
Inter-domain Socket Communications Supporting High
Performance and Full Binary Compatibility on Xen ∗

Kangho Kim Cheiyol Kim Sung-In Jung
Electronics and Telecommunications Research Institute

(ETRI)
{khk,gauri,sijung}@etri.re.kr

Hyun-Sup Shin
ETRI/UST

superstarsup@etri.re.kr

Jin-Soo Kim
Computer Science Dept.,

KAIST
jinsoo@cs.kaist.ac.kr

Abstract
Communication performance between two processes in their own
domains on the same physical machine gets improved but it does
not reach our expectation. This paper presents the design and im-
plementation of high-performance inter-domain communication
mechanism, called XWAY, that maintains binary compatibility for
applications written in standard socket interface. As a result of
our survey, we found that three overheads mainly contribute to
the poor performance; those are TCP/IP processing cost in each
domain, page flipping overhead, and long communication path be-
tween both sides of a socket. XWAY achieves high performance
by bypassing TCP/IP stacks, avoiding page flipping overhead, and
providing a direct, accelerated communication path between do-
mains in the same machine. Moreover, we introduce the XWAY
socket architecture to support full binary compatibility with as lit-
tle effort as possible.

We implemented our design on Xen 3.0.3-0 with Linux kernel
2.6.16.29, and evaluated basic performance, the speed of file trans-
fer, DBT-1 benchmark, and binary compatibility using binary im-
age of real socket applications. In our tests, we have proved that
XWAY realizes the high performance that is comparable to UNIX
domain socket and ensures full binary compatibility. The basic per-
formance of XWAY, measured with netperf, shows minimum la-
tency of 15.6 µsec and peak bandwidth of 4.7Gbps, which is supe-
rior to that of native TCP socket. We have also examined whether
several popular applications using TCP socket can be executed on
XWAY with their own binary images. Those applications worked
perfectly well.

Categories and Subject Descriptors D.4.8 [Operating Systems]:
Performance; D.4.7 [Operating Systems]: Distributed Systems

General Terms Performance, Experimentation

Keywords Virtual machine, socket interface, high performance,
socket binary compatibility, Xen

∗ This work was supported by the IT R&D program of MIC/IITA. [2005-S-
119-03, The development of open S/W fundamental technology]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’08 M a rc h 5–7, 2008, Se a ttle , Wa s hington, USA.
Copyright c© 2008 ACM 978-1-59593-796-4/08/03...$5. 00

1. Introduction
Virtual Machine (VM) technologies were first introduced in the
1960s, reached prominence in the early 1970s, and achieved com-
mercial success with the IBM 370 mainframe series. VM technolo-
gies allow to co-exist different guest VMs in a physical machine,
with each guest VM possibly running its own operating system.
With the advent of low-cost minicomputers and personal comput-
ers, the need for virtualization declined [1, 3, 2].

As a growing number of IT managers are interested in improv-
ing the utilization of their computing resources through server con-
solidation, VM technologies are getting into the spotlight again
recently. Server consolidation is an approach to reducing system
management cost and increasing business flexibility by putting a lot
of legacy applications scattered across network into a small number
of reliable servers. It is recognized that VM technologies are a key
enabler to achieve server consolidation.

When network-intensive applications, such as Internet servers,
are consolidated in a physical machine using the VM technol-
ogy, multiple VMs running on the same machine share the ma-
chine’s network resource. In spite of the recent advance in the VM
technology, virtual network performance remains a major chal-
lenge [10, 5]. Menon et al. [6] reported that Linux guest domain
showed far lower network performance than native Linux, when an
application in a VM communicates with another VM on a different
machine. They showed the performance degradation by a factor of
2 to 3 for receive workloads, and a factor of 5 for transmit work-
loads [6].

Communication performance between two processes in their
own VMs on the same physical machine (inter-domain communi-
cation) is even worse than we expected. Zhang et al. pointed out that
the performance of inter-domain communication is only 130Mbps
for a TCP socket, while the communication performance between
two processes through a UNIX domain socket on a native Linux
system is as high as 13952Mbps [10]. Our own measurement on
Xen 3.0.3-0 shows the inter-domain communication performance
of 120Mbps per TCP socket, which is very similar to Zhang’s re-
sult. In the latest version of Xen 3.1, the inter-domain communica-
tion performance is enhanced to 1606Mbps (with copying mode),
but still significantly lagging behind compared to the performance
on native Linux. The poor performance of inter-domain communi-
cation is one of the factors that hinders IT managers from moving
toward server consolidation.

We believe that TCP/IP processing, page flipping overhead, and
long communication path between two communication end-points
collectively contribute to performance degradation for inter-domain
communication under Xen. It is not necessary to use TCP/IP for
inter-domain communication as TCP/IP was originally developed
to transfer data over unreliable WAN, not to mention that it requires

11

non-negligible CPU cycles for protocol processing. The page flip-
ping mechanism is useful to exchange page-sized data between
VMs, but it causes a lot of overhead due to repeated calls to the
hypervisor. In the current Xen network I/O model, inter-domain
communication is not distinguished from others and every mes-
sage should travel through the following modules in sequence:
TCP stack/IP stack/front-end driver in the source domain, back-end
driver/bridge in domain-0, and front-end driver/IP stack/TCP stack
in the destination domain.

In this paper, we present the design and implementation of
high-performance inter-domain communication mechanism, called
XWAY, which bypasses TCP/IP processing, avoids page flipping
overhead, and provides an accelerated communication path be-
tween VMs in the same physical machine. XWAY is implemented
as a network module in the kernel. XWAY enables network pro-
grams running on VMs in a single machine to communicate with
each other efficiently through the standard socket interface. XWAY
not only provides lower latency and far higher bandwidth for inter-
domain communication, but also offers full binary compatibility
so that any network program based on the socket interface does not
have to be recompiled to enjoy the performance of XWAY. We have
tested several representative network applications including ssh, vs-
ftp, proftp, apache, and mysql, and these programs work quite well
without any recompilation or modification.

The rest of this paper is organized as follows. After a brief
overview on Xen in Section 2, we discuss related work in Sec-
tion 3. In section 4, we cover several design issues and solu-
tions for achieving high-performance inter-domain communication
while providing full binary compatibility with the existing socket
interface. Section 5 describes the implementation detail of XWAY.
We present experimental results in Section 6 and conclude the pa-
per in Section 7.

2. Background
2.1 Xen

Xen is an open source hypervisor which is developed for x86/x64
platform and ported for IA64 and PPC. By using Xen, several op-
erating systems can be run on a single machine at the same time.
The hypervisor running between hardware and operating systems
virtualizes all resources over the hardware and provides the virtu-
alized resources to operating systems running on Xen. Each op-
erating system is called guest domain and one privileged domain
for hosting the application level management software is termed
domain 0. Xen provides two ways of virtualization which are full
virtualization and para-virtualization. On full virtualization, the hy-
pervisor provides full abstraction of the underlying physical sys-
tem to each guest domain. In contrast, para-virtualization presents
each guest domain with an abstraction of the hardware that is sim-
ilar but not identical to the underlying physical hardware. Fig-
ure 1(courtesy[??]) illustrates the overall architecture of Xen.

2.2 Xen network I/O architecture and interfaces

Domain 0 and guest domain have virtual network interfaces which
are called as back-end interface and front-end interface, respec-
tively. All network communications on Xen are carried out through
these virtual network interfaces. Figure 2(courtesy [??]) illustrates
the network I/O architecture in Xen. Each front-end network inter-
face in the guest domain is connected to a corresponding backend
network interface in the domain 0, which in turn is connected to the
physical network interfaces through bridging.

There are two modes for front-end network interface to receive
data from back-end network interface: copying mode and page
flipping mode. On copying mode, data contained in the page of
domain 0 are moved to a page in a guest domain through memory

Figure 1. Overall architecure of Xen (courtesy [7])

copy operations. On page flipping mode, the page holding data in
domain 0 is exchanged with an empty page that the guest domain
provides.

Xen provides three means of communication among domains:
event-channel, grant table, and Xenstore. Event-channel is a sig-
naling mechanism for domains on Xen. A domain can deliver an
asynchronous signal to another domain through event-channel. It
is similar to hardware interrupt and includes one bit information.
Each domain can receive a signal by registering event-channel han-
dler.

Each domain needs to share the memory space on local memory
area with another domain. However, no domain can directly access
the memory area of another domain. Therefore, Xen provides a
grant table to each domain. The grant table contains the references
of granters and a grantee can access granter’s memory by using the
reference on the grant table.

Xenstore is a space to store or reference the information for
setting up event channel and shared memory that is mentioned
above as a grant table. It is organized as hierarchical structure of
key value pairs and each domain has its own directory including
data related to its configuration.

Figure 2. Xen network I/O architecture

3. Related Work
There have been several previous attempts to reduce the over-
head of network I/O virtualization that affects the performance of
network-intensive applications. One of the most general way is to
redesign the virtual network interface. Menon et al. [5] redefined
the virtual network interface and optimized the implementation of
the data transfer path between guest and domain-0. The optimiza-
tion avoids expensive data remapping operations on the transmis-
sion path, and replaces page remapping with data copying on the

12

(a) SOVIA architecture (b) SOP architecture

Figure 3. Design alternatives for XWAY

receiving path. Although this approach can be also used for inter-
domain communication, communication among VMs on the same
physical machine still suffers from TCP/IP overhead and the inter-
vention of domain-0.

Zhang et al. proposed XenSocket for high-throughput inter-
domain communication on Xen [10]. XenSocket avoids TCP/IP
overhead and domain-0 intervention by providing a socket-based
interface to shared memory buffers between two domains. It is
reported to achieve up to 72 times higher throughput than stan-
dard TCP stream in the peak case. Despite its high throughput,
XenSocket only proved the potential ability of shared memory for
high-throughput inter-domain communication. Its socket interface
is quite different from the standard in that the current implemen-
tation not only requires the grant table reference value be passed
to connect() manually, but also lacks such features as two-way
data transmission and non-blocking mode reads & writes. Thus,
XenSocket cannot be used as a general purpose socket interface.

Ensuring full binary compatibility with legacy socket-based ap-
plications is essential requirement for server consolidation, but it is
not easy due to complex semantics of socket interface. The archi-
tecture of XWAY is largely influenced by our two previous attempts
to support the standard socket interface on top of a high-speed in-
terconnect, namely SOVIA and SOP.

SOVIA [4] is a user-level socket layer over Virtual Interface
Architecture (VIA). The goal of SOVIA is to accelerate the perfor-
mance of existing socket-based applications over user-level com-
munication architecture. Since SOVIA is implemented as a user-
level library, only source code-level compatibility is ensured and
the target application should be recompiled to benefit from SOVIA.
In some cases, the application needs to be slightly modified as it is
hard to support the complete semantics of the standard socket in-
terface at user level. Figure 3(a) illustrates the overall architecture
of SOVIA.

Many TOEs [8] do not support binary compatibility with exist-
ing socket applications, even though they provide their own socket
interface. SOP [9] presented a general framework over TOE to
maintain binary compatibility with legacy network applications us-
ing the standard socket interface. SOP is implemented in the Linux
kernel and intercepts all socket-related system calls to forward
them to either TOE cards or legacy protocol stack. As illustrated in
Figure 3(b), the intercept takes place at between BSD socket layer
and INET socket layer. Note that it is necessary to intercept file op-
erations as well as socket operations in order to achieve full binary
compatibility, which requires a lot of implementation efforts.

4. Design Issues
In this section, we discuss several design issues that arise in the
development of XWAY. Our main design goal is to make XWAY
as efficient as UNIX domain socket on native Linux environment,
while providing complete binary compatibility with legacy applica-

Figure 4. Inter-domain communication path for high performance

tions using the standard socket interface. XWAY should allow any
socket-based applications to run without recompilation or modifi-
cation to the application.

4.1 High performance

We focus on TCP socket communication between two domains in
the same physical machine. It is expected that such inter-domain
communication achieves higher bandwidth and lower latency than
communication between different machines, as IPC and Unix do-
main socket significantly outperform TCP socket communication.
Unfortunately, Xen falls far short of our expectations. As men-
tioned in Section 1, three notable overheads contribute to the poor
inter-domain performance: (1) TCP/IP processing overhead, (2)
page flipping overhead, and (3) long communication path in the
same machine.

For high-performance inter-domain communication, XWAY by-
passes TCP/IP stacks, avoids page flipping overhead with the use
of shared memory, and provides a direct, accelerated communica-
tion path between VMs in the same machine, as shown in Figure 4.
In Figure 4, the dotted arrows represent the current communication
path, whereas the solid arrows indicate the simplified XWAY path
through which both data and control information are exchanged
from one domain to another in a single machine.

It is apparent that we can bypass TCP/IP protocol stacks for
inter-domain communication as messages can be exchanged via
the main memory inside a machine. This not only minimizes the
latency, but also saves CPU cycles.

Along with the overhead of TCP/IP stacks, Zhang et al. at-
tributed the low performance of Xen’s inter-domain communica-
tion to the repeated issuance of hypercalls to invoke Xen’s page
flipping mechanism [10]. The page flipping mechanism enables a
hypervisor to send page-sized data from one domain to another
with only one memory pointer exchange. However, it leads to lower
performance and high CPU overhead due to excessive hypercalls
to remap and swap pages. Page tables and TLBs also need to be
flushed since the mappings from virtual to physical memory ad-
dresses have changed. This is why the latest Xen 3.1 recommends
“copying mode” over “path flipping mode” for receive data path,
even though both modes are available. Instead, a simple shared
memory can be used for transmitting data between domains, which
does not require any hypervisor call.

The direct communication path provided by XWAY makes the
latency shorter by eliminating the intervention of domain-0. This is
a simple but efficient way to improve performance. In the current
Xen design, two virtual interrupts and two domain switchings are
required to send data from a socket application s1 in a domain d1

to a peer socket application s2 in another domain d2. When s1

invokes send(), data in s1’s user space are copied to the kernel

13

Figure 5. An XWAY channel

space in d1 and the front-end driver in d1 raises an event toward
domain-0. The event triggers the back-end driver in domain-0 and
the back-end driver fetches the page filled with s1’s data through
page flipping. The bridge module determines the domain (d2 in this
case) where the data are destined to go. The rest of the steps from
domain-0 to d2 follow the same steps from d1 to domain-0 except
that the order is reversed. The direct communication from d1 to d2

cuts the communication cost nearly in half by removing one virtual
interrupt and one domain switching.

Let us consider the same scenario under XWAY. First, s1’s data
are copied into a buffer in the shared memory, after which XWAY
in d1 notifies XWAY in d2 that some data have been stored in the
shared memory, allowing s2 to get data from the shared buffer.
When XWAY in d2 receives the notification, XWAY wakes s2 up
and copies data in the shared memory to the corresponding user
buffer of s2 directly. After the transfer is completed, XWAY in
d2 sends a notification to XWAY in d1 back. When XWAY in d1

receives the notification, it wakes s1 up if s1 is blocked due to the
lack of the shared buffer space.

We have defined a virtual device and a device driver to realize
our design on Xen. The virtual device is defined as a set of XWAY
channels, where each channel consists of two circular queues (one
for transmission and the other for reception) and one event channel
shared by two domains, as depicted in Figure 5. Note that those two
queues contain the real data instead of descriptors representing the
data to be transferred. The event channel is used to send an event to
the opposite domain. An event is generated if either a sender places
data on the send queue or a receiver pulls data out of the receive
queue.

While the XWAY virtual device just defines the relevant data
structures, the XWAY device driver is an actual implementation of
the virtual device. In our design, the XWAY device driver serves
upper layers as one of network modules which supports high-
performance, reliable, connection-oriented, and in-order data de-
livery for inter-domain communication. The XWAY device driver
manages XWAY channels, transfers data, and informs upper layers
of any changes in the status of queues.

Creating an XWAY channel is a complex task. To open an
XWAY channel, both XWAY device drivers in Figure 5 should
agree to share some memory area and an event channel. This means
that they have to exchange tokens of the shared memory and the
port number of the event channel through another control channel

Figure 6. XWAY socket

across two arbitrary domains. We have decided to utilize a native
TCP channel for the purpose of exchanging control information.
XenStore would be used for the control channel since it provides
information storage space shared between domains. However, since
XenStore is mainly used for sharing semi-static data (configuration
and status data) between domain-0 and guest domains, it is not ap-
propriate for our environment where multiple kernel threads access
the shared storage concurrently and tokens are generated dynami-
cally for every channel creation request.

The next problem we face is to handle requests for establish-
ing and closing an XWAY channel. Since they arrive at the desti-
nation domain asynchronously, we need to have separate threads
dedicated to servicing those requests. Our design introduces con-
nection helper and cleaner which handle the channel creation and
destruction requests, respectively. The detailed mechanism will be
discussed in Section 5.

4.2 Binary compatibility

There could be several different approaches to exporting the XWAY
channel to user-level applications. The simplest approach is to offer
a new set of programming interface that is similar to Unix pipes or
to socket interface with its own address family for XWAY. Both
approaches can be implemented either as user-level libraries or
as loadable kernel modules. Although they provide inter-domain
communication service with minimal performance loss, it is not
practical to enforce legacy applications to be rewritten with the new
interface. To be successful, XWAY should be compatible with the
standard socket interface and allow legacy applications to benefit
from XWAY without source code modification or recompilation.

A tricky part of implementing the socket interface on a new
transport layer is to handle various socket options and to manage
socket connections. Handling socket options requires full under-
standing of each option’s meaning and how they are implemented
in the network subsystem of the target guest OS. It generally takes
a lot of effort to write a new socket module which implements all of
socket options on a new transport layer. To reduce the development
effort as much as possible, we introduce a virtual socket termed
XWAY socket as shown in Figure 6. An XWAY socket consists of an
XWAY channel and a companion TCP channel. The XWAY chan-
nel is responsible for sending and receiving data, and the TCP chan-
nel for maintaining socket options and checking the socket state. In
fact, XWAY places most of its burden on the native TCP channel,
and the XWAY channel handles data transmission only, sometimes
referring to socket options stored in the TCP channel.

When an application requests a socket creation, the guest OS
kernel creates an XWAY socket unconditionally, instead of a native
socket. Since the kernel has no idea whether the socket will be used
for inter-domain communication or not, the creation of the XWAY
channel is delayed and the XWAY socket is treated as if it were a
native socket.

Figure 7 illustrates the final architecture of XWAY, which pro-
vides full binary compatibility with the standard socket interface
by inserting two additional layers right on top of the XWAY device

14

Figure 7. XWAY architecture

driver. Unlike SOP, we intercept socket-related calls between the
INET and TCP layer.

A role of the XWAY switch layer is to determine whether the
destination domain resides in the same physical machine or not.
If it is in the same machine, the switch tries to create an XWAY
channel and binds it to the XWAY socket. Otherwise, the switch
layer simply forwards INET requests to the TCP layer. The switch
layer classifies incoming socket requests from the INET layer into
the following two groups:

• Data request group: send(), sendto(), recv(), recvfrom(),
write(), read(), recvmsg(), sendmsg(), readv(), writev(), send-
file()

• Control request group: socket(), connect(), bind(), listen(), ac-
cept(), setsockopt(), getsockopt(), close(), shutdown(), fcntl(),
ioctl(), getsockname(), select(), poll(), getpeername()

In principle, the switch layer redirects inter-domain data re-
quests to the XWAY protocol and inter-domain control requests to
the TCP layer. Unlike data requests, redirecting control requests are
not trivial since the switch layer needs to take appropriate actions
to maintain the socket semantics before redirecting the request. The
actual actions that should be taken vary depending on the request,
and they are explained in more detail in Section 5.

The XWAY protocol layer carries out actual data transmission
through the XWAY device driver according to current socket op-
tions. For instance, the socket option MSG DONTWAIT tells whether
the XWAY protocol layer operates in non-blocking I/O mode or in
blocking I/O mode. Socket options come from diverse places: func-
tion arguments, INET socket structure, TCP sock structure, and
file structure associated with the socket. MSG PEEK, MSG OOB, and
MSG DONTWROUTE are some example socket options that are spec-
ified by the programmer explicitly, while MSG DONTWAIT comes
from either function argument or the file structure, SO RCVBUF
from socket structure, and TCP NODELAY from TCP sock structure.
The XWAY protocol layer should understand the meaning of each
socket option and perform actual data send and receive reflecting
the meaning.

Binary-compatible connection management is another impor-
tant issue for XWAY because of the subtle semantics of socket in-
terfaces related to connection management. For example, we have
to take care of such a situation that connect() successfully re-
turns even though the server calls listen() but has not reached
accept(). In Section 5, we will conceptually describe how the
XWAY channel interacts with the native TCP channel when an ap-
plication tries to establish or close an inter-domain socket connec-
tion. Thanks to the XWAY device driver that hides most of the com-

plexity concerning to connection management, it is relatively sim-
ple to create an XWAY channel and bind it to the XWAY socket.
The switch layer only needs to call proper predefined interface of
the device driver.

4.3 Minor issues

We think that high performance and binary compatibility feature of
XWAY are just minimal requirement in practice. For XWAY to be
more useful, we must take into account minor design issues, which
we often miss. Those issues would be about portability, stability,
and usability of XWAY.
No modification to Xen
It is not a good decision to make VMM provide inter-domain
communication facility to the guest OS kernel just as the kernel
provides IPC to user-level applications. This approach could deliver
the best performance to the kernel but it makes VMM bigger which
could result in unreliable VMM. Moreover, writing a code in VMM
is more difficult than in kernel. Thus, we have decided to implement
XWAY using only the primitives exported by Xen to the kernel.
Those primitives include event channel, grant table, and XenStore
interfaces. XWAY is not affected by changes in Xen internals as
long as Xen maintains the consistent interface across upgrades or
patches.
Minimal guest OS kernel patch
Since it is easier to develop and to distribute applications or kernel
modules than kernel patches, kernel patches should be regarded
as the last resort. The XWAY design enables us to implement the
XWAY layer with minimal kernel patch. Currently, the use of a few
lines of kernel patch is inevitable in implementing a small part of
the XWAY switch layer. The rest of the switch layer and the other
layers of XWAY are implemented with kernel modules or user-level
applications.
Coexistence with native TCP socket
It does not make sense if the XWAY socket prevents applications
from using the TCP socket for communication with another appli-
cation outside of a machine. In our design, XWAY intercepts only
inter-domain TCP communication, acting transparently to other
TCP communication as if XWAY did not exist in the system.
Though the peer domain of a TCP socket is in the same machine,
XWAY does not intercept the socket connection if the peer do-
main’s IP address is not registered.
Live migration
Live migration is one of the most attractive features provided by
VM technologies. Thanks to the XWAY socket, it is not difficult to
support live migration in XWAY. When one of domains communi-
cating through XWAY is migrated to another machine, the domain
can still use the TCP channel because Xen supports TCP channel
migration. In fact, this is an additional benefit of the XWAY socket
which maintains the native TCP channel inside. The implementa-
tion detail is beyond the scope of this paper.

5. Implementation
This section describes implementation details of XWAY. XWAY is
composed of three major components: a few lines of kernel patch,
a loadable kernel module, and a user-level daemon. Figure 8 shows
the relationship among these components. We have implemented
XWAY on Xen 3.0.3-0 with the Linux kernel 2.6.16.29.

5.1 Socket creation

Figure 9 outlines data structures for a socket that are used through-
out XWAY layers. The normal socket structure is extended with
the XWAY data structure. These data structures are created when
socket() is invoked by an application. The underlined fields in the
box surrounded by dotted lines in Figure 9 represent those fields as-

15

Figure 8. Code structure of the XWAY implementation

sociated with XWAY. The rest of the fields are borrowed from data
structures representing the normal socket.

XWAY defines two main data structures, struct xway sock
and struct xwayring, and several functions whose names are
underlined in struct tcp prot and struct proto ops. Note
that XWAY functions are scattered throughout both tcp prot and
proto ops strcutures. Those two structures hold a list of function
pointers that are necessary to handle TCP requests and INET re-
quests, respectively. The p desc field is set to NULL when the
corresponding xway sock structure is created. If the socket has an
XWAY channel, this field will point to the address of the xwayring
structure. The XWAY channel is not created until the application
requests an inter-domain connection establishment via accept()
or connect().

It is the xway sock structure that realizes the XWAY socket
without making any trouble for the TCP code. In fact, the TCP code
is not able to recognize the presence of the XWAY subsystem. Al-
though the structure maintains both a TCP channel and an XWAY
channel, the TCP code treats it merely as a normal tcp sock struc-
ture. Only the XWAY code is aware of the extended fields, follow-
ing the p desc field, if necessary, to access the XWAY channel that
is associated with the TCP channel.

XWAY functions shown in Figure 9 intercepts INET requests
from the BSD layer and TCP requests from the INET layer, and
force the TCP code to create xway sock instead of tcp sock.
The XWAY switch layer is implemented by replacing appropriate
functions in the tables with XWAY functions. According to our
design explained in Section 4, the switch layer lies between the
INET layer and the TCP layer, so that TCP requests from the INET
layer can be intercepted. In spite of this design, XWAY hooking
functions are placed not only in tcp proto, but also in proto ops
to make the result code more neat.

The xwayring structure describes an XWAY channel. It is
created if the peer resides in the same machine when an application
calls connect() or accept().

5.2 Establishing a connection

When the switch layer receives connect() request, it first creates a
native TCP channel and then tries to make an XWAY channel only
if the peer is in the same machine. XWAY identifies the physical
location of a domain using IP address(es) assigned to it. Since
IP addresses for each domain are already stored into a branch of
XenStore by the system manager, the switch layer simply contacts
the IP address storage in XenStore.

Establishing an XWAY channel implies that the device driver
builds a pair of circular queues and an event channel shared by
both end-points. Figure 10 illustrates the sequence of interactions
during connection establishment between the client and the server.

Figure 9. Socket data structures for XWAY

Figure 10. Establishing an XWAY channel

The switch layer leaves all the jobs required for creating an XWAY
channel to the helper. Initially, the helper at the server side opens
a TCP channel with the helper at the client side. The TCP channel
is used as a control channel and is destroyed immediately after the
connection is established. Through the TCP channel, both helpers
exchange information required to share a certain memory region
and an event channel. The information includes the domain iden-
tifier, memory references of the shared memory, the event channel
port, and the TCP channel identifier. The TCP channel identifier
indicates the TCP channel created by the switch layer, not the TCP
channel created by the helper. The TCP identifier consists of four
attributes: source IP address, source port number, destination IP ad-
dress, and destination port number, which is also used as an identi-
fier for the XWAY channel as well as the TCP channel.

The next step is to set up send/receive queues and an event chan-
nel. Each end-point allocates a queue individually, and the other
end-point maps the queue into its kernel address space, symmetri-
cally. A send queue in one side plays a role of a receive queue in
the other side and vice versa. As a result of this, both sides have the
identical data structures.

Finally, the client-side helper registers the XWAY channel to
xway sock, while the server-side helper puts the channel on the
list of unbound XWAY channels. When the switch layer of the
server performs accept(), it looks for an XWAY channel that
corresponds to the TCP channel returned by accept(). If found,
it registers the XWAY channel to xway sock. Otherwise, it sleeps
until the corresponding XWAY channel becomes available.

16

Figure 11. Tearing down an XWAY channel

5.3 Closing a connection

Closing a connection is a little bit harder than establishing one be-
cause each side is allowed to issue close() at any time without
prior negotiation with the peer. In our implementation, we do not
have to care about the TCP channel, but we do need to pay atten-
tion to the XWAY channel so that it can be destroyed correctly.
Recall that the send queue at one side is mapped into the receive
queue in the kernel address space of the other side, and vice versa.
Figure 11 depicts general steps for closing an XWAY socket. The
point is that the send queue in one side should not be freed until the
corresponding mapping in the other side is removed.

When the switch layer receives close(), it closes the native
TCP channel and asks the cleaner to destroy the XWAY channel. As
the first step, the cleaner tries to remove the mapping of the receive
queue from its kernel address space. It is very simple to unmap
the receive queue because the cleaner does not have to check the
state of the send queue at the other side. One thing to care about is
that the cleaner must mark its receive queue with a special flag just
before unmapping it. The flag is marked within the receive queue
itself. When the other side sees the flag, it knows that the send
queue is unmapped at the peer, hence it is safe to deallocate the
queue.

After removing the mapping of the receive queue, the cleaner
tries to deallocate the send queue. Figure 11 shows an example
scenario where domU1 is not allowed to destroy the send queue
because the receive queue in domU2 is not removed yet. In this
case, though the connection is not closed yet, the cleaner returns
the control back to the application immediately and it is the cleaner
that is responsible for completing the remaining sequence. First,
the cleaner waits for an event indicating the unmapping of the
send queue from the peer. The domU1 is permitted to destroy the
send queue after receiving the event. Finally, the event channel is
removed at both sides. On the contrary, domU2 follows the same
sequence as domU1 but it does not wait for any event to destroy the
send queue. This is because the mapping of the receive queue in
domU1 is already removed before domU2 tries to destroy its send
queue.

Since one side can inform the other side of the unmapping of its
receive queue through the shared memory and the event channel,
we do not have to set up a separate control channel to close a
connection.

5.4 Data send and receive

Once an XWAY channel is created, data transmission through the
channel is relatively easy compared to the connection management.

Basically, data transmission on XWAY is performed as follows:
a sender stores its data on the send queue (SQ) and the correspond-

ing receiver reads the data from the receive queue (RQ) whenever it
wants. Unlike the TCP protocol, it is not necessary to either divide
the data into a series of segments or retransmit missing segments on
timeout. We just perform a simple flow control around the circular
queue; if SQ is full the sender is not allowed to write more data,
and if RQ is empty the receiver is not allowed to read data.

When the switch layer receives send(), it redirects the call to
the XWAY protocol layer. The protocol layer tries to add data on
SQ by calling the device driver. If there is enough room in SQ,
the device driver completes the send operation and returns back to
its caller immediately. Otherwise, the next step depends on socket
options. If MSG DONTWAIT is specified for the socket, the protocol
layer returns immediately, operating in non-blocking I/O mode. For
blocking I/O mode, the device driver notifies the protocol layer of
the state of SQ. Later, when the device driver detects changes in
the state of SQ, it tells the protocol layer about the availability of
free space (not necessarily enough space). The device driver sends
a notification to the upper layer by calling a callback function.
The callback function is registered to the device driver when the
protocol layer is initialized. When the callback function is invoked,
the protocol layer tries to send the remaining data again. The second
try could fail if another thread sharing the channel fills SQ with its
own data before the current thread accesses SQ.

Upon recv(), the switch layer also redirects the call to the pro-
tocol layer. The protocol layer tries to read data from the corre-
sponding RQ through the device driver. As in send(), the next
step is determined by the state of RQ and socket options. If any
data is available in RQ, the device driver and the protocol layer re-
turns with the available data immediately even though the amount
of data is less than the requested size. If the device driver reports
that RQ is empty, the protocol layer waits until any data is stored in
RQ. The protocol layer wakes up when the device driver invokes a
callback function to notify the availability of data. If RQ is empty
and MSG DONTWAIT is specified, the protocol layer returns immedi-
ately.

The XWAY device driver plays a basic role in exchanging data
between two domains. It is responsible for the following four key
functions: storing data to SQ, pulling data out of RQ, dispatch-
ing events to the other domain, and informing the upper layer of
changes in the queues through a callback. Basically, the device
driver dispatches an event to the other side whenever SQ is full or a
timeout signal is caught. Again, socket options may alter the behav-
ior of the device driver. For example, if the TCP NODELAY option is
specified, the device driver dispatches an event for each sending op-
eration from the upper layer. If not, the event is deferred until SQ
is full or it catches a timeout signal. This results in combining sev-
eral small size of data to a larger one, which reduces event handling
overhead.

Callback functions must be registered to the device driver when
XWAY is initialized. The device driver informs the protocol layer
of arriving an event indicating changes in SQ and/or RQ. Note
that the event indicating a socket close should be delivered to the
cleaner, not to the protocol layer. The protocol layer wakes up the
process(es) expecting data in RQ or free space in SQ by catching
the callback.

Unlike conventional socket read/write operations, all the opera-
tions of an XWAY socket should pass through the switch layer to
make a decision whether they are redirected to the XWAY chan-
nel or the TCP channel. Since the switch layer requires only one
integer-compare operation for each send, the overhead hardly af-
fects the overall performance.

6. Experimental Results
In this section, we evaluate the performance and the binary com-
patibility of XWAY using various real workloads.

17

6.1 Evaluation methodology

We have evaluated the performance of XWAY on a machine
equipped with HyperThreading-enabled Intel Pentium 4 (Prescott)
3.2GHz CPU (FSB 800MHz), 2MB of L2 cache, and 1GB of main
memory. In our evaluation, we have used two versions of Xen: ver-
sion 3.0.3-0 and 3.1. Xen 3.0.3-0 is used for evaluating XWAY and
the native TCP socket operating on the virtual network driver. Xen
3.1 is for the native TCP socket with the improved virtual network
driver and the enhanced hypervisor. We set up two guest domains
for each test case. 256MB of main memory and one virtual CPU are
assigned to each domain. We have used native binary images com-
piled for the standard socket interface for all applications tested.
The binary images are neither modified nor recompiled for XWAY.

We have conducted five kinds of evaluations. First, to quantify
the basic performance, we measured the bandwidth and latency
of Unix domain socket, native TCP socket, and XWAY socket
by using netperf-2.4.3. When evaluating the native TCP socket,
we considered two receive data paths: copying mode and page
flipping mode. Besides the socket performance, we also measured
the bandwidth of moving a fixed size of data in memory from one
place to another repeatedly within the same process address space.
In our memory copy test, we moved 1GB of memory in total and
the resulting memory bandwidth acts as the upper bound for inter-
domain communication performance.

Second, we have performed several experiments to see how fast
network-based applications can transfer data from one domain to
another through XWAY socket. The tested workloads are selected
from popular applications such as scp, ftp, and wget. This test
shows the real performance that users will perceive.

Third, to prove that XWAY is useful in practice, we run DBT-
1 test, an open source TPC-W benchmark which simulates the
activities of a business-oriented transactional web server. Since
DBT-1 test is popular in open source community, the improved
benchmark result will demonstrate the usefulness of XWAY in
practice.

Fourth, we have experimented with a few other network-based
applications to increase our confidence that XWAY ensures full
binary compatibility with the existing socket interface. Finally, we
examine the connection overhead in XWAY socket.

6.2 Basic performance

The netperf benchmark is composed of a netperf client (sender) and
a netperf server (receiver). To measure the bandwidth, the sender
issues a number of send()’s for a given time with best effort and
waits until an acknowledgment message comes from the receiver.
The latency is measured by a half of round-trip time in ping-pong
traffic. The netperf results are shown in Figure 12. Note that the
bandwidth in Figure 12(a) is represented in log scale for the conve-
nience of comparing the results. It is obvious that the bandwidth of
memory copy significantly outperforms other mechanisms, serving
as the upper bound for inter-domain communication performance.

The bandwidth of Unix domain socket is similar to that of
XWAY socket. We originally expected that Unix domain socket
would be far superior to XWAY socket, but truth was different
from our expectation as shown in Figure 12. XWAY socket even
defeats Unix domain socket for data sizes ranging from 1 byte to
1024 bytes. Unix domain socket creates one socket buffer whenever
it receives send() and appends the buffer to the socket buffer
list. Moreover, it does not combine several small-sized data into a
larger one before sending. These two drawbacks explain the lower
bandwidth of Unix domain socket. For the large data, however, the
overhead is getting amortized.

The bandwidth of XWAY socket is much higher compared to
TCP sockets in all settings as we expected. XWAY socket shows
3.8 Gbps when sending 2048-byte data. TCP socket operating on

(a) Bandwidth

(b) Latency

Figure 12. Bandwidth and latency

virtual network driver with page flipping mode shows only 35.75
Mbps and 1056.89 Mbps on Xen 3.0.3-0 and Xen 3.1, respectively,
for the same condition. In Xen 3.1, the TCP socket bandwidth
is noticeably improved, presenting more predictable and stable
behavior. We can also see that the TCP socket bandwidth with
copying mode is better than with page flipping mode in Xen 3.1.
In spite of this, the TCP socket bandwidth is still far lower than the
XWAY socket bandwidth.

Figure 12(b) illustrates that the latency of XWAY socket is
longer than that of Unix domain socket, but shorter than that of
any TCP socket. The domain switching time explains the difference
in the latency. In our test environment, two end-points of a Unix
domain socket reside in the same domain, while two end-points of
XWAY socket and TCP socket are in different domains on the same
machine. The latency test causes switching between two domains
or two processes in ping-pong fashion. Since the domain switching
time is usually longer than the process switching time, the latency
of XWAY socket is not comparable to that of Unix domain socket.
On the other hand, at least two domain switchings are required for
a message to travel to the peer domain through TCP socket, while
one domain switching is enough for XWAY socket.

We can observe that the latency of XWAY socket at 16KB data
has been off stride. Such a phenomenon occurs because the size of
the circular queue that is used for XWAY socket is currently set to
8KB. Data larger than 8KB cannot be transmitted at once.

18

Figure 13. The application bandwidth on TCP socket and XWAY
socket

6.3 Application performance

In this subsection, we measure the bandwidth of some real ap-
plications on Linux to evaluate the performance benefit that users
will perceive. The tested workloads are scp, ftp, and wget, which
are selected from popular Linux applications that are used for file
transmission. In the test, we have transmitted 1GB of data from
one guest domain to the other domain through TCP socket on Xen
3.0.3-0, TCP socket on Xen 3.1, and XWAY socket.

Figure 13 compares the bandwidth of each application under
different inter-domain communication mechanisms. In line with the
previous results shown in Figure 12, XWAY socket outperforms
TCP sockets significantly, showing the higher bandwidth by a fac-
tor of 5.3 to 13.1.

Note that the actual application bandwidth is lower than the
bandwidth measured by netperf. This is because the results shown
in Figure 13 include the time for file I/O, while netperf measures
the best possible bandwidth without any additional overhead.

6.4 OSDL DBT-1 performance

The configuration of DBT-1 benchmark is basically consists of
three components: load generator, application server, and database
server. Figure 14 illustrates the configuration of DBT-1 system on
Xen for our test environment. The load generator is running on ma-
chine A, and both the application server and the database server are
located in domain 1 and domain 2 of machine B, respectively. The
load generator communicates with the application server through
the native TCP socket. As application server relays incoming re-
quests to and from the database server, the communication per-
formance between these two servers can affect the overall DBT-1
benchmark result. Thus, we applied XWAY socket to the communi-
cation path between the application server and the database server.

Figure 15 compares DBT-1 benchmark results obtained under
TCP socket and XWAY socket. In the graph, EUS denotes the
number of users connected to the application server at the same
time, whereas BT (Bogo Transaction) represents the number of web
transactions serviced by the application server and the database
server. The bigger BT value indicates the better performance for
a specified EUS.

When EUS is 800, the performance of DBT-1 is improved by
6.7% by the use of XWAY socket; TCP socket shows 162.6 BT/sec
and XWAY socket 183.5 BT/sec. The actual performance gain in
this benchmark is much lower than the previous results. This is
because DBT-1 benchmark is known to be CPU-bound instead
of being network-bound. The CPU cycles saved by using XWAY
socket make the database server perform more computation, but
the benefit is not significant due to the CPU-bound nature of the
benchmark.

Figure 14. Configuration of DBT-1 benchmark on Xen

Figure 15. Results of DBT-1 benchmark

6.5 Binary compatibility

In XWAY, offering full binary compatibility with legacy socket-
based applications is as important as achieving high performance.
In order to test the binary compatibility, we have run a broad
spectrum of network-based applications which use TCP sockets,
as shown in Table 1. In these applications, the server is installed on
one domain, and the client on another domain in the same machine.
As can be seen in Table 1, all applications except SAMBA passed
our compatibility tests.

SAMBA is different from the others in that it makes use of
kernel-level socket interface. Since XWAY socket is not designed to
support such applications that use kernel-level socket interface, the
failure in SAMBA can be justified. We managed to make SAMBA
work by modifying the source code of SAMBA client, but it is not
stable yet. More work needs to be done to support the kernel-level
socket interface.

Application Pass/Fail Application Pass/Fail
SCP Pass WGET Pass
SSH Pass APACHE Pass

VSFTPD Pass PROFTPD Pass
TELNET Pass MYSQL Pass

NETPERF Pass SAMBA Failed
FIREFOX Pass

Table 1. Results of binary compatibility tests

6.6 Connection overhead

So far we have focused on the overall bandwidth that XWAY socket
achieves during data transfer through series of experiments. In

19

Figure 16. The execution times of socket interfaces related to
connection management

this subsection, we measure the execution overhead of socket in-
terfaces that are related to connection management: connect(),
accept(), bind(), listen(), and close(). In general, the exe-
cution times of these interfaces with XWAY socket will be longer
than the case with TCP socket since XWAY socket has a rather
complicated connection management scheme.

Figure 16 compares the execution times of socket interfaces re-
lated to connection management. Note that connect(), close(),
and accept() should take additional steps for XWAY as well
as normal calls to the native TCP channel, while bind() and
listen() does nothing special for XWAY. The time for connect()
on XWAY socket has been nearly tripled compared to TCP socket.
For connect() on XWAY socket, it is required to perform one
TCP connect() to open an initial TCP channel, another TCP
connect() and TCP close() to temporarily set up a control TCP
channel, a few data exchange between helpers, the mapping for
a receive queue, the allocation of a send queue, and the alloca-
tion of an event channel. The execution time of accept() on
XWAY socket is slightly longer than on TCP socket. The differ-
ence mainly comes from the additional work that XWAY socket
has to do such as looking for an XWAY channel from the unbound
XWAY channel list. The execution time of close() on XWAY is
roughly doubled owing to the fact that XWAY needs to unmap a re-
ceive queue, release a send queue, and deallocate an event channel
during close().

Although there is significant overhead in connection manage-
ment under XWAY socket, these are the operations required only
once for each connection. Since most network applications main-
tain their TCP sessions for a long time, the time taken by connec-
tion management does not dominate the overall network perfor-
mance.

7. Conclusion
In this paper, we have presented the design and implementation
of XWAY, an inter-domain communication mechanism support-
ing both high performance and full binary compatibility with the
applications based on the standard TCP socket interface. XWAY
achieves high performance by bypassing TCP/IP stacks, avoiding
page flipping overhead, and providing a direct, accelerated com-
munication path between VMs in the same machine. In addition,
we introduce the XWAY socket architecture to support full binary
compatibility with as little effort as possible.

Through a comprehensive set of experimental evaluations, we
have demonstrated that two design goals are met successfully.
XWAY socket exhibits the performance much superior to native
TCP socket, and closer to Unix domain socket. The bandwidth and

latency of XWAY for 2048-byte data are measured to be 3.8 Gbps
and 15.61 µsec, respectively. Besides high performance, we have
examined the binary compatibility of XWAY by running unmod-
ified binary images of existing socket-based applications, such as
scp, ssh, vsftpd, telnet, netperf, firefox, wget, apache, proftpd, and
mysql. Since XWAY successfully runs these applications without
any modification to source code or binary image, we are confident
that XWAY ensures full binary compatibility with all the applica-
tions using the standard TCP socket interface.

We are currently working on supporting live migration over
XWAY socket and plan to extend our design to support UDP pro-
tocol, Windows guest OS, domain crash resiliency, and so on. In
addition, we will also optimize our implementation to match the
performance of Unix domain socket and to use the shared memory
more efficiently.

References
[1] R. Creasy. The Origin of the VM/370 Time-sharing System. IBM

Journal of Research and Development, 25(5):483–490, 1981.

[2] R. Figueiredo et al. Resource Virtualization Renaissance. IEEE
Computer, 38(5):28–31, May 2005.

[3] W. Huang et al. A Case for High Performance Computing with
Virtual Machines. In Proc. ICS, 2006.

[4] J.-S. Kim, K. Kim, S.-I. Jung, and S. Ha. Design and implementation
of user-level Sockets layer over Virtual Interface Architecture.
Concurrency Computat: Pract. Exper, 15(7-8):727–749, 2003.

[5] A. Menon, A. L. Cox, and W. Zwaenepoel. Optimizing network
virtualization in Xen. In Proc. USENIX Annual Technical Conference,
2006.

[6] A. Menon et al. Diagnosing Performance Overheads in the Xen
Virtual Machine Environment. In Proc. VEE, 2005.

[7] I. Pratt. Xen Virtualization. Linux world 2005 Virtualization BOF
Presentation, 2007.

[8] M. Rangarajan et al. TCP Servers: Offloading TCP Processing in
Internet Servers. Technical report, Rutgers University, 2002.

[9] S. Son, J. Kim, E. Lim, and S. Jung. SOP: A Socket Interface for
TOEs. In Internet and Multimedia Systems and Applications, 2004.

[10] X. Zhang et al. XenSocket: A High-Throughput Interdomain
Transport for Virtual Machines. In Proc. Middleware (LNCS #4834),
2007.

20

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

