as Grids, 
DAGMan submits jobs to Condor-G. Condor-G [12] is 
a job management system which locates resources and 
submits, cancels, and monitors jobs on the behalf of 
the users. Condor-G provides a uniform resource inter-
face over heterogeneous resources via a Condor pool 
and enables users to transparently access resources and 
manage jobs. For remote execution, Condor-G relies 
on the Globus Toolkit [13] which enables secure ac-
cesses to resources, uniform accesses to a variety of 
batch systems, file staging, status monitoring, and so 
on. 

 
2.2. The Virtual Grid 
 

The Virtual Grid (VG) [9, 17] is a high-level re-
source abstraction enabling virtualized distributed 
computing across heterogeneous resources. Separated 
by the VG abstraction layer, a user specifies the char-
acteristics of the desired execution target while the 
Virtual Grid execution system (VGES) [17, 18] ren-
ders the abstraction. VGES manages the uncertainty 
and dynamics associated with queuing delays, failures, 
and contention effects underneath the abstraction. As 
such, VG can isolate application development, sched-
uling, and optimization procedures from the complex-
ity of managing resources. 

Figure 2 illustrates a computing scenario in the con-
text of VG. First, users abstract their resource require-
ments and program the structure and properties of de-
sired execution target in the resource description lan-
guage named VGDL [17]. VGES then analyzes the 
VGDL description and compiles a collection of quality 
resources into a VG instance through resource selec-
tion, binding, and environment setup. Once a VG is 
created, users can operate on the VG to retrieve re-



source information, to execute the application tasks, 
and to manage the resource collection. In the following 
sections, we highlight three components that imple-
ment the Virtual Grid concept. 
 
2.2.1. Resource description language. VGDL (Vir-
tual Grid Description Language) [17] is a resource 
description language, which provides constructs for 
expressing constraints on the attributes associated with 
computing resources. Users can describe resource re-
quirements in terms of desired values of attributes (e.g., 
process type, memory capacity). The key advances of 
VGDL are the capability of hierarchical qualitative 
specification of resource aggregates and network prox-
imity. The qualitative approach enables applications to 
construct simple and robust specifications regardless of 
technology advances. 

Users can capture simple widely-used resource ab-
stractions to achieve the portability in design and to 
manage the complexity of resource environments via 
VG resource aggregates. Moreover, VG connectivity 
operators express the coarse notions of network prox-
imity between aggregates in terms of latency and 
bandwidth. Resource aggregates and network connec-
tivity operators enable users to compose individual 
resources into an arbitrary structure. At the same time 
users can specify application-specific resource quality 
in a user-defined resource ranking function. Users can 
specify the temporal resource availability for time-
constrained applications [9]. Moreover, users can spec-
ify the availability probability of resources at a certain 
time (i.e., start time) and the reliability probability of 
resources for a certain duration. 

Figure 3 illustrates how a program that consists of a 
pair of a producer and a consumer can be described in 
VGDL. In this example, the user needs two tightly 
coupled clusters in a temporal order, each of which has 
16 Itanium processors and 4 Opteron processors, re-
spectively. In addition, the user requires a high level of 
confidence that the resources will be allocated in a 
timely manner and should be highly reliable while the 

application is running. Two ClusterOf aggregates are 
used to represent clusters and a HighBW connectivity 
operator is used to tightly couple two clusters.  

Producer
(16 x Itanium2)

Consumer
(4 x Opteron)

High BW

From 10:00 A.M. to 11:00 A.M. From 11:00 A.M. to 11:30 A.M.  

Producer-consumer =  
    Producer = ClusterOf (nd1) [16]  
                                        <12/12/2006@10:0:0[EXEL], 1:0:0[EXEL]>  
                { nd1 = [Processor == “Itanium 2”] }  
    HighBW 
    Consumer = ClusterOf (nd2) [4]  
                                          <12/12/2006@11:0:0[EXEL], 0:30:0[EXEL]>  
                 { nd2 = [Processor == “Opteron”] } 

(a) Resource requirement (b) Resource specification 

Figure 3. An example of resource specification in VGDL 
(ClusterOf denotes a set of homogeneous resources; HighBW represents a high bandwidth network; <xx/xx/xx@xx:xx:xx[avail_prob], 
xx:xx:xx[rel_prob]> describes the start time and the availability of resource arrival and the duration and the reliability of resource allocation.) 

 
2.2.2. Resource compilation. Compiling a VG in-
stance from a VGDL specification is the process of 
configuring a network of resources for the specifica-
tion [9]. A VG compilation consists of selection and 
binding. Selection is used to identify the possible re-
sources satisfying the specification in the resource uni-
verse while binding it to secure the resource allocation 
with a certain confidence. 

The Virtual Grid reformulates the resource selection 
problem through a resource classification and an 
online search for efficient selection and implements the 
fast resource selection by exploiting the relational da-
tabase technology [18]. On the other hand, the likeli-
hood of binding success is contingent upon the re-
source management policy of the resource manager. 
VG exploits the compositional structure of resource 
specification and identifies the components that can be 
allocated independently. The Virtual Grid probabilisti-
cally guarantees the success of resource binding by 
identifying multiple solutions for each component [18]. 
 
2.2.3. Personal cluster. A personal cluster is a virtual 
cluster instantiated on demand from physical re-
sources. This gives users an illusion that the instant 
cluster is dedicated to the user for a certain time period 
[20]. A personal cluster reserves a partition of re-
sources and enables a uniform, cost-effective use of 
batch resources. The user has a dedicated cluster under 
the control of a private resource manager. As such a 
personal cluster can provide a uniform job/resource 
management environment over heterogeneous re-
sources regardless of system-level resource manage-
ment paradigms.  

The current implementation is based on the WS-
based Globus Toolkit [22] and a PBS [21] installation. 
The Personal cluster uses the similar mechanism to 
Condor glidein [12]. Once a system-level resource 



manager allocates a partition of resources, a user-level 
PBS scheduled on the resources holds the resources for 
a user-specified time and a user-level WS-GRAM 
(configured at runtime for the partition) accepts jobs 
from the user and relays them to the user-level PBS. 
As a result, users can bypass the system-level resource 
manager and benefit from the low scheduling overhead 
with the private scheduler. 
 
3. Pegasus-WMS on the Virtual Grid 
 

The intuition behind integrating Pegasus-WMS 
with the Virtual Grid is that a workflow planning sys-
tem can benefit from the advanced resource manage-
ment services of the provisioning system and conse-
quently enable robust and efficient computing. How-
ever, the scope of this paper is limited to a simple sce-
nario of interactions between Pegasus and the Virtual 
Grid. To minimize impacts on both systems and enable 
independent development, we propose a proxy system 
named Pegasus-VG proxy which implements the inter-
faces and the services required for integration, insulat-
ing the systems from each other. In this section, we 
present our computing scenario and detail the issues of 
this study. 

 
3.1. Computing Scenario 

 
As discussed in Section 2.1, a workflow basically 

goes through three phases in the Pegasus framework: 
creation, planning, and execution. Workflow creation 
is a totally application-specific phase, independent of 
target resources. Pegasus only interacts with the Vir-
tual Grid at the planning and execution phases. An 
issue here is that the resources in VG are presented in a 
virtualized manner. However, Pegasus needs concrete 
resource information such as hostname, port number, 
directory name, and so on. Therefore, the Pegasus-VG 
proxy devirtualizes the provisioned resources and al-
lows Pegasus to follow the normal planning and execu-
tion processes without modifying the Pegasus internals. 

Figure 4 illustrates how Pegasus interacts with the 
Virtual Grid in a simple devirtualization scenario. First, 
the user specifies application-specific knowledge about 
resource requirements (e.g., processor type, memory 
capacity) and the application-level information (e.g., 
locations of executable, data, and replica) needed to 
run his/her application in the Pegasus framework. 
When Pegasus’ planning is invoked with this abstract 
workflow, a wrapper program for the Pegasus planning 
command intercepts the resource information before 
the ordinary planning of Pegasus takes place and con-
tacts the Pegasus-VG proxy. The proxy then synthe-

sizes a vgDL description through a resource capacity 
estimate and instantiates a VG on behalf of Pegasus. 
The proxy devirtualizes the VG instance and generates 
a new site catalog which is a formal input of Pegasus 
describing the information of the VG-provisioned re-
sources. The site catalog is then sent back to the wrap-
per and finally the wrapper invokes the ordinary Pega-
sus planner with the site catalog. Pegasus now contin-
ues its normal planning process. Since a site catalog 
contains the detailed information about how to access 
resources such as hostname, GRAM port number, 
scheduling adaptor, and so on, Pegasus can run appli-
cations directly on the resources via DAGMan as usual. 
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Figure 4. Pegasus on Virtual Grid 

 
3.2. Issues 

 
3.2.1. Resource capacity estimation. A critical capa-
bility required for this integration is to synthesize a 
vgDL specification from application workflow(s). The 
most dominant attribute from the perspective of high-
level workflows is the number of processors required 
by the application because the resource size is one of 
the important factors in determining the makespan of 
workflow application and the cost of resource alloca-
tion. If the number of resources is large, the parallel 
execution of independent tasks can reduce the execu-
tion time while too many resources can cause low re-
source utilization, high scheduling overhead, and high 
cost. On the other hand, if the number of resources is 
too small, the execution time of the workflow can in-
crease. Therefore, it is important to estimate the num-
ber of resources as small as possible so as to complete 
a workflow within a given deadline. This problem is 
different from the conventional workflow scheduling 
or cost-optimization problems, which aim at minimiz-
ing the application’s runtime against a fixed set of re-
sources.  



This issue was already addressed by several studies 
[23, 24]. In particular, the BTS algorithm estimates the 
resource capacity very efficiently [24]. The algorithm 
scales well even with very complex workflows and 
provides a good estimate of resources needed - close to 
the optimal for a variety of workflows. Moreover, the 
resource estimate is abstract and independent of de-
scription languages and selection mechanisms so it can 
be easily integrated with any resource description lan-
guage and provisioning system. 

The Pegasus-VG proxy has a wrapper of BTS 
which takes the abstract workflow (DAX) from Pega-
sus and generates a vgDL description. For example, 
Figure 5 (a) depicts a simple synthetic application. The 
user can describe the structure and behavior of the ap-
plication in a DAX as shown in Figure 5 (b). Then, the 
BTS wrapper extracts the workflow information (e.g. 
task and link) and invokes BTS. BTS then estimates 
the number of processors required for the workflow 
and synthesizes a vgDL description as shown in Figure 
5 (c) using the resource requirements (e.g., processor 
type, clock rate, memory capacity) given by the client. 
In this example, the workflow needs a cluster consist-
ing of 2 Xeon processors. The processor requirements 
are embedded into the node definition while the cluster 
size is determined automatically by BTS. 

 

preprocess

findrange findrange

analyze

f.input

f.output
 

<!-- part 1: list of all files used (may be empty) --> 
<filename file="f.input" link="input"/> 
<filename file="f.intermediate" link="input"/> 
<filename file="f.output" link=”output"/> 
<filename file=“keg” link=“input”> 
 
<!-- part 2: definition of all jobs (at least one) --> 
<job id="ID000001" namespace=”pegasus" name="preprocess" version="1.0" > 
<argument> 
    -i <filename file=”f.input"/> -o <filename file=”f.intermediate"/> 
</argument> 
<uses file=”f.input" link="input" register="false" transfer=”true"/> 
<uses file=”f.intermediate" link="output" register=”false" transfer=“false”> 
</job> 
 
<job id="ID000002" namespace=”pegasus" name=”analyze" version="1.0" > 
<argument> 
    -i <filename file=”f.intermediate"/> -o <filename file=”f.output"/> 
</argument> 
<uses file=”f.intermediate" link="input" register="false” transfer=”true"/> 
<uses file=”f.output” link="output" register=”true" transfer=”true"/> 
</job> 
… 
 

(a) Black-diamond workflow 
 

(b) A fragment of Pegasus DAX 
 

Diamond = ClusterOf [2] (nd) [, 01:00:00]{ nd = [Processor == “Xeon”] } 
 

(c) A synthesized vgDL description requesting a cluster consisting of 2 Xeon processors 
 

Figure 5. vgDL synthesis for a black-diamond application workflow 

3.2.2. Site catalog publication. Pegasus conducts 
workflow planning against resources described in site 
cataloges. The BTS wrapper generates a complete 
vgDL specification through the resource capacity esti-
mate and then the proxy acquires resources via the 
Virtual Grid. Once a VG instance is successfully cre-
ated, the proxy devirtualizes the Virtual Grid and cre-
ates a site catalog describing the provisioned resources. 

Figure 6 (a) is a site catalog created for the vgDL 
specification presented in Figure 5 (c). As discussed in 
Section 2.3, the Virtual Grid deploys a personal cluster 
based on Globus Web Services and PBS to the provi-
sioned resources. The key information that the proxy 
retrieves is the information related to the WS-GRAM 
service such as the Globus version, service endpoint, 
batch scheduler type, and so on. In this example, the 
cluster has 2 processors and provides a GRAM web 
service for PBS available at https://cat7.kaist.ac.kr: 
9000. 

Pegasus then generates a Condor input file and the 
associated Condor submit files. The key information in 
a submit file is universe, grid_type, globusscheduler, 
and jobmanager_type. Universe specifies the Condor 
execution environment, grid_type, the Globus version 
installed on the remote resource, globusscheduler, the 



end point information to access the GRAM web ser-
vice, and jobmanager_type, the batch scheduler name 
of the remote resource manager. Figure 6 (b) illustrates 
a Condor submit file generated by Pegasus 2.1.0 ver-
sion. In this example, universe is grid, grid_type is gt4, 
globusscheduler is https://cat7.kaist.ac.kr:9000/wsrf/ 
services/ManageJobFactoryService, and jobman-
ager_type is PBS; this information is extracted from 
the site catalog presented in Figure 6 (a). 

Pegasus can conduct normal planning for the DAX 
presented in Figure 5 (b) with this site catalog and gen-
erate an executable workflow (Condor DAG) as shown 

in Figure 6 (b). Since Globus Web Services and a PBS 
job manager are already deployed on the provisioned 
resources, Condor DAGMan can run the workflow 
tasks directly on the resources by using the GT4 op-
tions of Condor submit command. 

<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog" …> 
<site handle="cat7" gridlaunch="/home/globus/pegasus-2.1.0/bin/kickstart" sysinfo="INTEL32::LINUX"> 
<profile namespace="env" key="PEGASUS_HOME">/home/globus/pegasus-2.1.0</profile>  
<profile namespace="env" key="GLOBUS_LOCATION">/usr/local/globus-4.0.7</profile>  
<profile namespace="env" key="LD_LIBRARY_PATH">/usr/local/globus-4.0.7/lib</profile>  
<profile namespace="env" key="JAVA_HOME">/opt/jdk</profile> 
<profile namespace="condor" key="grid_type">gt4</profile>  
<profile namespace="condor" key="jobmanager_type">PBS</profile>  
<lrc url="rlsn://cat7.kaist.ac.kr" />  
<gridftp url="gsiftp://cat7.kaist.ac.kr:2811" storage="/home/globus" major="4" minor="0" patch="7" />  
<jobmanager universe="transfer" url="https://cat7.kaist.ac.kr:9000/wsrf/services/ManagedJobFactoryService" major="4" minor="0" 
patch="7" total-nodes="2" /> 
<jobmanager universe="vanilla" url="https://cat7.kaist.ac.kr:9000/wsrf/services/ManagedJobFactoryService" major="4" minor="0" patch="7" 
total-nodes="2" /> 
<workdirectory>$HOME/workdir</workdirectory>  
</site> 
… 
</sitecatalog> 
 

(a) A simplified site catalog published for the provisioned cluster consisting of 2 Xeon processors 
 

environment = GLOBUS_LOCATION=/usr/local/globus-4.0.7;JAVA_HOME=/opt/jdk;PEGASUS_HOME=/home/globus/pegasus-2.1.0; 
LD_LIBRARY_PATH=/usr/local/globus-4.0.7/lib; 
arguments = "-n black::preprocess:1.0 -N black::top:1.0 -R cat7 /home/globus/pegasus-2.1.0/…/black-preprocess-1.0  -a top -T60  -i f.a -o f.b1 
f.b2" 
error = /home/globus/pegasus-2.1.0/temp/dags/globus/pegasus/black-diamond/run0001/preprocess_ID000001.err 
executable = /home/globus/pegasus-2.1.0/bin/kickstart 
globusrsl = (jobtype=single) 
globusscheduler = https://cat7.kaist.ac.kr:9000/wsrf/services/ManagedJobFactoryService 
grid_type = gt4 
jobmanager_type = PBS 
output = /home/globus/pegasus-2.1.0/temp/dags/globus/pegasus/black-diamond/run0001/preprocess_ID000001.out 
remote_initialdir = /home/globus/pegasus-2.1.0/temp/$HOME/workdir/pegasusexec/globus/pegasus/black-diamond/run0001 
transfer_error = true 
transfer_executable = false 
transfer_output = true 
universe = grid 
+pegasus_generator = "Pegasus" 
+pegasus_version = "2.1.0" 
+pegasus_wf_name = "black-diamond-0" 
+pegasus_wf_time = "20080909T182531+0900" 
+pegasus_job_id = "preprocess_ID000001" 
+pegasus_site = "cat7" 
Queue 
 

(b) A simplified Condor submit file generated by Pegasus for the DAX against the site catalog 
 

Figure 6. Planning of abstract workflow against provisioned resources 

 
4. Related Work 
 

In [25], we discussed workflow planning over pro-
visioning resources across multiple sites or VOs (Vir-
tual Organization) [26]. We used Pegasus as a work-
flow management framework and Condor-G [12] as a 



provisioned framework. Condor-G working with Con-
dor [27] can be regarded as a resource provisioning 
framework which can support advance reservation [28] 
and dynamic resource acquisition using the glidein 
mechanism [12]. However, this integration was done 
ad-hoc. In contrast to Condor-G, the Virtual Grid is not 
only a resource provisioning framework but also a 
resource programming and virtualization framework. 
In addition, VG supports a variety of resource man-
agement paradigms such as best-effort space-sharing, 
advance reservation, price-based reservation [29], 
compute cloud [11], and time-sharing resources. 
Moreover, the Virtual Grid can deploy any user-level 
job manager including PBS on demand. 

In addition to the system-level integration, there 
have been several studies on scheduling application 
workflows on provisioned resources [30-32]. These 
studies demonstrate the potential of integrating work-
flow management systems with resource provisioning 
systems. A common lesson from these studies is that 
provisioning resources can deliver good and predict-
able performance to applications, compared to the best 
effort space-sharing of resources. The Virtual Grid can 
instantiate resource collections that have specific char-
acteristics across distributed resources. As such it can 
meet the assumption that the application-level schedul-
ers have. 

 
5. Conclusions & Discussions 
 

This paper presented a case study of workflow 
planning and execution over provisioned resources 
through integrating the Pegasus workflow framework 
with the Virtual Grid resource provisioning system. 
We identified that the resource capacity estimate and 
the site catalog publication through resource devirtu-
alization are two key features required for this basic 
integration. As an implementation, we introduced the 
Pegasus-VG proxy as a common ground where Pega-
sus interacts with the Virtual Grid. This proxy-based 
implementation enables an easy integration without 
changing the internals of either of the systems. We 
believe this integration enables scientists to explore 
their problems more efficiently over distributed re-
sources. Since resource provisioning is opaque to the 
user, the application development cycle is the same 
even with more advanced resource allocation. 

This study is the first step in understanding the is-
sues of integrating workflow management systems 
with resource provisioning systems. Through this inte-
gration, we also identified several challenges. Pegasus 
can partition a workflow into multiple subworkflows 
which can be planned and executed separately over 

time. Since allocating a large set of resources for a 
long time is expensive, difficult and exposes applica-
tions to resource failures, provisioning resources over 
time can be cost-efficient and even provide better per-
formance and reliability. For temporal resource provi-
sioning for multiple subworkflows, users can specify 
time constraints on their resource specifications and let 
the Virtual Grid allocate resources according to the 
user-specified schedules. On the other hand, users can 
allocate resources on-the-fly for each subworkflow 
whenever Pegasus conducts planning. In either case, 
the Virtual Grid will optimize resource allocation, tak-
ing into account resource characteristics. In the future, 
we will explore to what extent the temporal resource 
provisioning can improve application performance as 
compared to the static resource allocation. 

Even though the resource devirtualization makes 
this integration easy, it sacrifices the advanced features 
of the Virtual Grid. For instance, DAGMan repeats the 
same computation in case of computation failures until 
it reaches to the maximum retries. However, repeating 
computation on the same resource is not likely to suc-
ceed if the failures do not result from transient errors. 
Unless Pegasus provides multiple plans for a workflow 
or a dynamic re-planning feature at failures, DAGMan 
cannot handle non-transient runtime failures. Restart-
ing the failed job on different resources, on the other 
hand, is more likely to succeed. The Virtual Grid sup-
ports a variety of functionalities for fault-tolerance. 
First of all, VG can provision more reliable resources 
so it can proactively minimize the likelihood of fail-
ures. Moreover, the Virtual Grid can swap resources 
dynamically after resource failures and restart the 
failed tasks on the new resources.  

Finally, the overall performance of applications is 
influenced by a variety of factors such as resource 
quality, resource reliability, data location, etc. We are 
also exploring how to improve the effective perform-
ance, which represents not only the performance of 
successful executions but also the penalty due to fail-
ures, against dynamic resource environments.  
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