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There have been drastic changes in the storage device landscape recently. At the center of the diverse stor-

age landscape lies the NVMe interface, which allows high-performance and flexible communication models

required by these next-generation device types. However, its hardware-oriented definition and specification

are bottlenecking the development and evaluation cycle for new revolutionary storage devices. Furthermore,

existing emulators lack the capability to support the advanced storage configurations that are currently in

the spotlight.

In this article, we present NVMeVirt, a novel approach to facilitate software-defined NVMe devices. A user

can define any NVMe device type with custom features, and NVMeVirt allows it to bridge the gap between

the host I/O stack and the virtual NVMe device in software. We demonstrate the advantages and features

of NVMeVirt by realizing various storage types and configurations, such as conventional SSDs, low-latency

high-bandwidth NVM SSDs, zoned namespace SSDs, and key-value SSDs with the support of PCI peer-to-

peer DMA and NVMe-oF target offloading. We also make cases for storage research with NVMeVirt, such as

studying the performance characteristics of database engines and extending the NVMe specification for the

improved key-value SSD performance.
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1 INTRODUCTION

NAND flash memory has been significantly gaining in popularity for consumer devices and en-
terprise servers, and the fast advancement of semiconductor technologies has fostered the non-

volatile memory (NVM) in building high-density, low-latency storage devices. Nowadays, we
can purchase off-the-shelf storage devices that feature tens of microseconds latency and several
GiB/s of bandwidth [10, 20].

Along with the performance and data density improvement, there has been an active trend to-
ward making storage devices smarter and more capable. For efficient and effective data processing
and management, many innovative device concepts have been proposed, including but not lim-
ited to Open-Channel SSD (OCSSD) [5, 38, 45], zoned namespace SSD (ZNS SSD) [4, 15], key-

value SSD (KVSSD) [18, 23, 27, 50], and computational storage [9, 14, 24, 33, 35, 37, 56]. These new
types of devices are significantly diversifying the storage device landscape. In this trend, software-
based storage emulators are becoming more important than ever. For instance, when academia
and/or industry propose an innovative storage device concept, fully developing an actual prod-
uct from the conceptual idea takes a while. Meanwhile, we can implement a new concept in an
emulator and see its benefits and pitfalls while running real workloads. This can provide us in-
valuable insights, facilitating rapid and efficient design space exploration. Moreover, by collecting
various performance metrics from the emulator, we can understand the I/O characteristics of op-
erating systems and the applications. This information can be used to optimize both the software
and hardware of the target system. Finally, each emulator has a sophisticated performance model
along with many knobs that can control a certain performance characteristic of the emulated de-
vice. This can help us predict the application performance on future storage devices that exhibit
different performance characteristics.

However, to the authors’ best knowledge, none of the previously proposed emulators fully sat-
isfy the requirements to be deployed in complicated modern storage environments. Many emerg-
ing device types are often optimized to their primary targeting workloads and require a customized
communication model between the host and device. This requirement makes the NVMe interface

the most preferred interface for the emerging device types due to its flexibility and extendibility.
This implies that a proper storage emulator should provide a comprehensive method to customize
the NVMe interface. However, emulating the full NVMe interface in software is challenging as
the NVMe interface inherently involves the protocol defined at the hardware level. Previous work
proposes to circumvent the difficulty of emulating the NVMe interface by interposing hooks in
the host NVMe device driver or leveraging virtualization technologies [15, 36, 39, 59]. These ap-
proaches, however, fail to present a suitable NVMe device instance that is fully functional in di-
verse modern storage environments such as when the kernel is being bypassed [28, 58] or when a
device directly accesses storage devices through NVMe-over-fabrics or PCI peer-to-peer commu-
nication [3, 11, 46]. Table 1 compares the previous approaches and their limitations.

This article presents NVMeVirt, a storage emulator facilitating software-defined NVMe devices.
NVMeVirt is a Linux kernel module providing the system with a virtual NVMe device of various
kinds. Currently, NVMeVirt supports conventional SSDs, NVM SSDs, ZNS SSDs, and key-value
SSDs. The device is emulated at the PCI layer, presenting a native NVMe device to the entire system.
Thus, NVMeVirt has the capability not only to function as a standard storage device but also to be
utilized in advanced storage configurations, such as NVMe-oF target offloading, kernel bypassing,
and PCI peer-to-peer communication. In addition, this level of emulation allows developers to
modify the NVMe interface layer easily, making it possible to explore various design spaces over
NVMe for supporting new device types. Unlike other emulators with similar goals, NVMeVirt
does not rely on the virtualization technology, allowing comprehensive communication models
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Table 1. Comparisons of Various Virtual Storage Device Approaches

Simulators Emulators
Trace Driven

[34, 40]

Full System

[13, 26, 53]

VM Based

[15, 36, 59]

Block-driver

Level [60]

NVMe-driver

Level [39]

HW Platforms

[25, 32]
NVMeVirt

Deployable

in real

environments
No Yes Yes Yes Yes Yes Yes

Execution

speed
Fast Very slow Slow Fast Fast Real-time Real-time

NVMe

multi-queue

support
No Yes Yes No Yes Yes Yes

NVMe

interface

modification
Impossible Easy Easy Impossible Easy Difficult Easy

Low-latency

device

support
Possible Possible Difficult Possible Possible Difficult Possible

Kernel

bypassing

with SPDK
No No Yes No No Yes Yes

PCI

peer-to-peer

DMA support
No No No No No Yes Yes

NVMe-oF

target

offloading
No No No No No Yes Yes

at a consistently low overhead. The performance of these devices can be controlled with several
performance knobs, making the virtual device perform close to real devices. Hence, NVMeVirt
opens up a new opportunity for co-designing highly intelligent storage devices over the NVMe
interface and stimulates the invention of a novel storage device architecture.

In the evaluation, we demonstrate the supported features of various device types with a work-
ing prototype. We explain two case studies to demonstrate that NVMeVirt can empower stor-
age domain research and engineering. The source code of NVMeVirt is publicly available at
https://github.com/snu-csl/nvmevirt. The followings are the contributions of this article:

• Provide a software framework to facilitate NVMe device research with various and stable
I/O characteristics.
• Facilitate the fast prototyping and development of NVMe devices and interface through a

software-defined NVMe device.
• Analyze the correlation and impact between the application and storage performance using

representative database benchmarks.
• Make a case for extending the NVMe interface to improve key-value SSDs.

The rest of the article is organized as follows. Section 2 explains the background and related
work. Section 3 discusses the motivation of our work and explains the internal structure of
NVMeVirt. Section 4 shows the evaluation result of NVMeVirt by representing its flexibility and
feasibility. Finally, Section 5 concludes the article.

2 BACKGROUND AND RELATED WORK

2.1 NVM Express Standard

In modern computer architectures, peripheral devices are often connected to the processor through
Peripheral Component Interconnect Express (PCIe) links [22, 46]. PCIe defines the entire
communication stack, from the layout of connector pins to the message protocol between the host
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and devices. NVM Express, or NVMe, was first aimed to extend the PCIe communication proto-
col for emerging non-volatile memory devices, such as solid-state drives (SSDs). As designed
from the ground up for modern storage devices, NVMe provides a more efficient low-latency in-
terface than legacy interfaces, such as Small Computer System Interface (SCSI) and Serial

ATA (SATA). Later, the NVMe specifications are extended further to support various storage de-
vice types, such as zoned namespace (ZNS) SSDs [4, 15] and key-value SSDs [18, 23, 27, 50].

The latest NVMe 2.0 specifications were announced in June 2021. They comprise multiple docu-
ments: NVMe Base Specification, Command Set Specifications (NVM Command Set Specification,
ZNS Command Set Specification, KV Command Set Specification), Transport Specifications (PCIe
Transport Specification, Fibre Channel Transport Specification, RDMA Transport Specification,
and TCP Transport Specification), and the NVMe Management Interface Specification. The Base
Specification defines the host control interface. The Command Set Specifications contain the host-
to-device protocol for SSD commands used by operating systems for read/write/flush/trim opera-
tions, firmware management, error handling, and so forth. As observed from the Transport Speci-
fications, NVMe operations can be performed over various transport layers, such as PCIe, TCP/IP,
and remote DMA (RDMA). Specifically, combined with RDMA-capable transport, NVMe-oF al-
lows NVMe commands to be delivered to remote nodes and directly routed to target devices [11]. If
the network adapter supports the target offloading feature, the NVMe commands can be processed
completely at the hardware level without any involvement of the software layers on the remote
node. Thus, NVMe-oF can minimize the latency for disaggregated storage and is considered a key
technology for high-performance scalable storage systems in future data centers.

2.2 NVMe Operation

The NVMe specifications standardize two communication interfaces for NVMe devices: NVMe con-

trol block and NVMe message queues. The NVMe control block is the primary path for setting up
the NVMe device. It is laid out in the physical PCIe bus address space, containing several configu-
ration fields with which the host device driver sets up the device. Specifically, the host can specify
the location of the administration queue pair, set and clear the interrupt mask, point to the address
of the controller memory buffer (CMB), and shut down and restart the device.

Meanwhile, the NVMe message queue is the interface primarily for scalable I/O. The NVMe
architecture supports up to 65,535 I/O queues each with 65,535 commands (called queue depth). To
perform I/O, the host driver builds an NVMe command according to the specification and submits
it to the submission queue of the NVMe device. Usually, each submission queue is dedicated to a
CPU core to deliver scalable performance by eliminating contentions among cores. Each queue
has the associated doorbell, which indicates the index of the latest request in the queue. When
the host driver writes a new value to the doorbell, the NVMe device senses the change and starts
processing the enqueued requests. The completion of the request processing is handled in a similar
manner. Each submission queue has a paired completion queue, whereas the submission queue and
the completion queues are collectively called a queue pair. When the I/O request processing is
completed, the device writes an NVMe completion descriptor in the paired completion queue of
the submitted request. The device driver on the host can sense the moment of completion by
either polling the completion queue or waiting for an interrupt from the device. After processing
the completion, the device driver notifies the device of the completion by setting the doorbell of
the completion queue. Accordingly, the device releases the resources associated with completed
requests.

The submission and completion queues can be created, modified, or destroyed by submitting
requests to the special queue called the administration queue. The administration queue pair is
initialized during device initialization by specifying its physical address in the NVMe control block.
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The host can ask the device to create regular queue pairs by writing a queue creation descriptor into
the administration queue. The host can also make device management requests, such as identifying
the device ID, querying supported features, and setting up an interrupt for completion notification
through the administration queue pair. The administration requests are processed in the same
manner as regular I/O requests.

2.3 Related Work

Myriad studies have attempted to imitate real storage devices in software [13, 15, 25, 26, 32, 34,
36, 39, 40, 53, 59, 60]. As summarized in Table 1, we can classify these works into two categories:
simulators and emulators. Simulators imitate the internal operations of real devices with a data
processing model [13, 26, 34, 40, 53]. They often build the model for a target device, parameterize
the performance of internal operations, and calculate desired performance metrics from the model.
They enable a detailed analysis with sophisticated models. However, they are often limited as they
rely on a trace collected from real systems or are extremely slow when the full system is simulated
to run the real workload.

Emulators provide device instances to the host; hence, they can be used like a real device [15, 25,
32, 36, 39, 59, 60]. FlexDrive [39] proposes a software-defined NVMe device, similar to our work.
By modifying the NVMe device driver, it controls the flow rate of I/O requests in the host I/O stack,
allowing the exploration of the space of various device performances. Combined with a RAM disk,
FlexDrive can be used for projecting the performance of future devices. However, it can only em-
ulate the conventional SSD type and not the emerging devices, such as KVSSDs and ZNS SSDs.
Also, because of its implementation as a modified device driver, it can only handle the simplest
data communication where requests are coming down through the kernel I/O stack, thereby un-
able to support complicated I/O models, such as the NVMe-oF offloading, kernel bypassing, P2P
device communication, and so forth. Finally, the NVMe driver is on the critical path of the host
I/O subsystem, so it might be too intrusive to be applied to a working system.

FEMU [36] proposes an accurate and scalable virtual NVMe device using host virtualization
technologies. Specifically, FEMU provides guest operating systems with a virtual NVMe device by
leveraging the device virtualization feature of the QEMU [48]. According to the split driver model,
the frontend in the VM receives the NVMe commands and forwards them to the FEMU backend
running in the host operating system. This requires switching between the host and guest oper-
ating systems, incurring non-negligible and highly variable latency (see Section 4.2). In addition,
the virtualized environment inherently limits the control of the virtualized device implementation.
For example, to perform DMA (and RDMA), the PCI device should be able to access the memory in
the DMA/physical address space of the host. This becomes complicated in the virtual machine en-
vironment where the guest physical memory is scattered in the host physical memory through the
virtual memory schemes on the host. This prohibits the study and exploration of device-oriented
approaches in particular, such as NVMe-oF-based technologies and P2P device communication.

3 NVMEVIRT INTERNALS

3.1 Motivation

The increasing demand for high-performance and efficient storage devices has been pushing
academia and industry to develop various new storage device types, such as NVM SSD, KVSSD,
ZNS SSD, and computational storage. They usually require a custom host-device interface tai-
lored to their primary target workloads to make them work most effectively. For example, KVSSDs
are for handling a huge number of small key-value pairs. They are most effective only when the
host-device communication layer can handle small key-value payloads efficiently. Computational
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storage devices require a mechanism to deliver the code to run on the device. In this sense, we can
claim that the most innovative storage research can be fostered by making it easy to modify or
extend the host-device interface.

Currently, the NVMe interface is the most preferred host-device interface due to its flexibility
and extendibility. The NVMe protocol itself is flexible and easy to extend; however, applying any
changes to an actual system is an entirely different matter. Specifically, the NVMe interface inher-
ently involves a protocol defined at the hardware level. To extend the interface for a new device
feature, the developer should incorporate the changes not only to the device driver on the host
but also to the firmware or controller logic on the real devices. This level of work usually demands
a huge amount of engineering efforts and research resources, restricting the research for novel
storage devices. This motivated us to build a storage emulator that provides a comprehensive way
to customize the NVMe interface and support various storage device types on top.

We found several previous works aiming to achieve the same goal. As summarized in Table 1,
however, they lack the capabilities to support complicated I/O models required by modern storage
configurations such as NVMe-oF target offloading, direct access from user-space bypassing the
kernel, peer-to-peer data transfer among PCIe devices, and so on. These I/O models tend to access
the storage device directly bypassing the I/O stack on the operating system to minimize the I/O
overhead. Therefore, emulators working at the operating system level can support none of these
I/O models. Emulators leveraging the host virtualization technology can support some I/O models
where I/O requests are initiated in the virtual machine. However, they cannot support the I/O
models in which hardware devices directly initiate the I/O.

From the observation, we attempt to make a virtual device from the PCI level so that they can
behave like real physical devices from the entire host’s point of view. We argue this is crucial for
a storage emulator that should support various device types and advanced storage configurations,
and we emphasize that this is the point of difference between NVMeVirt and previous work.

3.2 Virtualizing a PCIe/NVMe Device

To help understand the challenges in virtualizing NVMe devices, we first detail how PCIe/NVMe
devices interact with the host [46]. As shown in Figure 1, the CPU and memory subsystem are
connected to peripheral devices through a hardware component called PCIe root complex. The root
complex generates PCI transactions to the devices on behalf of the CPU when the CPU accesses
the device memory-mapped regions. The root complex has multiple PCIe ports, each of which can
be connected to a PCIe device (i.e., PCIe endpoint) or a PCIe switch. The PCIe switch allows the
hierarchical organization of PCIe devices by implementing a PCIe bus, through which multiple
devices can be multiplexed. When the root complex pushes the PCIe transactions to the switch,
it routes the PCIe transactions to the target device on the bus. The PCIe transactions can be also
forwarded in the opposite direction, from the device to the root complex through the bus.

PCIe devices, including NVMe devices, essentially communicate with the host operating system
(and the host firmware) through a memory-mapped region for their initialization. A PCIe device is
supposed to present its PCI configuration header in the PCI configuration address space. The con-
figuration header contains essential information to initialize the device. This information includes
the device ID, vendor ID, type code of the device, status of the device, and list of resources that the
device provides. The host, specifically the root complex device driver, scans the PCI configuration
address space to find the configuration headers presented by installed devices. For each detected
configuration header, its corresponding device driver is invoked according to its device type and
IDs. This process is called a PCI bus scan. To facilitate device-specific requirements during the PCI
scan, the PCI subsystem in the Linux kernel allows customizing the operations for accessing the
configuration header.
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Fig. 1. The overall architecture of NVMeVirt. NVMeVirt makes a virtual NVMe device through the PCI bus

and switch, so the device is seen as a native PCIe device from the host.

With this PCI initialization protocol, the most obvious way of creating a virtual PCIe device
might be injecting a forged PCI configuration header into the root complex driver. However, in this
case, when the root complex recognizes the PCIe device, it will attempt to directly communicate
with the device at the hardware level. This inevitably leads to a system design that requires a
hardware modification, which is impractical and even too intrusive for commodity servers.

To circumvent this pitfall, we make virtual PCIe devices indirectly through the PCI bus. Basically,
NVMeVirt tricks the OS to interpret a region of host memory as a PCIe configuration header,
emulating device registers. To this end, NVMeVirt allocates a part of the reserved memory region
for the PCI configuration header of the virtual device. The configuration header is set to indicate an
NVMe device with required PCI capabilities (the “PCIe Device Emulator” part in Figure 1). With
the configuration header, NVMeVirt creates a virtual PCIe bus with a non-existing PCI bus ID
of the system (the ID is provided as a configuration parameter) and asks the PCI subsystem to scan
the bus with custom configuration header operations. When the PCI subsystem performs the PCI
bus scan, it effectively detects an NVMe-type device. When the subsystem attempts to initialize
it by accessing the configuration header, NVMeVirt hooks in through the custom configuration
header operations and emulates requested operations. This effectively presents an NVMe-type
PCIe device to the PCI subsystem, making it ask the NVMe layer to initialize the device.

The NVMe device emulation is implemented on top of the PCIe device emulation. According
to the NVMe specifications, NVMe devices should present their NVMe control block through the
base address register (BAR) fields in the PCI configuration header. Accordingly, NVMeVirt sets
up the PCI configuration header so that the BARs point to a reserved memory region used for the
control block. The NVMe layer on the host identifies the control block and operates on it according
to NVMe standards.

In real devices, accesses to the NVMe control block are delivered to the device in the form of
PCI transactions, initiating an action from the device. However, as the control block of NVMeVirt
devices is only a memory region, accesses to it are processed silently without causing any event.
To respond to the updates of the control block, we used the similar idea of vIOMMU [1]. Specifi-
cally, NVMeVirt runs a kernel thread called dispatcher. The dispatcher keeps checking the values
of the control block to determine whether any changes have occurred. When the current value
of the control block is changed since the last check, it implies that the host made some requests
to the NVMe device. The dispatcher identifies the intention from the update and thus initiates the
processing of the request.
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We opt for the busy-waiting approach (i.e., keep scanning targets) over an event-driven ap-
proach (i.e., signal the dispatcher in response to incoming requests) to provide the low latency of
NVM-based storage devices. The event-driven approach might save CPU cycles much; however,
waking up a sleeping thread incurs non-negligible time overhead, making it unable to meet the
demand for high I/O processing performance of modern storage devices.

Due to the emulation from the PCI layer level, NVMeVirt provides unique capabilities and op-
portunities that other emulators cannot provide. First, the emulated device operates like a real
device from the perspective of the rest of the OS and even other devices. Any entity can instruct
the NVMeVirt instance to perform any NVMe operations provided that it can set the control block
and/or write operations in the NVMe queues under PCI and NVMe specifications. This makes
it possible for a user-level application to directly access the device bypassing the kernel with
SPDK [58]. In addition, even other PCI devices can write NVMe commands to the NVMeVirt in-
stance according to the PCI peer-to-peer DMA protocol. This permits NVMeVirt to foster the
studies using complicated storage configurations, such as the NVMe-oF target offloading [11] and
the direct communication between GPU and storage for AI applications [3]. Note that none of the
previously presented simulators and emulators relying on device drivers or virtual machines can
support these advanced storage use cases.

Another unique capability of NVMeVirt is that it allows the inspection of the NVMe message
queues in detail. With real devices, it is infeasible to track the exact number of I/O requests queued
in submission and completion queues from the host side since the device does not expose the pro-
cessing progress to the host (i.e., the device is not supposed to report individual processing progress
but only notify completions in bulk). As the dispatcher directly accesses the NVMe queue pairs
and doorbells, we can track the exact state (i.e., queue depth of queue pairs, queuing delay, etc.)
of the device in software, allowing an in-depth understanding of the communication characteris-
tics and behaviors. In addition, we can easily configure the maximum number of queue pairs by
changing the configuration parameter, which enables the opportunity to study the implication of
multi-queues on various configurations.

3.3 Supporting Various NVMe Device Types

While the dispatcher focuses on processing the control requests to the device, time-consuming I/O

requests are handled by a set of kernel threads called I/O workers. As illustrated in Figure 2, each
I/O worker maintains an I/O process queue, which lists the pending NVMe requests. When the
dispatcher detects a doorbell ringing, it fetches the I/O requests from the corresponding submis-
sion queue. The dispatcher estimates the target completion time of each I/O request (Section 3.4
discusses the timing model) and hands over the request to an I/O worker by placing it in the cor-
responding I/O process queue. The target I/O worker can be selected in a round-robin manner or
as desired, and requests are placed in the queue sorted by their completion time.

The I/O worker processes the requests depending on the device type that it emulates. Currently,
NVMeVirt supports the conventional SSD, NVM SSD, ZNS SSD, and KVSSD, and the device type
can be specified at compile time. NVMeVirt initializes the NVMe control block to advertise itself as
the selected device type, making the corresponding host device driver interact with the NVMeVirt
instance. To process an I/O operation for a device type, the I/O worker invokes the I/O process-
ing routine of the corresponding backend of the device type. For example, the conventional SSD
backend copies the data payload to the backend memory for write requests or copies data from
the memory to a specified I/O buffer. The ZNS backend checks whether the request is valid ac-
cording to the ZNS specification and processes it similarly to the SSD backend if the request is
valid. It also responds to zone-related requests by referring to the zone information it maintains.
The KVSSD backend looks up the requested key from the index and stores or retrieves the value
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Fig. 2. Processing I/O requests in NVMeVirt. The host inserts an I/O request into the NVMe submission

queue and rings the associated doorbell. The dispatcher in NVMeVirt dispatches the I/O request (1) and

computes the target completion time according to the latency model of the deployed backend (2). Then

the request is handed over to an I/O worker, which processes the operation of the configured backend type

((3) and (4)). When the desired target completion time is passed, NVMeVirt inserts a completion descriptor

into the NVMe completion queue and signals an Inter-Processor Interrupt (IPI) to the core that made the

I/O request (5). Finally, the host I/O stack eventually wakes up the context that waits for the completion of

the I/O request.

of the requested key. The details of the data handling in the backend memory will be discussed in
Section 3.6.

The data is copied from/to the backend memory using the Intel I/OAT DMA engine [19] instead
of the traditional memcpy for improving the I/O processing performance and reducing the CPU
overhead. When an application initiates an I/O request, the requested data is on some pages in the
host (i.e., in the I/O buffer or in the backend memory for write and read requests, respectively).
Thus, the CPU can copy data within the memory of the host at a low overhead. However, the
data copy overhead becomes non-negligible when data is on the device memory for PCI P2P I/O
requests. To support the inter-device communication, the PCI root complex and MMU collaborate
to present an illusion of device memory in the physical address space of the host. When a PCI
device moves the data in the device memory through DMA, the PCI root complex routes the ac-
cesses to the target device at the PCI level, providing low latency for data moving. However, when
the CPU accesses the device memory-mapped address range for memcpy, the accesses are trans-
lated into PCI transactions and processed by the PCI device at a small I/O unit. This inevitably
and significantly impairs the data copy performance, making NVMeVirt unable to guarantee the
high performance of real devices. As the DMA engine allows low-overhead data transfer from/to
device memory-mapped memory regions, NVMeVirt can achieve compelling I/O processing rates
regardless of the I/O configurations.

After performing the actual I/O operation, the I/O worker compares the current and target com-
pletion times of the request. If the current time passes the target completion time, the I/O worker
writes a completion descriptor on the corresponding completion queue. To notify the host OS of
the processing completion, NVMeVirt sends an Inter-Process Interrupt (IPI) to the waiting pro-
cessor bound to the queue pair. NVMeVirt supports Message Signaled Interface-X (MSI-X) for
a scalable high-performance completion path. Each queue pair has its own dedicated IRQ vector;
hence, NVMeVirt can efficiently signal to the target core with the specified IRQ vector. The I/O
stack on the signaled core will eventually wake up the user context that initiated the request. If
the target completion time has not been reached, the I/O worker does not generate the completion
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signal for the request at that time. Instead, the I/O worker goes back to check the I/O process queue
to handle newly arrived requests. After processing newly arrived requests (processing skipped if
no new request has arrived), the I/O worker re-examines pending requests to identify those that
have exceeded their completion times. If there is a completed request, the I/O worker generates
the completion signal for it.

3.4 Simple Performance Model

For a device emulator, the capability to imitate the performance of real devices is important. To
that end, there has been no shortage of studies attempting to replicate the latency and bandwidth
characteristics of real storage devices with emulators and simulators [13, 34, 36, 39, 40, 53, 59]. We
employed a similar approach as implemented in those works. Basically, an I/O request is divided
into smaller chunks, which are independently processed in parallel by multiple data processing
units. The data processing unit drives underlying storage media to read from or write to it. The
chunk and data processing operation are, for example, considered the flash page and its read oper-
ation and programming in SSDs, respectively. The I/O completion time for an I/O request is deter-
mined by the completion time of the last operation for the request. The time for processing each
chunk can be controlled with tunable parameters, which can be set based on the I/O bandwidth and
latency of the target device. Further, the size of the chunk and the number of data processing units
are configurable. With a set of parameter values we can expect a latency for small requests and the
maximum bandwidth with large requests for the device. The latency is mainly determined by the
operation time of the data processing operations, whereas the maximum bandwidth is bounded
by the aggregated performance of the data processing units. For the remainder of the article, we
refer to these as the target latency and target bandwidth. For example, the OptaneDC SSD can be
modeled as the NVM SSD that has a target latency of 12 μs and a target bandwidth of 2,400 MiB
for read requests. We refer to this model as the simple model.

We can produce the performance characteristics of real NVM SSD and KVSSD using the simple
model as presented in Section 4.3. In general, the most complicated performance characteristics
of flash-based storage devices are originated from garbage collection. However, as many studies
have analyzed earlier [21, 55, 57], NVM SSDs are expected to allow in-place updates, enabling them
to operate without garbage collection. For KVSSD, the size of key-value pairs is small; hence, its
performance tends to be bound by the host-device interfacing performance and the key indexing
time, rather than the performance of the storage media. Thus, the simple model was sufficient for
those device types.

3.5 Advanced Performance Model

3.5.1 Design Considerations. The performance model for conventional SSDs is much more com-
plex than NVM SSDs since they often incorporate various techniques and mechanisms to achieve
high performance while masking the unique characteristics of NAND flash memory. We studied
the specifications and performance characteristics of recently released SSDs to list the key fea-
tures for the modernized SSD performance model. Also, we surveyed recent FTL research papers
to get useful insights behind the performance characteristics. To follow are the key aspects we
considered during the design of the performance model for NVMeVirt.

One-shot programming. With the significant increase in data density achieved through 3D
NAND and multi-level cell technologies, reliable programming has become a growing challenge.
When multi-level cell technology is used, one physical flash page holds the data of multiple logical
pages, each of which consists of corresponding bits of the multi-level cells on the physical page.
Traditional FTLs used to process write requests with a page-by-page strategy: programming each
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logical page one after another. However, recent FTLs often minimize the programming overhead
through the so-called “one-shot programming" scheme; the logical pages on the same physical
page are first buffered and then programmed together with a single flash page programming oper-
ation. This scheme can improve the write performance as well as the write reliability significantly,
and it seems many modern SSDs employ this write scheme [12, 17]. To the best knowledge of the
authors, no previous storage emulator has considered this modernized write scheme.

Write buffer. The increased data density per cell has inevitably led to an increase in NAND pro-
gram time. Many modern SSDs opt to buffer the write data before storing them in the flash memory
to hide the long NAND program time. Also, the write buffer is one of the key enablers for the one-
shot programming feature. However, we could not find an emulator that accurately models the
write buffering.

Channel/PCIe level contention. In an SSD, a channel serves as a data pathway connecting the
NAND chips to the SSD controller. The chips can operate independently; however, since multiple
chips share a single channel, contention can occur in the channel. When there is contention, op-
erations may take longer than the base transmission time, which is determined by the channel
bandwidth. Similar to the channel, a PCIe link is a data passage between the SSD controller and
the host. The sum of the bandwidth of channels may exceed the PCIe bandwidth, but the overall
device performance is capped by the PCIe bandwidth. We found that simulators and hardware-
based emulators can easily emulate the contention due to their internal organization. However,
many software-based emulators often omit modeling the contention and just bound the device
performance with the data processing time of the NAND chips. In this case, the performance is
solely limited by the NAND chip’s capabilities, offering significantly higher bandwidth than what
the actual devices can deliver (see Section 4.2).

Multiple FTL instances. Modern SSDs split the channels into logical groups and allocate them
to each FTL core as a separate FTL [29]. Specifically, a single I/O request can be split into smaller
operations and distributed to multiple FTL instances, which process the operations in parallel. In
this manner, SSDs can effectively utilize device-level parallelism and achieve improved scalability.
However, it also introduces additional constraints during I/O completion and garbage collection.

3.5.2 Performance Model. We carefully designed an FTL performance model to incorporate the
features obtained from the previous observations. Basically it models a set of page-mapped FTL
instances. Each FTL instance has a number of channels, each of which is connected to a number
of NAND flash chips. An I/O request is assigned to one or more FTL instances that cover the LBA
range of the request.

To process a write request, the data should be buffered in a write buffer first. NVMeVirt assumes
that the write buffer is shared by all FTL instances. When the write buffer is full, the processing
of the write request is stalled until enough write buffer is secured to accommodate the data. To in-
corporate the one-shot programming in the model, NVMeVirt does not process the buffered data
immediately. Instead, it waits until other logical pages on the same physical page are buffered.
When all logical pages for the physical page are buffered, their data is transferred to the corre-
sponding FTL. The data transfer time is modeled considering the channel contention that we will
explain below. The space in the write buffer is reclaimed later, once the FTL completes the process-
ing of the request. The write completion to the host can be notified as soon as the data is written
to the write buffer (i.e., early completion) or when the data is completely written to the NAND,
according to the operation types and configurations.

Read requests are processed without going through the write buffer. Instead, the FTL instance
locates the data and transfers it to the buffer specified in the NVMe command. During the data
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Fig. 3. The token-based contention model. Channel 0 is given with 30 tokens, each of which implies

the right to transfer 1 KiB of data for 10 μs. This configuration effectively emulates the bandwidth of

3,000,000 KiB/second. Chips should take the required amount of tokens to transfer data over the channel. If

tokens are not available, the operation is postponed until the tokens get available.

transfer, NVMeVirt determines the completion time by modeling the contention in the channel
and the PCIe link.

The NAND chips in NVMeVirt are modeled to operate independently. Each chip has its next
available time to process inbound operations. When a chip receives an operation, its completion
time is calculated from the next available time of the chip and the time it takes to perform the
operation. When multiple chips are involved in an operation, the completion is determined by the
chip that takes the longest time to complete the operation.

Data within an SSD is transferred through the channels and the PCIe link, where contention
may arise among the chips and channels, respectively. We model the contention in a bandwidth-
limited channel with the concept of tokens. Each token represents the right to utilize a part of the
channel to transfer the specified amount of data during the specified time slot. Thus, a token can be
defined, for example, as 1 KiB for 10 μs or 4 KiB for 20 μs. Each channel is given with a number of
tokens considering their maximum bandwidth. For instance, we can define a token of 1 KiB/10 μs
and model a channel with a bandwidth of 3,000,000 KiB/s using 30 tokens. An entity can grab a
number of tokens to transfer data during the time slot.

For example, as illustrated in Figure 3, when transferring 16 KiB of data over Channel 0, Chip
0 utilizes 16 tokens to complete the entire data transfer within 10 μs. Other chips may grab some
of the remaining tokens and utilize the channel simultaneously. If the entity wants more tokens
than what is available, it grabs all the remaining tokens but can only transfer data in proportion to
the number of tokens grabbed. In Figure 3, to transfer 64 KiB, Chip 1 can acquire 30 tokens during
the time period of 20 μs to 30 μs, and another 30 tokens during 30 μs to 40 μs. During the transfer,
Channel 0 does not have any available token, and thus Chip 0, which needs to transfer 32 KiB of
data, should wait until the time of 40 μs. At this point, Chip 1 holds 4 tokens, allowing Chip 0 to
acquire the remaining 26 tokens for transferring 26 KiB of data during that time. Afterward, Chip
1 can complete the data transfer by acquiring 6 tokens at the time of 50 μs. We have employed this
token-based contention model in emulating the channels and the PCIe link. Each channel and the
PCIe link have their own tokens and time slots, which are configured based on their performance
characteristics.

Currently, NVMeVirt performs garbage collection (GC) when the number of free blocks gets
below a threshold. The victim block is selected according to the greedy policy. NVMeVirt maintains
a separate GC update block so that the cold data migrated during GC is not intermixed with hot
inbound data. To perform GC, NVMeVirt schedules internal operations (e.g., read and write-back
pages) to the model. NVMeVirt is capable of emulating background GC as well as foreground GC.

It is noteworthy that NVMeVirt only calculates the timing of the operations, without actually
moving the data during the emulation. NVMeVirt is highly configurable, allowing the user to
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customize the number of FTL instances, the size of the write buffer, and other operation times.
We can estimate the timing parameters based on the device specification and/or by observing the
performance behavior of the device, similar to the approaches proposed in the literature [29, 50, 57].

3.5.3 ZNS SSD. Basically, the ZNS SSD backend uses the same advanced data processing model
as the conventional SSD. However, it does not need the full FTL since the host explicitly controls
data placement according to the ZNS SSD specification. Thus, the ZNS SSD backend primarily
focuses on maintaining the status of zones and reporting the information when queried by the
host.

While analyzing the performance characteristics of real ZNS SSDs, we discovered that manu-
facturers seem to employ different zone provisioning schemes for ZNS SSDs. Specifically, some
manufacturers appear to organize a zone by grouping only a few multiples of NAND flash blocks
from the same channel together. This type of small-zone ZNS SSDs can provide a completely iso-
lated performance and management scheme, albeit at the expense of lower performance due to
limited parallelism.

On the other hand, other vendors form a zone using multiple NAND flash blocks that span mul-
tiple channels and NAND chips. As I/O operations for a zone can be distributed to multiple chan-
nels and chips in parallel, these large-zone ZNS SSDs can offer better performance compared to
the small-zone ZNS SSDs. The small-zone and large-zone ZNS SSDs require different zone manage-
ment policies. We designed the ZNS SSD backend in NVMeVirt to support both zone provisioning
schemes.

3.6 Data Storage and Handling

NVMeVirt should store requested data somewhere in the system and retrieve them later for read
requests. Similar to many other storage simulators and emulators, NVMeVirt stores the data in the
main memory. Running as a kernel module, NVMeVirt cannot luxuriate in comfortable functions
from user space, such as virtual memory. However, the memory management overhead should
be low and consistent to emulate future-generation devices such as PRAM- and MRAM-based
SSDs. Different device types require different memory management policies and mechanisms. We
explain the approaches for each device type that NVMeVirt currently supports.

Common. Regardless of the device type, NVMeVirt requires an extensive amount of memory for
data storage. NVMeVirt obtains the required memory by reserving a part of the physical address
space with the booting parameter during the system initialization. We configured the NUMA set-
ting not to interleave memory, and the memory is reserved from a dedicated NUMA node where
the NVMeVirt threads are pinned down. Therefore, the reserved memory is physically contiguous.
At the beginning of the reserved memory area are the NVMe control block and PCI resources, such
as the MSI-X table and PCI capabilities, followed by the bulk memory region used for storing data.

SSD and ZNS SSD. Basically the backends for SSD and ZNS SSD use a simple linear mapping
for data placement. For a physical block/page number in the flash address space, its in-memory
location is calculated by adding the starting address of the reserved memory region. The FTL for
conventional SSDs maintains the logical-to-physical flash address space mapping on top of the
linear mapping as in FEMU [36]. Once the target address is calculated from the block number,
NVMeVirt moves data from/to the in-memory location. One might suggest reusing the RAM disk
facility or allocating the data storing space dynamically using alloc_pages() or vmalloc(). In
these cases, however, we cannot control the location of pages from NUMA domains. Even if we
can use alloc_pages_node() to specify the NUMA domain to allocate pages from, the time to
process page allocation may vary significantly according to the status of the memory subsystem
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at the moment. When the system has free pages for a core in its per-process free page list, the page
allocation can occur fast. However, if the list is empty, the page should be allocated by dividing a
large memory chunk through the buddy system allocator, which is time-consuming and imposes
a performance variance on the processing. For these reasons, we opt to use the linear mapping
scheme, rather than the RAM disk or the dynamic space allocation scheme. Further, the ZNS SSD
backend maintains the metadata to track the status of zones (i.e., open zone list and the write
pointers within the open zones). The space for the metadata is small, so it is fully allocated during
the module initialization to minimize the potential performance variations.

KVSSD. The page-level address mapping is sufficient for conventional SSDs because the alloca-
tion unit is a fixed size, which is either larger than or equal to the page size. However, most of
the keys and values in KVSSDs are much smaller than a single page (often tens to hundreds of
bytes long) in general, and their sizes are highly variable. This necessitates a proper memory man-
agement scheme to prevent/control the external fragmentation of the address space yet provide a
stable performance. Accordingly, we divide the first half of the reserved memory into 1 KiB chunks
and the second half into 4 KiB ones. NVMeVirt maintains a bitmap to track the availability of each
chunk. When a request requires a small chunk, we allocate the space from the 1 KiB chunk pool
and mark the corresponding bitmap entry. When a chunk is reclaimed, its corresponding bitmap
entry is cleared and the space is recycled. The large chunk pool is managed similarly.

KVSSD also requires an index for key-value pairs. For simplicity, we implemented it with a hash
table. During the device initialization, we allocate a slice of memory and initialize it as a table. Each
entry in the table contains the actual key and location of data as the chunk index. To process a
key-value operation, the key is hashed with the Fowler-Noll-Vo hash function [42] to produce an
integer index. This integer index is used as the index of the table, and the hash collision is handled
with the linear probing scheme. Currently, the maximum size is set to 16 bytes and 4 KiB for the
key and value, respectively.

4 EVALUATION

In this section, we provide the evaluation results to demonstrate the features and versatility of
NVMeVirt. We aimed to discover the following with the evaluations:

(1) What device types and their features does NVMeVirt provide?
(2) How precisely can NVMeVirt emulate the performance of various storage devices, including

off-the-shelf SSDs, NVM SSDs, ZNS SSDs, and key-value SSDs?
(3) What type of advanced storage configurations can NVMeVirt support?
(4) How can NVMeVirt contribute to storage-domain research?

4.1 Evaluation Setup

Evaluation environment. To evaluate NVMeVirt, we used two identical servers with the same
hardware and software configurations. Each server is equipped with two Intel Xeon Gold
6240 processors running at 2.60 GHz in a NUMA configuration. Each processor has 36 cores and
192 GiB of memory, which provides 72 cores and a total of 384 GiB of memory. The system is also
equipped with commercial storage devices for performance comparison and analysis: the Samsung
970 Pro SSD and Intel P4800X SSD based on the OptaneDC persistent memory technology. The
devices are 512 GB and 350 GB in size and represent an off-the-shelf high-end SSD and NVM SSD,
respectively. We refer to them as “SSD” and “Optane” in the rest of the article. To evaluate KVSSD,
we used the Samsung KVSSD [27]. We also used a ZNS SSD provided by a company as an evalu-
ation prototype. This ZNS SSD comprises 96 MiB zones that can be written only at 192 KiB units.
The servers are also equipped with one Mellanox ConnectX-5 VPI HCA and connected through
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Fig. 4. Performance variance of real and emulated devices for 4 KB random write operations

Mellanox SX6012 switch supporting 56 Gbps FDR bandwidth. We implemented NVMeVirt based
on the Linux kernel 5.10.37, and the implementation takes approximately 10,200 lines of the kernel
module code.

Configuration. To minimize the cross-interference between the applications and operations of
NVMeVirt, we set them to run on different processors. Specifically, one processor (processor 1) is
completely dedicated to NVMeVirt, whereas applications and benchmarks run on the other proces-
sor (processor 0). During the system initialization, the entire memory for processor 1 is reserved
with kernel booting parameters and used for storing data. The dispatcher and I/O workers are
pinned down to different cores on the dedicated processor. The virtual PCIe bus is registered to
the system as if it is attached to processor 1. In the meantime, applications and benchmarks are
set to run on the cores on processor 0 with taskset. The memory for the NUMA node 0, which is
dedicated to applications, is configured to 32 GiB considering the size ratio between the memory
and storage devices. In the evaluation, NVMeVirt is configured to use one I/O worker and a max-
imum of 72 queue pairs so that each core has its own queue pair. Note that we can easily change
the maximum number of queue pairs of the virtual device.

4.2 Emulation Quality

NVMeVirt primarily focuses on facilitating various NVMe device types, and FEMU [36] is the
most relevant work sharing a similar goal. We compare the emulation quality by measuring the
latency distribution of random write operations by repeating the same test 10 times. In each test,
FIO writes 128 GiB of data with 4 KiB requests at random locations. We set FEMU and NVMeVirt
to operate at the maximum speed without adding any latency while processing inbound requests.
Figure 4 summarizes the percentile distributions of the 10 runs. The error bars indicate the standard
deviation of the runs; thus, the longer the bars are, the more performance fluctuation the system
exhibits.

Compared to the performance of real devices, NVMeVirt exhibits much lower latency with a very
stable performance over the entire percentile range. Note that the small performance variance of
NVMeVirt does not imply that NVMeVirt cannot emulate the performance variance of real devices.
Rather, it indicates that NVMeVirt can effectively control the performance variance by providing
stable and consistent performance. This is a very promising feature for emulating future high-
performance storage devices.

On the other hand, the FEMU-emulated device barely meets the required performance to emu-
late modern storage devices. The maximum performance of FEMU is slightly faster than Optane.
Hence, we are unable to utilize FEMU to project the performance implication of future low-latency
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Table 2. Presumed Model Parameters to

Emulate a Real Device Performance

Simple Model

Optane KVSSD

Page size 4 KiB 4 KiB

# of I/O units 1 10

Read latency 12 μs 154 μs

Read bandwidth 2.4 GiB 2.6 GiB

Write latency 14 μs 56 μs

Write bandwidth 2.0 GiB 1.3 GiB

Advanced Model

SSD ZNS

Partitions 4 1

Write buffer 1 MiB 48 MiB

PCIe link bandwidth 3.4 GiB 3.2 GiB

# of NAND channels 8 8

NAND channel bandwidth 800 MiB 800 MiB

Dies per channel 2 16

Read unit size 32 KiB 64 KiB

NAND read time 36 μs 40 μs

Write unit size 32 KiB 192 KiB

NAND write time 185 μs 1,913 μs

These parameters are used to characterize the

observed performance of the target device, not to

describe their actual internals.

storage devices. In addition, we observe high run-to-run performance variance from FEMU. Its
standard deviations range from 28.7% to 39.7% of its average performance. The 99.99th percentile
of FEMU goes off the chart, showing an average of 559.3 μs and a standard deviation of 462 μs.
Considering the influences of the performance variance on the applications’ tail latencies, FEMU
will operate with a very high non-realistic tail latency.

4.3 Emulating a Real Device Performance

One of the primary goals of NVMeVirt is to emulate the performance of real devices. To verify this,
we measured various performance metrics from real devices and configured NVMeVirt devices, as
we discussed in Section 3.4. Table 2 summarizes the key parameters that we used for emulating
the target devices. The values are obtained empirically from in-house microbenchmarks and device
specification documents [10, 20, 54]. Note that the size of the write buffer is determined so that
the SSD can double-buffer all data for ongoing programming. For example, the Samsung 970 Pro
has 16 chips, where each chip is capable of independently performing 32 KiB page programming.
In this case, we set the write buffer size to be 16 × 32 KiB × 2 = 1,024 KiB in order to double-buffer
incoming payloads. We used various benchmark tools and configurations for evaluating various
device types. For Optane and SSD, we used FIO [2] to measure the read and write bandwidth while
varying the request size from 4 KiB to 256 KiB. We also used FIO for measuring the bandwidth of
the ZNS SSD. We evaluated the read performance in the same manner. However, the ZNS SSD only
allows 192 KiB writes to opened zones. Thus, we evaluated the write performance by measuring
the aggregated bandwidth of different numbers of threads, each generating 192 KiB requests in
accordance with the ZNS zone restriction.

To evaluate KVSSD, we used OpenMPDK KVBench [51], which is an open-source benchmark
based on the ForestDB benchmark suite [6]. We report the aggregated bandwidth from various
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Fig. 5. The performance comparison of the real devices and virtual devices. The performance is normalized

to the left-most value within each category.

payload sizes. In addition, we report the aggregated bandwidth measured with KVCeph [31] that
generates realistic key-value operation workloads.

Figure 5 compares the performance of virtual devices to the real devices on various configu-
rations. In each category, the values are normalized to the left-most entry value of the category
(i.e., 4 KiB performance of the real device). Throughout the evaluation, we can confirm that the
virtual devices provided by NVMeVirt faithfully reflect the configured target performance. We
observe that the performance difference between the real and the virtual devices is small. The per-
formance difference is by up to 11.6%, 11.8%, 3.3%, and 3.8% for Optane, SSD, ZNS SSD, and KVSSD,
respectively.

Next, we demonstrate the effectiveness of the token-based contention model by comparing the
performance trend between NVMeVirt and FEMU. We configured FEMU to emulate the perfor-
mance of the Samsung 970 Pro SSD, based on the observed 4 KiB read/write latency. Additionally,
FEMU is set up with eight channels, each containing two LUNs according to the device specifica-
tion of the reference device.

Figure 6 compares the latencies of random read and write operations with various payload sizes.
The latency is shown normalized to that of the 4 KiB operation in the reference device. We can
verify that NVMeVirt exhibits very similar performance trends to the reference device across the
entire range of payload sizes. However, FEMU exhibits high latency deviation, particularly for
large payload sizes. We attribute this to the absence of contention emulation in FEMU. In real de-
vices, each LUN can operate independently, but they contend with each other while transferring
data through the channels and the PCIe link. This contention inevitably leads to increased latency,
particularly for large payloads. However, the performance model of FEMU does not consider such
contention at all, and all 16 LUNs are allowed to operate independently without any limitations.
This gives the flat read latency trend up to a payload size of 64 KiB for read operations, showing
much higher performance than the real device. Even worse, FEMU attempts to compensate for
the lower-than-real latency by introducing extra latency, which backfires when the payload size
exceeds the range that FEMU is targeting. Write operations also exhibit a similar performance de-
viation. While FEMU can match the performance of a real device when handling small payloads, it
struggles to accurately emulate contention. As a result, FEMU tends to exhibit significantly higher
performance than the real device when dealing with larger payloads. From the evaluation, we
can conclude that the proposed performance model can emulate resource contention effectively,
which is particularly crucial when modeling the performance of modern SSDs that are inherently
designed with high internal parallelism.

Finally, we analyzed various I/O characteristics. First, Figure 7(a) summarizes the latency dis-
tribution for processing 16 KiB requests in the Samsung 970 Pro and its NVMeVirt counterpart.
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Fig. 6. The comparison of performance characteristics of emulators.

Fig. 7. The comparison of various performance characteristics.

We can see the similar latency distributions between the setups. In particular, the sophisticated
performance model can emulate the bimodal read latencies originated from different LSB- and
MSB-page read times in MLC flash memory. Second, we evaluated the performance change when
the garbage collection is performing. We built a microbenchmark that fills in the storage space
with sequential write and keeps performing random writes. These writes will eventually trig-
ger GC, which will cause performance drops. Figure 7(b) shows the performance change, and
we can see that NVMeVirt exhibits the realistic performance change when GC is involved. Lastly,
Figure 7(c) shows the performance of RocksDB running on ZNS SSD. We measured the throughput
over a period of time while running the YCSB-A benchmark. We can observe repeated performance
changes from ZNS SSD, and NVMeVirt can model the performance changes very closely.

Based on these evaluations, we can conclude that NVMeVirt is capable of modeling various
performance aspects of the target devices faithfully.

4.4 Supporting Various Storage Environments

In this evaluation, we elaborate on the versatility of NVMeVirt in various storage configurations.
First, we demonstrate the feasibility of the NVMe-oF target offloading. We configured an NVMeVirt
instance as the NVMe-oF target and measured its performance with the FIO benchmark. The
NVMeVirt instance is configured to emulate Optane with the target performance listed in Table 2.
Figure 8 compares their performance under various payload sizes and different NVMe-oF config-
urations. Note that "NVMe-oF" indicates the performance of the default NVMe-oF configuration
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Fig. 8. The write performance as the NVMe-oF target.

without the target offloading, and "Offloading" is with the target offloading enabled. We present
the results from write operations only since read operations showed the same trend.

We can observe that NVMeVirt emulates the performance of Optane over NVMe-oF closely.
Specifically, the baseline configuration without the target offloading outperforms that with the
target offloading when the payload is smaller than 128 KiB. We attribute the performance trend to
the NVMe command processing overhead in the adapter that outweighs the performance gain from
the optimized data path. However, when the payload is larger than 128 KiB, the performance gain
outweighs the overhead, making the target offloading-enabled configuration show much lower
latency.

We also demonstrate the PCI peer-to-peer DMA support for AI workloads. Specifically, GPUDi-

rect Storage (GDS) is one of the promising techniques to accelerate GPU-intensive workloads
[43, 44]. GPU directly accesses NVMe devices through PCI peer-to-peer DMA protocol, enabling
decreased latency and CPU utilization on the host. We analyze the implication of storage perfor-
mance on the GDS environment with NVMeVirt.

We measure the performance of checkpointing while running Megatron DeepSpeed [41] with
NVIDIA A100 GPU. As shown in Figure 9(a), with the Samsung 970 Pro SSD, the checkpointing
occurs at the rate of 0.37 GiB/s with the conventional storage configuration, where checkpointing
data is stored through the host’s filesystem (the data is labeled with “Real”). With GDS enabled,
the checkpointing data goes to the NVMe device directly, showing a substantial performance gain
of 5.2x. The NVMeVirt instance configured for the SSD exhibits the same performance trend, as
labeled with “Virt.”

We set up an NVMeVirt SSD instance in the same environment and evaluate the implication
of storage device performance. We measured the checkpointing performance on various target
bandwidths, but with a fixed latency of 10 μs (grouped in “Bandwidth”). We also evaluated the
performance from various latencies while the target bandwidth is fixed to 2.0 GiB (grouped in
“Latency”).

As shown in Figure 9(a), the storage performance does not much influence the AI application
when the checkpointing occurs through the conventional storage configuration. The checkpoint-
ing performance remains consistent at a rate of 0.43 GiB/s regardless of changes in bandwidth
and latency. However, the performance is affected by bandwidth in the GDS configuration. This
confirms that the direct storage access is promising in that it can circumvent the inherent perfor-
mance bottleneck in the conventional I/O path. Also, it implies that to fully exploit the reduced
overhead through GDS, the storage performance should be improved further. From the consistent
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Fig. 9. Performance of AI workloads on various storage configurations and performance.

performance over a wide range of latencies, we can infer that the workload is likely to process I/O
with a high queue depth.

We investigate the performance implications of the storage device on an AI inference workload.
Using the DeepSpeed ZeRO-3 framework [8], we executed the OPT-30B model [49] and measured
the inference performance under various storage performance. The model requires approximately
60 GB of space for storing the entire model parameters in half precision, which is too big to fit
into the GPU memory (40 GB) of our NVIDIA A100 card. Thus, the framework divides the model
parameters into smaller chunks, saves the chunks on the storage, and loads them in a pipelined
fashion considering the stage they are required for during the inference process. We measure the
rate of generating 10 tokens from 4 input tokens using the Hugging Face token generation pipeline
with the batch size of 256.

Figure 9(b) illustrates the inference performance across different storage bandwidths. “DRAM”
refers to the performance when the model parameters are loaded entirely into the host memory.
In this case, inferences do not require any I/O operations for storage, exhibiting the highest level of
performance. “S970” indicates the performance when the model parameters are initially stored on
a Samsung 970 Pro SSD. As the pipelined parameter loading keeps issuing read requests to storage,
parameter loading time is influenced by the device bandwidth. Thus, it shows a lower inference
performance than the “DRAM” configuration.

We investigated further how much the inference performance is influenced by the storage band-
width. We configured a baseline configuration with an NVMeVirt instance modeling the Samsung
970 Pro. Then we changed the storage bandwidth by increasing the channel and the PCIe link band-
width simultaneously. Specifically, the baseline configuration uses a 1:4.25 (800 MiB:3,400 MiB)
bandwidth ratio between the channel and the PCIe link. Accordingly, when we increase the chan-
nel bandwidth by 400 MiB/s, the PCIe link bandwidth is increased by 1,700 MiB to keep their
bandwidth ratio.

The orange bars in Figure 9(b) show the inference performance at the configured PCIe link band-
width (i.e., 3400 implies the performance when the storage provides the bandwidth of 3,400 MiB/s).
We can clearly see the impact of storage bandwidth in the AI inference workload; the higher band-
width the device provides, the higher inference rate the model can generate. However, the increase
is not fully proportional to the bandwidth; when the bandwidth is doubled from 3,400 MiB/s to
6,800 MiB/s, the performance is only increased by 27.3%. We found that the framework does not
utilize the full bandwidth of the storage, and we attribute the limited bandwidth usage to the under-
optimized parameter loading scheme and the heavy I/O stack on the host. Therefore, we can con-
clude that there is room for improvement in the storage subsystem of AI application frameworks.
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4.5 Case for the Database Engine Analysis

To promote the tunable performance of NVMeVirt, we analyze the implication of storage per-
formance on database engine performance. We selected MariaDB and PostgreSQL, two database
engines that are very popular in the industry [7]. We created an NVMeVirt instance configured as
an NVM SSD and configured the database instance on it with recommended configurations from
optimization tools [16, 47]. The database instance is then populated with sysbench [52] to have
10 tables of 50,000,000 bytes in size, taking approximately 120 GiB of space in total. Then we run the
OLTP workload with sysbench with 72 threads for 60 minutes. We measured various performance
metrics while running the benchmark, and Figure 10 summarizes the results. We only report the
trends of the first 5 minutes since the performance became stable afterward.

Overall, we verified that MariaDB and PostgreSQL react very differently to the storage perfor-
mance. Figures 10(a) and 10(b) compare the I/O bandwidth utilization of MariaDB and PostgreSQL
over time when the target bandwidth is set to the given value (i.e., 250 implies the storage band-
width is limited to 250 MiB/s). In this evaluation, the I/O latency was set to a minimum (i.e., does
not impose any delay while processing I/O operations). For MariaDB, it fully utilizes the I/O band-
width up to 500 MiB/s but does not utilize it further. Even though the storage device provides a
higher bandwidth, the I/O bandwidth utilization remains low, approximately at 600 MiB/s. On the
other hand, PostgreSQL fully utilizes the I/O bandwidth up to 1,000 MiB/s and exhibits a saturated
performance at around 1,800 MiB/s. This hints that PostgreSQL is designed to utilize the storage
device more eagerly than MariaDB. However, this does not necessarily mean that PostgreSQL out-
performs MariaDB. Figure 10(c) compares the processing performance measured in transactions

per second (TPS) on various bandwidth limits. The I/O bandwidth limit influences both database
engines, but PostgreSQL is much more sensitive than MariaDB. Specifically, MariaDB exhibits a
higher TPS than PostgreSQL when the bandwidth is low, but the TPS is not improved much when
the device has more bandwidth. Meanwhile, PostgreSQL shows a lower performance when the
bandwidth is low. However, the performance improves as the device supports more bandwidth.
When the bandwidth limit is low, MariaDB outperforms PostgreSQL by 2.45x at the 250 MiB/s
bandwidth limit. However, PostgreSQL outperforms MariaDB by 1.82x at the unlimited bandwidth.

The engines exhibit a similar trend with respect to the latency. Figure 10(d) compares the per-
formance when the bandwidth is fixed to 1,000 MiB/s and both read and write latencies are set
to the values on the y-axis. When the device exhibits a high latency, MariaDB outperforms Post-
greSQL by up to 2.67x when the latency is 128 μs. However, as the latency decreases, the TPS of
PostgreSQL keeps increasing, becoming comparable to that of MariaDB when the latency is mini-
mum. Figures 10(e) and 10(f) show the number of queued requests in the submission queues of the
device over time. The device is configured to have the minimum latency and a target bandwidth
of 2.0 GiB. MariaDB operates with a low queue depth, whereas PostgreSQL utilizes a higher queue
depth with a noticeable unique pattern near qd = 200.

From the evaluation, we can conclude that PostgreSQL is more promising on modern storage
devices, whereas MariaDB is more efficient when the storage is slow. We can verify that NVMeVirt
allows us to estimate the performance of applications on future storage devices.

4.6 Case for NVMe Interface Study

As NVMeVirt handles inbound NVMe operations in software, it opens up the opportunity to extend
the host-device interface easily. To demonstrate this, we made a case with one of the recent studies
whose evaluation is limited by the host-device interface modification. Specifically, Kim et al. [30]
proposed to extend the NVMe command set so that one NVMe command can batch multiple key-
value operations, thereby amortizing the interface overhead for small key-value operations. To
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Fig. 10. Performance characteristics of the MariaDB and PostgreSQL database engines on various storage

configurations.

realize this so-called "compound command" concept, the KVSSD firmware should be modified
to understand and process the extended NVMe command. However, the authors were unable to
modify the firmware and ended up estimating the performance gain from the single operation
performance.

We attempted to verify the benefit of the compound command by using the KVSSD instance
with NVMeVirt. Specifically, we modified the KVSSD backend to understand the compound com-
mand and process packed operations in a batch. Each I/O operation in a compound command is
processed as an individual key-value operation in the backend. This modification took less than a
week for one of the authors, and we argue that this manifests the advantage of the software-level
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Fig. 11. The effect of the MDTS value on device performance.

NVMe abstraction that NVMeVirt provides. To evaluate the performance, we built a user-level mi-
crobenchmark tool that builds the compound command with multiple requests and submits the
command to the device through the NVMe pass-through interface. Note that the extended KVSSD
backend uses the same performance model and configuration as explained in Section 4.3.

From the evaluation, we can verify the significant performance improvement with the com-
pound command. Without the compound command, processing eight 4 KiB key-value put opera-
tions takes approximately 469 μs, which is reduced to 86 μs with the compound command, giving
a 5.4x performance gain. This improvement is higher than the value reported in the original work
(92.0 μs to 41.5 μs), and we attribute the extra improvement to the conservative estimation in the
original work.

4.7 Case for Evaluating Device Configurations

We can easily evaluate the effect of various device configuration parameters with NVMeVirt, as it is
purely implemented in software. In this case study, we evaluate the impact of changing the max-

imum data transfer size (MDTS) value of the NVMe device on the latency. According to the
NVMe standard, the device declares the MDTS value it can process. If the size of a request exceeds
the MDTS value, the host device driver should process it by dividing it into smaller requests. Based
on the definition of MDTS, we can anticipate that a device with a larger MDTS will be able to per-
form faster on large requests. To verify this hypothesis, we measured the latency of random reads
on various payload sizes while changing the MDTS value of an NVMeVirt instance emulating the
Optane NVM SSD. We used the FIO benchmark to measure the latency.

Figure 11 summarizes the result, which is the average of five runs. When the payload size is
smaller than the MDTS value, the latency is hardly affected since each request is processed as it
is, without being divided into smaller parts. However, as the payload size becomes larger than the
MDTS value, the latency is significantly influenced because both the device driver and the device
itself need to handle increased number of requests. For example, increasing the MDTS value from
64 KiB to 1,024 KiB results in a reduction in latency ranging from 11.0% to 48.0% when processing
large requests.

From the evaluation results, we can confirm the significant impact of MDTS, indicating that stor-
age devices would benefit from supporting larger MDTS values to efficiently handle large requests.
Note that the MDTS value of the real device cannot be changed, while it can be easily configured
in the NVMeVirt instance by adjusting the value during compilation. This demonstrates the ver-
satility of NVMeVirt as a valuable tool for conducting research on storage systems.

5 CONCLUSION

We presented NVMeVirt, a virtual, software-only NVMe device. As it operates in software, users
can easily utilize it for performing various research on sophisticated storage configurations such as
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user-level I/O bypassing the kernel I/O stack, PCIe peer-to-peer communication, and RDMA over
NVMe-oF. It also opens a new opportunity for developers to co-design highly intelligent storage
devices over the NVMe interface. In the evaluation, we demonstrated the usefulness of NVMeVirt
for storage research.
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