
37

GCMix: An Efficient Data Protection Scheme against
the Paired Page Interference

SANG-HOON KIM, Virginia Polytechnic Institute and State University and KAIST

JINHYUK LEE, Samsung Electronics Co. and Sungkyunkwan University

JIN-SOO KIM, Sungkyunkwan University

In multi-level cell (MLC) NAND flash memory, two logical pages are overlapped on a single physical page.

Even after a logical page is programmed, the data can be corrupted if the programming of the coexisting

logical page is interrupted. This phenomenon is called paired page interference.

This article proposes a novel software technique to deal with the paired page interference without any

additional hardware or extra page write. The proposed technique utilizes valid pages in the victim block

during garbage collection (GC) as the backup against the interference, and pairs them with incoming pages

written by the host. This approach eliminates undesirable page copy to backup pages against the interference.

However, such a strategy has an adverse effect on the hot/cold separation policy, which is essential to improve

the efficiency of GC. To limit the downside, we devise a metric to estimate the benefit of GCMix on-the-fly

so that GCMix can be adaptively utilized only when the benefit outweighs the overhead. Evaluations using

synthetic and real workloads show GCMix can effectively deal with the paired page interference, reducing the

write amplification factor by up to 17.5%compared to the traditional technique, while providing comparable

I/O performance.

CCS Concepts: • Information systems → Information storage technologies; Flash memory;

Additional Key Words and Phrases: Flash memory, flash memory cells, multi-level cells, paired page interfer-

ence, locality

ACM Reference format:

Sang-Hoon Kim, Jinhyuk Lee, and Jin-Soo Kim. 2017. GCMix: An Efficient Data Protection Scheme against

the Paired Page Interference. ACM Trans. Storage 13, 4, Article 37 (November 2017), 23 pages.

https://doi.org/10.1145/3149373

1 INTRODUCTION

During the last decade, NAND flash memory, or flash, has become one of the most popular stor-
age media. Flash has been gaining popularity with many attractive characteristics such as high
I/O performance, light weight, small form factor, low power consumption, low heat emission, and
shock robustness. As a result, many flash-based devices have been introduced, replacing traditional

This work was supported by the National Research Foundation of Korean (NRF) grant funded by the Korea Government

(MSIT) (No. 2016R1A2A1A05005494).

Authors’ addresses: S.-H. Kim, The Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic

Institute and State University, 250 Perry St, Blacksburg, VA 24061, USA; email: sanghoon@vt.edu; J. Lee, Memory Division,

Samsung Electronics, Co., 1 Samsungjeonja-ro, Hwaseong 18448, South Korea; email: jinhyuk79.lee@samsung.com; J.-

S. Kim, College of Information and Communication Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu,

Suwon 16419, South Korea; email: jinsookim@skku.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 ACM 1553-3077/2017/11-ART37 $15.00

https://doi.org/10.1145/3149373

ACM Transactions on Storage, Vol. 13, No. 4, Article 37. Publication date: November 2017.

https://doi.org/10.1145/3149373
https://doi.org/10.1145/3149373

37:2 S.-H. Kim et al.

storage devices such as hard disk drives (HDDs). Especially, solid state drives (SSDs) are increas-
ingly adopted in enterprise environments due to their high I/O performance [2, 4, 20, 21, 24, 25, 34].

Flash is comprised of an array of cells, in which logical values are stored. The cells that are con-
nected through the same word line forms a page, which is the unit of read and programming (write)
operations. As the flash technology evolves, each cell can store more than one bit, enabling
multiple logical pages to coexist in a physical page [9, 27]. For instance, in the multi-level cell (MLC)
flash memory, the least significant bits (LSB) of cells in a physical page form a logical page called
an LSB page. Similarly, the most significant bits (MSB) form an MSB page. These two pages are
called paired pages [27].

For a given physical page, the LSB page needs to be programmed prior to the MSB page. While
programming the MSB page, the cells in the physical page go through a transient state, in which
the original data of the cells cannot be identified. Therefore, if programming an MSB page is in-
terrupted for any reason, the data of the paired LSB page cannot be recovered and it is lost un-
expectedly. This phenomenon is called paired page interference [12]. The paired page interference
is inherent in the MLC flash memory and must be dealt with for reliability and durability. Many
counter-interference techniques have been suggested [12, 15, 17, 29, 36, 37]. These techniques,
however, require reserved space and/or extra page copy, which increases hardware overhead and
manufacturing cost, and hurts the lifespan of MLC flash memory.

In this article, we propose a novel technique to deal with the paired page interference. Modern
SSDs usually employ a software layer called flash translation layer (FTL). FTL reclaims invalidated,
i.e., logically overwritten or discarded, pages through the garbage collection (GC) process. To pro-
duce a free block during GC, FTL picks up a victim block, copies valid pages in the victim block
to other block(s), and then erases the victim block. Our scheme called GCMix pairs a valid page
in the victim block with a page from an incoming write request and programs them together on a
physical page. The LSB page is programmed with the data of the valid page from the victim block,
whereas the MSB page is with the data of the incoming write request. Under the proposed GCMix
scheme, even if programming the MSB page is interrupted and corrupts the data of the LSB page,
the original data of the LSB page can be recovered from the victim block. Thus, the paired page
interference can be avoided without any additional hardware or extra page copy.

GCMix, however, writes hot incoming write pages and cold valid pages in the same block. This
makes it difficult to separate hot data from cold data, which is known to greatly improve the
efficiency of GC [3, 7, 9, 16, 18, 23, 26]. Thus, GCMix may induce an adverse influence on the effi-
ciency of GC and hurt the performance and lifetime of the flash device. To address this problem, we
propose a sophisticated method based Dynamic dAta Clustering (DAC) [3] to determine whether
GCMix is beneficial to the current workload or not. FTL can adaptively apply GCMix based on
the decision. Evaluation results obtained from a trace-driven simulator show that the proposed
GCMix scheme can tackle the paired page interference with a reduced amount of flash writes, by
up to 17.3%, without harming the I/O performance of FTL.

The rest of this article is organized as follows. Section 2 introduces NAND flash memory and
FTL. Section 3 reviews related work to deal with the paired page interference. Section 4 presents
GCMix and a novel scheme to estimate the benefit of GCMix depending on workloads. Evaluation
results are provided in Section 5. Finally, Section 6 concludes the article.

2 BACKGROUND

2.1 NAND Flash Memory

NAND flash memory, or flash shortly, is a non-volatile storage medium that stores and retrieves
data electrically. As Figure 1(a) illustrates, the flash typically consists of an array of transistors,

ACM Transactions on Storage, Vol. 13, No. 4, Article 37. Publication date: November 2017.

GCMix: An Efficient Data Protection Scheme 37:3

Fig. 1. The structure and programming of NAND flash memory.

called cells. The cell can retain electric charges [32] in the floating gate and the amount of charges
determines the logical value of the cell. A bit line (BL) connects a column of the cell array and con-
stitutes a bit of the data bus. A word line (WL) connects a row of the array through the control gate
of the cells. The cells that share the same word line form a page, which is the unit of read and pro-
gramming operations. To read a page, the corresponding word line is activated, and then the logical
values of the selected cells are transferred to the page register through the data bus in a parallel
manner. Programming (i.e., flash write) is carried out in a similar way; the corresponding word line
is driven to a high voltage and the bit lines are driven to particular voltages so that cells can trap
more electric charges. If the page is once programmed, the page can be read repeatedly. The page,
however, cannot be programmed again unless it is erased. The flash erase is performed in a unit of
erase block or block shortly, which typically consists of hundreds of pages. As the cell experiences
the repeated program/erase (P/E) cycles, the thin oxide layer between the floating gate and the sil-
icon substrate deteriorates and eventually becomes unable to electrically isolate the floating gate.
This phenomenon is called flash wear out, and determines the lifespan of NAND flash memory.

In the single-level cell (SLC) flash memory, each cell represents one logical bit (0 or 1). Figure 1(b)
illustrates how the SLC flash memory handles the logical bit in the cell. The x-axis represents the
charge level observed from the bit line, and the y-axis represents the distribution of cells corre-
sponding to the charge level. When a block is erased, every cell in the block exhibits the charge
level lower than the reference voltage VR1 and represents the logical value “1.” The cell can be
programmed to represent “0” by injecting electrons into the floating gate so that the charge level
of the cell exceeds VR1.

The multi-level cell (MLC) flash memory can represent two logical bits (00, 01, 10, or 11) per cell.
Programming the MLC flash memory is more complicated than that of the SLC flash memory [37].
Figure 1(c) illustrates the programming of the MLC flash memory. Programming the MLC flash
memory is composed of two steps. The first programming step determines the logical value of
the LSB of the cells, which is called LSB programming. The reference voltage VR1 determines the
logical value of each cell. The second programming step, called MSB programming, determines the
logical value of the MSB of the cell, and three reference voltages (VR2,VR3, andVR4) differentiate
the logical bits of the cells. As the MLC flash memory needs to precisely control the charge levels of
the cells, the MLC flash memory exhibits slower operation time and worse reliability than the SLC
flash memory [34]. Typically, the MLC flash memory guarantees less than one-tenth P/E cycles of
the SLC flash memory and exhibits more than 2× slower program time.

In the MLC NAND flash memory, two logical pages coexist in a physical page. An LSB page is
the logical page whose contents are comprised of the LSBs of the cells. In the same way, the most
significant bits of the cells constitute the contents of an MSB page. These two related pages are

ACM Transactions on Storage, Vol. 13, No. 4, Article 37. Publication date: November 2017.

37:4 S.-H. Kim et al.

mutually called paired pages [9, 27]. As programming MLC flash is performed in two steps, the
data needs to be written on the LSB page prior to the MSB page. During programming the MSB
page, the cells in the physical page go through a transient state, from which the original value of
the paired LSB page cannot be recovered. Therefore, whenever MSB programming is interrupted
by any reasons, such as sudden power-off or programming failure, the original data of the paired
LSB page is lost. This phenomenon is called paired page interference [12] and it is an inherent
problem in the MLC NAND flash memory.

2.2 Flash Translation Layer (FTL)

Due to the erase-before-write characteristic and the discrepancy between the read/program unit
(i.e., page) and the erase unit (i.e., block), traditional block I/O interfaces cannot be supported
directly on the flash memory. To address the problem, flash-based devices usually employ a soft-
ware layer called FTL. FTL glues the flash interface and the block I/O interface by dealing with
the unique characteristics of the flash memory [1, 6, 11, 13, 19, 22]. FTL maintains the mapping
information from a logical address (sector) to a flash address (block and page). FTL translates the
logical addresses specified in the incoming requests to the flash addresses and performs the re-
quested operations on the corresponding blocks and pages.

Modern FTLs handle overwrites with a log-structured scheme. The data to be updated is written
to the other location and the corresponding mapping is updated accordingly. The page containing
the previous version of data is marked as invalid from the mapping, and it is reclaimed through the
GC process. GC is similar to the cleaning operation of log-structured file systems [14, 23]. Usually,
FTL picks up a victim block and copies valid pages in the victim block to other block(s). Then, the
victim block is erased and reused for handling further write requests.

FTLs can be classified into one of three categories according to the granularity of the mapping
information. The block mapping FTL [1], as the name implies, maintains the mapping information
in a block granularity so that the size of the mapping information is small compared to the other
types of FTL. However, as an overwrite to a page may accompany the copy of an entire block, block
mapping FTLs show the worst performance. The page mapping FTL [6, 11] maintains mapping
information at a page granularity. As the page-level mapping is much more flexible than the block-
level mapping, this type of FTL usually outperforms the other types of FTLs. However, the size of
the mapping information can be enormous so that the page mapping FTL requires a huge amount
of resources to handle the mapping information. The hybrid mapping FTL [13, 19, 22] adopts a
hybrid approach of the block mapping FTL and the page mapping FTL. In the hybrid mapping FTL,
the data in data blocks is managed in a block granularity. When an overwrite happens, the written
data is stored in special blocks called log blocks, which are managed at a page granularity. Later, if
all the log blocks are exhausted, some of them are converted to data blocks. In this way, the hybrid
mapping FTL requires a small amount of resources while exhibiting comparable performance to
the page mapping FTL in many workloads.

Due to the log-structured approaches for dealing with the erase-before-write limitation, the per-
formance and lifetime of flash-based devices are mostly affected by the efficiency of GC, similar
to log-structured file systems [23, 35]. The efficiency of GC is usually measured by the write am-
plification factor (WAF). It is obtained by dividing the number of flash page writes by the total
number of page writes issued from the host. Hence, the smaller WAF implies better efficiency in
GC. As each valid page copy accompanies a flash page write, the number of valid pages within
victim blocks has significant influences on the WAF. Thus, it is very important to pick the right
victim block so as to migrate the least number of valid pages during GC.

The greedy policy [3] selects the block containing the minimum number of valid pages as the
victim block. The cost-benefit policy [11] considers the worthiness of the valid pages as well as the

ACM Transactions on Storage, Vol. 13, No. 4, Article 37. Publication date: November 2017.

GCMix: An Efficient Data Protection Scheme 37:5

Fig. 2. Regions and page migrations in DAC.

number of valid pages. Due to the temporal locality of data references, the newly written data is
considered as hot, as it is likely to be overwritten soon. Conversely, cold data, which is written and
not updated for a long time, is unlikely to be updated in the near future. This implies that if FTL
picks up a recently written block as the victim block and migrates valid pages in it, the migrated
pages are likely to be invalidated soon and the effort to migrate the pages only entails overhead.
The cost-benefit policy takes this fact into account and considers the age of each block; when a
number of blocks have the same utilization, cold and old blocks are preferred to hot and young
blocks for the victim block.

Several FTLs attempt to utilize the hotness of data more aggressively to improve the efficiency
of GC further [3, 7, 9, 16, 18, 23, 26]. These approaches are based on the observation that separating
hot data from cold data effectively decreases the average number of valid pages in victim blocks.
If hot pages, such as recently written pages by the host, are clustered in blocks, most of the pages
in the blocks are likely to be invalidated soon and only a small number of pages remain valid in
the blocks. These blocks can be later reclaimed with a small number of valid page copies.

Among the previous studies, DAC [3], suggests a scheme to cluster pages in terms of hotness.
DAC maintains a number of regions and each page belongs to one of the regions. Initially, every
page belongs to the lowest region. When a page is overwritten, DAC considers the page is getting
hot and promotes the region of the page by one unless the page already belongs to the highest
region. When GC migrates a valid page, DAC considers the page is getting cold and demotes
the region of the page by one unless the page belongs to the lowest region. Figure 2 illustrates
an example of the regions and the migration of pages. In this example, there are four regions,
R1,R2,R3, and R4, where R1 denotes the coldest region and R4 the hottest one.

3 RELATED WORK

There have been many studies for utilizing the asymmetric characteristics of LSB pages and MSB
pages in the MLC NAND flash memory. Grupp et al. [5] present an FTL design to maximize the
write performance by utilizing the fast write performance of LSB pages. The FTL uses multiple
flash blocks to handle write requests quickly with LSB pages. The utilized LSB pages are refilled
during idle time by copying valid pages for GC to MSB pages. Huang et al. [8] presents an FTL
technique so-called asymmetric programming. They utilize MSB pages for storing the metadata
of FTL and file systems since MSB pages exhibit a lower bit error rate than LSB pages, thereby
providing better reliability. These studies, however, do not consider the paired page interference,
which is inherent in the MLC NAND flash memory. Whenever the MSB programming currently
in progress is interrupted, the original data of the paired LSB page can be broken. Therefore, for
the sake of the reliability and durability of data in the MLC NAND flash memory, FTL should keep
a copy of an LSB page elsewhere if the LSB page contains valid data and its paired MSB page is
being programmed. Previous studies have suggested a number of techniques to protect data from
the paired page interference [15, 17, 29, 36, 37].

Yu and Choi [37] propose a straightforward scheme, called LSB backup. When an MSB page
needs to be programmed, the LSB backup scheme copies the data of its paired LSB page to a

ACM Transactions on Storage, Vol. 13, No. 4, Article 37. Publication date: November 2017.

37:6 S.-H. Kim et al.

Fig. 3. The schemes to deal with the paired page interference. (wi represents the incoming data written by

the host.)

particular block called LSB backup block. To avoid the paired page interference in the LSB backup
block itself, only the LSB pages of the LSB backup block are utilized. If the data of the original LSB
page is corrupted due to the paired page interference, the original data can be recovered from the
copy in the LSB backup block. After its paired MSB page is completely programmed, the copy in
the LSB backup block is no longer needed.

Figure 3(a) illustrates how the LSB backup scheme addresses the paired page interference. As-
sume that an MLC block whose even-numbered pages are the LSB pages, which are paired with
the next odd-numbered MSB pages. For example, page w0 is paired with w1, page w2 is with w3,
and so on. In this case, prior to programming the MSB page w1, the data of its paired LSB page
w0 is copied to the LSB backup block. Similarly,w2 is copied prior to programw3. If programming
w3 is interrupted, the data of its paired page (w2 in this case) can be corrupted. However, it can be
recovered from the copy ofw2 in the LSB backup block. This approach, however, needs to reserve a
number of blocks as LSB backup blocks, and a single MSB page programming always accompanies
one LSB page read and one LSB page programming. Thus, the performance and lifetime of NAND
flash memory can be impaired.

Roohparvar [29] investigates a method which utilizes SLC-mode buffer blocks as Figure 3(b)
outlines. A number of blocks called buffer blocks are operated in SLC-mode, in which only the LSB
pages of the block are used to store the incoming write requests. Then, the data is migrated to MLC
data blocks by merging the buffer blocks. After the merging, the buffer blocks can be erased and
recycled. As the SLC-mode buffer blocks only utilize LSB pages, the paired page interference can
only happen while merging the buffer blocks into MLC data blocks. In the event of the interference,
the original data can be recovered from the buffer blocks that are being merged. In this way, the
paired page interference can be resolved. However, as the data is always buffered in the SLC-mode
blocks first and then migrated to MLC data blocks, flash writes are amplified so that the lifetime
and performance can be suffering.

Yoon et al. [36] introduce the page buffer method. When the data is written to an LSB page, the
data is duplicated to the page buffer, which is maintained in the volatile memory, and retained until
its corresponding paired MSB page is completely programmed. When the paired page interference
occurs, the original data can be recovered from the page buffer. Figure 3(c) illustrates the page
buffer method. When programming the LSB page w0, its data is duplicated to the page buffer. If
programming the MSB pagew1 is interrupted,w0, the data of the paired LSB page can be recovered
from the backup in the page buffer. Upon the completion of programming w1, the page buffer for
w0 is released. Compared to the LSB backup scheme, this approach does not amplify the page write
nor requires reserved resources. However, as the page buffer is located in the volatile memory, this

ACM Transactions on Storage, Vol. 13, No. 4, Article 37. Publication date: November 2017.

GCMix: An Efficient Data Protection Scheme 37:7

approach can only address the paired page interference originated from the programming failure,
not from the sudden power-off. In addition, the approach requires as many page buffers as the
number of LSB pages whose paired pages are not programmed.

Kwon et al. [15] propose to use super capacitors to endure sudden power-off in SSDs. The paired
page interference originated from the sudden power-off can be avoided by utilizing the power
from the super capacitors to finish the ongoing MSB page programming. However, this scheme
cannot deal with the paired page interference originated from the programming failure and re-
quires additional hardware components.

Lee et al. [17] attempt to skip backing up LSB pages by exploiting the architectures for NAND
flash memory systems. NAND flash memory systems typically have a write buffer that temporarily
keeps the data for write requests. They utilize the write buffer as the copy of LSB pages while
processing write requests. When a pair of LSB and MSB pages is assigned to the same write request,
the LSB page is not backed up prior to programming the MSB page. Instead, if the MSB page
programming is halted by a programming failure, the original data of the LSB page is recovered
from the write buffer. In case of a sudden power-off, the LSB page of the pair can be corrupted by
the interference. However, modern file systems are capable of recovering partially written requests
using journaling techniques [28], which effectively identify and recover the corrupted LSB page.
Hence, FTL can deal with the paired page interference in a per-request manner rather than a per-
page manner. In addition, they propose a so-called parity page prebackup scheme, which backs up
one XOR-ed LSB page for consecutive LSB pages rather than copying each of them. When one of
the LSB pages is corrupted, the original data can be recovered by the XOR backup with remaining
good pages. However, the parity page prebackup scheme is only effective on the particular system
architecture and requires a specific paired page layout, which is uncommon for commercial NAND
flash memory products [30, 31].

4 GCMIX

4.1 Motivation and Key Idea

As we reviewed in the previous section, many schemes have been suggested to deal with the paired
page interference, which is inherent in the MLC NAND flash memory. However, the previous
schemes require extra flash write and/or additional hardware components, reducing the lifetime
of MLC flash memory and increasing the manufacturing cost.

We present GCMix, a software approach to deal with the paired page interference that requires
neither an extra flash write nor any additional hardware. As we discussed in Section 2.2, FTLs
reclaim invalidated pages through the GC process, which migrates valid pages in a victim block
to other block(s). The key idea behind GCMix is to utilize the valid pages in the victim block as
the backup against the paired page interference. When a victim block is picked up, valid pages in
the victim block are copied to the LSB pages of MLC data blocks while their paired MSB pages
are utilized to store incoming write requests. The erase of the victim block is postponed until all
the paired MSB pages are written with the data issued by the host. In this case, the paired page
interference can only happen while programming the MSB page with the host data write. However,
its paired LSB page contains the copy of a valid page in the victim block, and thus, the contents of
the corrupted LSB page can be recovered from the original page in the victim block. If GC is not
in progress or there is no valid page to be paired with the incoming host write page, FTL can fall
back to the other scheme, such as the LSB backup scheme.

Figure 3(d) depicts the proposed GCMix scheme. When GC picks up a victim block, its valid
pages v0,v1, and v2 are copied to the LSB pages of an MLC data block. Meanwhile, their MSB
pages are filled with the data written from the host, i.e., w0,w1, and w2. If programming w2 is

ACM Transactions on Storage, Vol. 13, No. 4, Article 37. Publication date: November 2017.

37:8 S.-H. Kim et al.

interrupted, its paired page can be recovered from the valid page v2 in the victim block. After
writing w2, the victim block can be erased and GC is continued with the next victim block. In this
way, GCMix can deal with the paired page interference without any extra page copy or additional
hardware.

4.2 GCMix on Page Mapping FTL

We applied the idea of GCMix on the page mapping FTL and implemented a prototype FTL, named
ftl-pm, on an FTL simulator (see Section 5.1 for details of the simulator). ftl-pm is based on the
vanilla page mapping FTL. It picks up a free block as an update block, to which incoming host writes
are written sequentially. The write to the update block also changes the corresponding mapping
information. When the current update block becomes full, ftl-pm obtains another free block and
designates it as a new update block.

When there are enough free blocks, GC does not have to be performed. Therefore, ftl-pm ini-
tially utilizes the LSB backup scheme by maintaining one LSB backup block internally. Before
writing any data in the MSB page of the update block, its paired LSB page is copied into an LSB
page of the LSB backup block. When the number of free blocks gets equal to or below the low wa-
termark Flow , ftl-pm begins to apply the GCMix scheme. It picks up a victim block based on the
cost-benefit policy, and copies the valid pages to the LSB pages in the update block. Their paired
MSB pages are written with the incoming data from the host. When all the valid pages are paired
with the host write data, the victim block is erased and turned into a free block.

As the valid pages are migrated only to the LSB pages, it requires up to two free blocks to
reclaim one victim block. Thus, if the number of valid pages in a victim block exceeds a half of the
number of pages in a block, the number of free blocks will decrease by one. To prevent free blocks
from being completely exhausted, ftl-pm performs GC synchronously when the number of free
blocks gets equal to or lower than another watermark Fmin such that Fmin < Flow . This watermark
ensures FTL to keep the minimum number of free blocks required to operate the FTL correctly. In
this case, the valid pages in the current victim block are copied to the update block sequentially,
utilizing both MSB pages and LSB pages within the update block. Note that writing to any MSB
page during the synchronous GC is also vulnerable to the paired page interference. Normally, this
does not cause any problem since the corrupted data, if any, can be recovered from the original
data in the victim block. However, when the first valid page is going to be written to the MSB page
in the update block, the existing data in the corresponding LSB page can be lost in the event of
programming failure. To cope with this situation, such an LSB page should be temporarily backed
up in the LSB backup block.

If less than a half of the victim block are filled with valid pages, reclaiming the victim block can
increase the number of free blocks by one. When the number of free blocks gets equal to or exceeds
the high watermark Fhiдh such that Flow < Fhiдh , GCMix is suspended to prevent excessive GC.
The suspended GCMix is resumed when the number of free blocks hits the low watermark Flow

again. ftl-pm employs the LSB backup scheme during the suspension of GCMix.

4.3 GCMix on DAC

As mentioned in Section 2.2, separating hot data from cold data increases the efficiency of GC
by reducing the number of valid pages within a victim block. While applying GCMix to the page
mapping FTL, we encounter a shortcoming of GCMix regarding this hot/cold data separation pol-
icy. The problem is that the incoming host write pages and the valid pages in victim blocks have
different hotness. The host write pages are considered relatively hot because they are likely to be
overwritten soon due to the locality of reference. In that sense, the valid pages in a victim block
are cold as the pages are programmed in the past but they are not overwritten or discarded until

ACM Transactions on Storage, Vol. 13, No. 4, Article 37. Publication date: November 2017.

GCMix: An Efficient Data Protection Scheme 37:9

Fig. 4. Pairing host writes with valid pages in victim blocks in ftl-dm.

the block is chosen during GC. GCMix pairs these hot host write pages with cold valid pages and
stores them in the same block, which goes against the spirit of the hot/cold data separation policy.

Ideally, a solution to this problem is to classify both host write pages and valid pages according
to their hotness and then mix them together in the same block that has a similar level of hotness.
Hence, to solve this problem, we apply GCMix to DAC. Compared to the pure page mapping FTL,
using GCMix with DAC can improve the overall performance since DAC utilizes the hot/cold data
separation policy via estimating the relative hotness of the data and clustering them into different
regions.

A naive implementation of GCMix on DAC is to pair the write request to the data currently
stored in the region i − 1 with the valid page in the region i + 1, and put them together in the
update block of the region i . However, this strategy has a couple of issues. Firstly, there is no
guarantee that we can pick up any victim block in the region i + 1. Especially, if there is a skew in
the write requests to a certain set of regions, the chance becomes higher that we are not able to
find a victim block to be cleaned. Secondly, even if there is a victim block in the region i + 1, it is
only the best choice in the region i + 1, not a globally optimal one. This suggests that integrating
GCMix with DAC presents unique challenges yet to be explored.

We have implemented a modified version of DAC called ftl-dm, which integrates GCMix into
DAC. ftl-dm globally selects a victim block as in the original DAC and uses its valid pages to fill
out the LSB pages of the update block. The main difference between ftl-dm and DAC lies in the
way the region number is managed. In the original DAC, all the pages within a block belong to
the same region, hence, the region number is maintained in association with each block. ftl-dm,
however, tries to maximize the opportunity to combine valid pages in the victim block with the
incoming data by allowing pages that belong to different regions to be stored in the same block.

Figure 4 outlines the case for handling a write request in ftl-dm. ftl-dm keeps an update block
for each region and picks up a victim block globally via the cost-benefit policy. When existing data
in the region i − 1 is overwritten by new dataw0 from the host, ftl-dm pairs it with the valid page
v0 in the victim block even though the region number j of the valid page does not match up with
the region number i + 1 (i.e., j � i + 1) required for the incoming write. Then, the paired pages are
written to the update block for the region i , while the region numbers of LSB (data copied from
the valid page) and MSB (data written by the host) pages are set to j − 1 and i , respectively. In the
same way, a host write w1 for region i is paired with the valid page v1 in the victim block, and is
written to the update block for region i + 1. Note that when the page copied from the victim block
is overwritten later by the host, the new data is written to the update block of the region j, not of
the region i + 1.

Since all the pages in an update block might not belong to the same region anymore, we make
ftl-dm explicitly track the region number for each page. The per-page region tracking requires

ACM Transactions on Storage, Vol. 13, No. 4, Article 37. Publication date: November 2017.

37:10 S.-H. Kim et al.

additional space; however, the amount of the space is not significant. For instance, if ftl-dm man-
ages 8KB pages and employs four regions, each page requires two bits for tracking its region. This
takes 32KB per 1GB, which only accounts for 0.003% of the capacity. Moreover, the region number
does not have to be kept in memory but can be offloaded to the out-of-band (OOB) area of flash
pages since it is only required when pages are being promoted or demoted. Thus, we believe the
space overhead for the per-page region tracking is acceptable in practice.

Same as ftl-pm, ftl-dm starts to apply GCMix when the number of free blocks gets equal to or
below the watermark Flow . GCMix is suspended once the number of free blocks hits the watermark
Fhiдh . It is noteworthy that ftl-dm copes with the paired page interference using LSB backup when
GCMix is not applied.

4.4 Applying GCMix Adaptively

We have implemented ftl-dm on an FTL simulator and evaluated its performance with synthetic
workloads, which have various degrees of spatial locality in reference. The preliminary evalua-
tion result indicates that ftl-dm outperforms other FTLs in most cases including DAC with LSB
backup, since GCMix has been successful in eliminating redundant page copies compared to the
LSB backup scheme. However, the result also shows that hot/cold data separation policy is more
important than eliminating the redundant page copies when the degree of spatial locality is very
high. In other words, when only a small number of logical pages are heavily written, the benefit
of the hot/cold data separation policy outdoes the gain obtained by GCMix, thereby making DAC
with LSB backup outperform ftl-dm (refer to Section 5.3 for details). This result suggests that if
the current workload exhibits a very high degree of spatial locality in reference, it is more desirable
to deactivate the use of GCMix.

In order to apply GCMix adaptively, we need to quantify the degree of spatial locality in the
workload. For this end, we capture the distribution of page (write) references among the regions
and estimate the degree of locality from their distribution. We maintain N regions similar to DAC
and monitor the migration of pages among the regions. For a region Rn , we define the migration
ratio of the region αn as follows:

αn =
Pn/
∑N

i=1 Pi

Vn/
∑N

i=1Vi

, (1)

where Pi and Vi denote the number of pages promoted from Ri to Ri+1 and the number of valid
pages remaining in the region Ri , respectively. Note that when a page is promoted from Ri to Ri+1,
Vi is decreased by 1 whereas Vi+1 is increased by 1 to take account for the promotion of the page.
If the workload exhibits no locality, every page has the same probability to be overwritten and the
ratio of the promoted pages for the region n to the total number of promoted pages (Pn/

∑N
i=1 Pi)

will be proportional to the ratio of the valid pages in the region n to the total number of valid
pages (Vn/

∑N
i=1Vi). Thus, αn for every region, n will have a similar value to each other around 1.0.

If the workload has high locality, the majority of page writes will be directed to a small number
of hot pages, which belong to higher regions. For higher regions, this will make the number of
promoted pages become larger than the average while the number of valid pages smaller than the
average. Therefore, the values of αn for higher regions will be much larger than 1.0. On the other
hand, the majority of pages is cold and belongs to lower regions. In those lower regions, the values
of αn will be small, close to zero, as only a small number of pages are migrated to upper regions.
To summarize, we can see that the value of αn will have a large variance across regions when the
current workload exhibits high locality.

ACM Transactions on Storage, Vol. 13, No. 4, Article 37. Publication date: November 2017.

GCMix: An Efficient Data Protection Scheme 37:11

ALGORITHM 1: Determine when to use the GCMix scheme
Data: mode : current mode (“LSB Backup” or “GCMix”)

Data: n: number of free blocks

Result: “LSB Backup” or “GCMix”

ω ← calculate ω

if ω ≥ τ then
mode = “LSB Backup”

else

if mode == “LSB Backup” then

if n ≤ Flow then
mode = “GCMix”;

end

else

if n ≤ Fmin then
Perform GC synchronously

end

if n ≥ Fhiдh then
mode = “LSB Backup”

end

end

end

return mode

Based on this observation, we estimate the workload locality ω using the variance in the migra-
tion ratio of each region as follows:

ᾱ =
N∑

i=1

αi

N
(2)

ω = Var (α1,α2, . . . ,αN) (3)

=

N∑

i=1

(αi − ᾱ)2

N
=

N∑

i=1

α2
i

N
− ᾱ2 (4)

ω quantifies the locality in the current workload to a range of [0,∞), with the lower value of ω
indicating the lower locality in the workload.ω can be calculated at a small overhead, as both time
and space complexity for obtaining ω are O (N).

We have developed a new FTL called ftl-dml by modifying ftl-dm to consider the degree of
locality in the workload. Essentially, ftl-dml operates the same as the original ftl-dm except it
calculates the workload locality ω periodically. If ω is less than a threshold τ and the free block
constraint of the original ftl-dm is satisfied at the same time, ftl-dml enables the GCMix scheme.
Otherwise, ftl-dml falls back to the LSB backup scheme to avoid the adverse effect of GCMix. Al-
gorithm 1 gives a pseudo-code of ftl-dml for determining the scheme to use as a countermeasure
for the paired page interference.

5 EVALUATION

5.1 Evaluation Methodology

Simulator. To evaluate the proposed scheme, we have developed an event-driven FTL simulator
called FTLSim. FTLSim accepts disk I/O requests comprised of the type of operation (i.e., read or
write), the start logical address to operate on, and the length of the operation. FTLSim replays
the given I/O requests on a virtual SSD in which various components, including FTL, NAND

ACM Transactions on Storage, Vol. 13, No. 4, Article 37. Publication date: November 2017.

37:12 S.-H. Kim et al.

Table 1. Specification of the 35nm 2-bit MLC NAND Flash

Memory Chip and the Storage

Specification Value

Unit size
Page 8KB

Block 1MB (128 pages)

Latency

LSB page read 80 μs

MSB page read 120μs

LSB page program 500μs

MSB page program 1,500μs

Block erase 1,500μs

Guaranteed P/E cycle 3,000 cycles

Storage

configuration

Blocks per chip 4,096 blocks

of chips 4

of planes 2

Total size 32GB

controller, and NAND flash chips, can be configured. FTLSim provides an abstract programming
interface (API) so that various FTLs can be implemented as modules, and then plugged into
FTLSim. FTLSim also has a UI interface by which users can set a number of tunable parameters
related to FTLs and NAND flash chips. We validated FTLSim by the following ways; Firstly, we
cross-checked the integrity of results using the traces on which the expected behaviors of FTL
are known. Secondly, we checked invariants for each component of the simulator (e.g., FTL,
NAND flash chips, host interface layer) whenever the part is accessed. Lastly, we verified that
the checkpoints for the invariants actually detect malicious operations that we injected in the
implementation on purpose. We have simulated 35nm MLC NAND flash memory chips, which
are widely used for commercial products [31]. Table 1 describes the specification of the NAND
flash chip we used throughout our evaluation.

FTLs. In this article, we consider five FTLs by combining various mapping schemes and counter-
interference schemes. All FTLs are configured to perform GC synchronously when the number of
free blocks becomes the minimum to run FTLs correctly. The idea behind this approach is to apply
the same rule to all FTLs so that the performance comparison between FTLs is fair regardless of
their different threshold constraints due to their mechanisms.

The evaluated FTLs can be classified into two groups: the locality-ignorant FTLs and the locality-
aware FTLs. ftl-p and ftl-pm are the locality-ignorant FTLs that do not differentiate between hot
data and cold data. These FTLs are configured to perform GC synchronously when the number
of free blocks becomes one (i.e., Fmin = 1). ftl-p is the baseline FTL that uses the vanilla page
mapping with the LSB backup scheme. In order to backup LSB pages, another block is designated
as the LSB backup block. ftl-pm represents the page mapping FTL with GCMix that we explained
in Section 4.2.

The locality-aware FTLs include the variations of DAC FTL, which separate hot data from cold
data and treat them differently. The FTLs belonging to this group are configured to use four re-
gions. If necessary, one block is designated as the LSB backup block. ftl-d represents the vanilla
DAC FTL with the LSB backup scheme. It performs synchronous GC when the number of free
blocks becomes four since at least one free block is required for each region (i.e., Fmin = 4).

ACM Transactions on Storage, Vol. 13, No. 4, Article 37. Publication date: November 2017.

GCMix: An Efficient Data Protection Scheme 37:13

Table 2. A List of Evaluated FTLs

Category FTL Description

Locality-ignorant

ftl-px Page mapping FTL without LSB backup

ftl-p Page mapping FTL with LSB backup

ftl-pm Page mapping FTL with GCMix

Locality-aware

ftl-dx DAC FTL without LSB backup

ftl-d DAC FTL with LSB backup

ftl-dm DAC FTL with GCMix

ftl-dml DAC FTL with adaptive GCMix

ftl-dm integrates the GCMix scheme with DAC FTL. Finally, ftl-dml is a variant of ftl-dm which
adaptively applies the GCMix scheme depending on the locality in workloads. ftl-dml evaluates
ω on every second and uses τ = 10 as the threshold for the workload locality. Refer to Section 5.3
for the details on how we obtained the particular value for τ . In practice, ftl-dm is evaluated using
ftl-dml by setting τ = ∞.

For the watermark to kick in GCMix, we used Flow = Fmin + 1. Thus, Flow is 2 for ftl-pm, and
5 for ftl-dm and ftl-dml. The rationale behind these particular values are to delay GC as much
as possible but GCMix is activated before the synchronous GC is triggered. We set Fhiдh = 10 for
ftl-dm and ftl-dml so that GCMix is suspended when the number of free blocks is doubled (i.e.,
Fhiдh = Flow × 2). For fair comparison, we set the same Fhiдh value for ftl-pm.

To estimate the cost to counter the paired page interference, we implemented two FTLs, ftl-px
and ftl-dx, each of which is the page mapping FTL and DAC FTL without backing up LSB pages,
respectively. Table 2 summarizes a list of FTLs evaluated in this article. All of them are configured
to utilize 25% of the total flash space as over-provisioned area and use the cost-benefit policy to pick
up the victim block during GC. We omit the results from other counter-interference techniques
such as SLC-mode buffering as they show the similar results to those of the LSB backup scheme.

Workloads. In order to evaluate under realistic environments, we use six block I/O traces of
the Storage Networking Industry Association (SNIA) Input/Output Traces, Tools, and Analysis
Repository [10, 33]. These traces are collected from several servers at Microsoft. Three of them
(Befs, Buildserver, and Exchange) are collected from Microsoft’s production servers, and three
of them (Tpcc2007, Tpcc2008, and Tpce) are from their enterprise servers running online trans-
action processing (OLTP) workloads. We use these traces over others since they provide enough
write requests, causing a meaningful number of GC. Table 3 summarizes the fundamental charac-
teristics of the traces, measured in 8KB request granularity.

5.2 Validating the Workload Locality Metric

First, we validate the proposed workload locality metric ω. We measure ω from ftl-dm at every
second while running the workload that generates write requests in the Zipf distribution [38].
Each request is 8KB in size, aligned to the 8KB boundary. The requests spread over the entire
user-visible address space which is 24 GB in size and the amount of data written is 128GB in total.

Figure 5 depicts the cumulative distribution of ω on various values of the exponent coefficient z
of the Zipf distribution. Note that the x-axis is in a log scale and the larger value of the coefficient
z means the higher locality in the write references. For a given z, ω resides in a narrow range of
values. As the locality in the workloads increases, the range shifts to higher values. For instance,
the 50th percentile of the distributions for z = 0, 0.2, 0.4, 0.6, 0.8, and 1.0 are 0.031, 0.037, 0.205,

ACM Transactions on Storage, Vol. 13, No. 4, Article 37. Publication date: November 2017.

37:14 S.-H. Kim et al.

Table 3. Traces for Evaluation and Their Characteristics

Workload RW

Amount of I/O

(MB)

Accessed area

(MB)

Accesses

per page

RW ratio

(R/W)

Befs
R 218,382 48,930 4.46

1.72
W 126,922 33,042 3.84

Buildserver
R 178,366 75,794 2.21

0.92
W 193,250 129,031 1.49

Exchange
R 511,936 152,337 3.36

0.71
W 725,898 66,810 10.87

Tpcc2007
R 1,428,669 93,987 15.20

1.82
W 785,372 127,844 6.14

Tpcc2008
R 1,668,556 72,771 22.92

1.40
W 1,195,560 180,509 6.62

Tpce
R 1,591,175 156,459 10.16

6.71
W 237,157 87,983 2.69

Fig. 5. Distribution of the workload locality metric ω on various Zipf exponent coefficients.

1.861, 18.122, and 210.391, respectively. This result implies that the value of ω is influenced by the
degree of locality in workloads.

To verify that ω can practically quantify the locality, we analyze the locality of real workloads
and compare it with the ω of the workloads. We obtain the locality of workloads as follows; we
pad each write request to be aligned to 8KB boundary and count the number of writes to each
8KB page. Then, we rank the pages with the number of writes to them, and summarize it by
cumulating the number of writes from the highest rank page to the lowest rank page. Figure 6
depicts the cumulative fraction of writes for each workload. Note that a linear relationship between
the fraction of pages and the fraction of writes means every page contributes the same number of
writes to the total writes, which indicates no locality.

We can observe that Exchange has the highest locality; 10% of pages receive 69.6% of writes, and
80% of writes go to 18.1% of pages. Befs shows the second highest locality among the workloads;
80% of writes go to 46.2% of pages. The rest of the workloads show less locality than these two
workloads. For example, 60% of writes go to 40% of pages in Buildserver.

ACM Transactions on Storage, Vol. 13, No. 4, Article 37. Publication date: November 2017.

GCMix: An Efficient Data Protection Scheme 37:15

Fig. 6. Distribution of writes to pages on real workloads.

Fig. 7. Distribution of locality metric ω on real workloads.

We compare the result with the the cumulative distribution of ω on the workloads illustrated in
Figure 7. We can see that Exchange has a large value of ω, which is followed by Befs. The others
show a relatively smaller value of ω. This overall trend coincides with the locality of workloads
shown in Figure 6. From these results, we can conclude ω is a reliable metric for estimating the
degree of locality in the workload.

5.3 GCMix on Synthetic Workloads

To analyze the effectiveness of GCMix, we measure the WAF under the Zipf workloads. We vary
the exponent coefficient z from 0 to 1.0. Figure 8 compares the WAFs obtained from the evaluated
FTLs.

Firstly, we analyze the cost to counter the paired page interface. The results from ftl-px and
ftl-dx illustrate the cost in ftl-p and ftl-d, respectively. Without backing up LSB pages, the WAF
of ftl-px is smaller than that of ftl-p by up to 19.7%, and the WAF of ftl-dx does by up to 26.7%
compared to that of ftl-d. This indicates that countering the paired page interference incurs high
write amplification and considerably shortens the lifespan of NAND flash memory storage.

For the locality-ignorant FTLs shown in Figure 8(a), the WAF grows fast as the locality in the
workload increases. Regardless of the degree of locality, ftl-pm always outperforms ftl-p; the
WAF of ftl-pm is lower than that of ftl-p by up to 17.0% on low locality and by up to 8.09% on

ACM Transactions on Storage, Vol. 13, No. 4, Article 37. Publication date: November 2017.

37:16 S.-H. Kim et al.

Fig. 8. Comparison of WAF on synthetic Zipf workloads.

high locality. We can also verify that the WAF of ftl-pm is only slightly higher than that of ftl-px
when the locality is low. This implies GCMix effectively eliminates the most of the overhead to
counter the paired page interference on low-locality workloads.

The locality-aware FTLs such as ftl-dx, ftl-d, ftl-dm, and ftl-dml exhibit different trends as
shown in Figure 8(b). When the locality is low, ftl-dx, ftl-d, and ftl-dm show the similar WAFs
to ftl-px, ftl-p, and ftl-pm, respectively. In this case, ftl-dm shows about 17.5% lower WAF
than ftl-d. As the locality increases, the WAF of ftl-d decreases quickly whereas that of ftl-dm
does not, and eventually the WAF of ftl-d drops lower than that of ftl-dm. The reason for this
phenomenon is due to the negative influence of GCMix on the hot/cold data separation policy.
On the high-locality workload, ftl-d benefits much from the hot/cold data separation. ftl-dm,
however, cannot benefit from the hot/cold data separation as much as ftl-d, since GCMix puts
hot and cold data together in the same block. As a result, ftl-dm performs worse than ftl-d when
the locality is high. In addition, the WAF of ftl-dm cannot catch up with the WAF of ftl-dx when
the locality is high.

The only cure for this symptom is to disable GCMix when the locality in the current workload is
extremely high. Figure 8(b) indicates that the benefit of GCMix is almost offset when z = 0.8, and it
is completely dominated by the benefit of the hot/cold data separation when z = 1.0. This implies
that the proper candidate for the threshold τ for ftl-dml will be the value of ω when z is between
0.8 and 1.0. Given the observation, Figure 5 suggests τ=10 as the rationale value for the threshold.

The result of ftl-dml in Figure 8 shows the WAF when τ is set to 10. It confirms that ftl-
dml outperforms other FTLs by applying GCMix adaptively based on the locality in the current
workload. When the locality is low, ftl-dml utilizes GCMix and operates the same as ftl-dm.
When the locality becomes high, ftl-dml detects the high degree of locality by means of ω and
switches to the LSB backup scheme so that it exhibits the similar WAF to that of ftl-d.

5.4 Write Amplification Analysis on Real Workloads

To assess the implication of GCMix for the reliability and lifetime of flash-based storage devices,
this section focuses on analyzing the write amplification of the FTLs on real environments. Figure 9
compares the WAFs of real workloads measured under various FTLs.

First of all, we can estimate the cost to deal with the paired page interference in real environ-
ments by comparing ftl-px with ftl-p and ftl-dx with ftl-d. Specifically, the WAF increased

ACM Transactions on Storage, Vol. 13, No. 4, Article 37. Publication date: November 2017.

GCMix: An Efficient Data Protection Scheme 37:17

Fig. 9. Comparison of WAF of real server workloads.

by backing up LSB pages accounts for 21.1% to 28.1% of the WAF for ftl-p and 23.7% to 34.5% for
ftl-d. This result confirms countering the paired page interference considerably amplifies writes
in practice, thereby leaving a chance to improve.

As shown in Figure 9, ftl-d outperforms ftl-p on all workloads to a great or less extent, as DAC
always benefits from the hot/cold data separation policy. Especially, on the Exchange workload,
which exhibits the highest degree of locality, ftl-d shows 33.2% lower WAF than ftl-p.

For the workloads with low to medium locality (except for Exchange), adopting GCMix always
improves the overall WAF and the improvement outweighs the benefit from separating hot data
from cold data. Thus, ftl-pm and ftl-dm offer lower WAFs than ftl-p and ftl-d, respectively,
by up to 16.7% on Tpcc2007. As the value of ω mostly stays below τ in these workloads, ftl-dml
resorts to the GCMix scheme and shows the WAFs comparable to those of ftl-pm.

On the high-locality workload (Exchange), the WAF of ftl-d is reduced significantly compared
to those on the low-locality workloads. Given the high degree of locality, DAC reduces the WAF
by exploiting the hot/cold data separation policy. This reduction outbalances the benefit of GCMix
so that ftl-d outperforms ftl-dm on these workloads. However, ftl-dml detects the presence of
high locality in the current workload and switches to the LSB backup scheme so that it avoids the
penalty caused by the use of GCMix. In this case, ftl-dml shows the WAFs comparable to those
of ftl-d.

In order to further identify the origin of the improvement in the WAF, we examine how many
times blocks are erased and what purpose the blocks have been used for. Figure 10 presents the
breakdown of the block erase counts for each FTL with the real workloads. Note that the erase
counts are normalized to the total erase count in ftl-p on each workload. The dark boxes in Fig-
ure 10 represent the fraction of the erased blocks that have stored user data. The light box on top
of each bar illustrates the fraction of the erased blocks used for LSB backup.

When the LSB backup scheme is used, each host page write to an MSB page is preceded by a page
write to backup the paired LSB page. Thus, the erase count of the LSB backup block is increased
in proportion to the total amount of written data. This explains why a significant amount of LSB
backup blocks (29.8% to 41.0% of the total blocks erased) are erased in ftl-p and ftl-d, which rely
on the LSB backup scheme.

As shown for ftl-pm and ftl-dm, GCMix almost eliminates the erase operation for the LSB
backup block for all the workloads. However, GCMix disrupts the hot/cold data separation, reduc-
ing the efficiency of GC. This results in the increase of the erase count for normal data blocks in
those FTLs compared to their baseline FTLs (ftl-p and ftl-d). Especially, the increase is significant

ACM Transactions on Storage, Vol. 13, No. 4, Article 37. Publication date: November 2017.

37:18 S.-H. Kim et al.

Fig. 10. Breakdown of block erase counts on real workloads.

Fig. 11. Fraction of host write pages paired with valid pages by GCMix.

when the locality is as high as Exchange. In these cases, the WAF of ftl-dm is significantly in-
creased due to the reduced GC efficiency as shown in Figure 9. On the other hand, ftl-dml switches
to ftl-d for this case to take the benefit of the hot/cold data separation policy. Accordingly, we
can observe that ftl-dml works similar to ftl-d for the high-locality workload, while it works
similar to ftl-pm otherwise.

To understand how active GCMix is in practice, we analyzed the fraction of host writes that
are paired with valid pages by GCMix. Figure 11 summarizes the fractions of host write pages
paired by GCMix while running the workloads. Note that the host writes that are not paired by
GCMix are written to corresponding update blocks first, and then protected by LSB backups later
if necessary.

We can observe that the most host writes are paired by GCMix on ftl-pm and ftl-dm regardless
of the workloads. Specifically, ftl-pm pairs 80.3% to 98.3% of total host write pages via GCMix, and
ftl-dm does 80.3% to 98.7%. These results indicate that GCMix is activated for most of the running
time, actively eliminating the most of LSB backups. ftl-dml runs in the similar way to ftl-dm for
low-locality workloads, pairing approximately 80.4% to 98.7% of host writes via GCMix. However,
GCMix is deactivated for most of the running time in Exchange workload due to the high locality
of the workload, thereby pairing only 33.6% of host writes. This shows the adaptive characteristic
of ftl-dml that selectively applies GCMix according to the workload locality.

To sum up, we can confirm that the use of adaptive GCMix (as in ftl-dml) reduces the WAF by
efficiently eliminating writes for backing up LSB pages so that the lifetime of MLC NAND flash
memory can be extended.

ACM Transactions on Storage, Vol. 13, No. 4, Article 37. Publication date: November 2017.

GCMix: An Efficient Data Protection Scheme 37:19

Fig. 12. Comparison of the time to process write requests in workloads.

5.5 I/O Performance Analysis on Real Workloads

Different placement of pages for a given workload results in different I/O performance, and GCMix
changes the placement of their baseline FTL. To understand the effect of GCMix on the I/O perfor-
mance, we measured the time to process each host request on the FTLs. The FTL implementation
translates each host request to equivalent flash operations, and each flash operation increases a
clock in the simulator according to the timing specification listed in Table 1. Then, the time to
process a request is obtained by subtracting the time when processing the request is started from
the time when the processing is finished. If FTL needs to perform GC to handle a write request,
the time to reclaim victim block(s) is included in the process time of the write request. Figure 12
summarizes the total time to process write requests in the workloads with the FTLs. The time
is normalized to the time of ftl-p on each workload, and the smaller value indicates the better
performance. Gmean indicates the geometric mean of the normalized times for the FTL.

The result of ftl-pm indicates GCMix improves the write performance on the locality-ignorant
FTL. Compared to ftl-p, the time of ftl-pm is reduced by up to 10.5% and 8.4% in average, re-
spectively. The reason for the improvement is two-fold. First, GCMix eliminates the most of the
LSB page backups as shown in Figure 10. Thus, ftl-pm can usually skip backing up LSB pages
while processing write requests. Second, the write performance of flash-based storage devices is
determined by not only the raw flash write performance but also the GC performance. GC involves
reads and writes of one or more flash pages and an erase of a block, which is slower than the raw
write performance. Thus, the overall performance of the device is eventually saturated to the GC
performance. In ftl-p, valid pages are copied to both LSB and MSB pages. Contrarily, valid pages
are migrated to LSB pages in ftl-pm, which effectively improves the throughput of GC. In addi-
tion, the accelerated GC can compensate the increased time to write host requests to slow MSB
pages. Thus, applying GCMix can improve the write performance.

The effect of GCMix on the write performance is different on the locality-aware FTLs. ftl-
dm has smaller write latency than ftl-d for low-locality workloads (i.e., Tpcc2007, Tpcc2008, and
Tpce) whereas the latency is larger for the workloads having medium to high locality (Befs, Build-
server, and Exchange). As a result, ftl-dm has 0.9% longer write time than ftl-d in average. This
is due to the adverse effect of GCMix on the hot/cold data separation, which reduces the efficiency
of GC. However, ftl-dml avoids applying GCMix on such workloads, and accordingly, ftl-dml
exhibits 2.71% shorter write latency than ftl-d in average.

Figure 13 summarizes the read performance, which is measured and presented in the same way
to the write performance. The time to process read requests of ftl-pm and ftl-dm are slightly
increased from or close to the time of their baseline FTLs without GCMix (i.e., ftl-p and ftl-d).

ACM Transactions on Storage, Vol. 13, No. 4, Article 37. Publication date: November 2017.

37:20 S.-H. Kim et al.

Fig. 13. Comparison of the time to process read requests in workloads.

Fig. 14. Performance on various storage utilization.

GCMix can increase the time to process read since GCMix places hot host writes to slow MSB
pages. However, the negative effect of the placement is not significant in practice and increases
the read time by up to 3.6%. On average, GCMix increases the read time by 1.8%, 1.8%, and 1.7%
for ftl-pm, ftl-dm, and ftl-dml, respectively. Thus, we can conclude that the adverse effect of
GCMix on read performance is insignificant.

5.6 Effect of Storage Utilization

Now, we analyze the influence of storage utilization on the performance of GCMix. We measure
the WAF and erase counts under the uniform random access pattern, which writes 8KB requests in
total of 128GB on the given fraction of 32GB address space. Figure 14(a) and (b) show the resulting
WAF and the breakdown of erase counts on various storage utilization. We only show the result
from ftl-p and ftl-dml for brevity. ftl-d behaves in a similar way to ftl-p, and ftl-pm and
ftl-dm behave similarly to ftl-dml under the condition.

From Figure 14(a), we can see that the WAF is increased linearly proportional to the storage uti-
lization in ftl-p. Figure 14(b) reveals that the increase in the WAF is originated from the increase
of the data block erase. Each run of the evaluation writes the same amount of data, and the num-
ber of LSB backup block erase is proportional to the total amount of written data. Thus, the LSB

ACM Transactions on Storage, Vol. 13, No. 4, Article 37. Publication date: November 2017.

GCMix: An Efficient Data Protection Scheme 37:21

backup block erase count remains constant. However, the average number of valid pages in a vic-
tim block is proportional to the storage utilization; more data blocks are erased on higher storage
utilization.

ftl-dml exhibits a different trend. When the storage utilization is low, only a few pages are valid
in a victim block so that most of the host writes cannot be paired with valid pages, falling back
to the LSB backup scheme. Thus, the WAF and the breakdown of block erase counts follows the
results of ftl-p. When the storage utilization becomes large enough, most of the host writes can
be paired with valid pages in victim blocks. In this case, we can observe that most of LSB backup
operations can be avoided and the overall erase count is decreased.

6 CONCLUSION

As MLC flash memory programs cells in multiple stages, data can be corrupted in the middle of
programming operations. This phenomenon called paired page interference is inherent in MLC
NAND flash memory and must be dealt with to guarantee reliability and durability.

In this work, we propose GCMix, a novel software technique to ensure data protection against
the paired page interference without extra hardware or additional page writes. The key idea behind
GCMix is to pair the valid page in the GC victim block with the incoming page written by the host,
and then write them to the LSB and MSB page, respectively.

Although it seemingly looks easy to do, GCMix can sometimes harm the overall efficiency as
it disrupts the hot/cold data separation, especially when the locality in the workload is high. We
address this challenge by proposing ftl-dml, which integrates GCMix to DAC FTL and enables
GCMix adaptively. In order to apply GCMix adaptively only when it provides any performance
gain, we also develop a metric that can quantify the locality in the workload on-the-fly. Evalua-
tions with both synthetic and real workloads confirm that the proposed scheme can protect data
against the paired page interference with less write amplification than the traditional LSB backup
scheme. We leave implementing and evaluating the proposed scheme on a real device as future
work.

REFERENCES

[1] Amir Ban. 1995. Flash file system. US Patent No. 540485. Filed May 8, 1993; Issued April 4, 1995.

[2] Feng Chen, David A. Koufaty, and Xiaodong Zhang. 2009. Understanding intrinsic characteristics and system impli-

cations of flash memory based solid state drives. In Proceedings of the 2009 ACM SIGMETRICS/Performance. Seattle,

WA, 181–192.

[3] Mei-Ling Chiang, Paul C. H. Lee, and Ruei-Chuan Chang. 1999. Using data clustering to improve cleaning perfor-

mance for flash memory. Software-Practice and Experience 29, 3 (1999), 267–290.

[4] Cagdas Dirik and Bruce Jacob. 2009. The performance of PC solid-state disks (SSDs) as a function of bandwidth,

concurrenty, device architecture, and system organization. In Proceedings of the 36th Annual International Symposium

on Computer Architecture (ISCA’09).

[5] Laura M. Grupp, John D. Davis, and Steven Swanson. 2013. The harey tortoise: Managing heterogeneous write per-

formance in SSDs. In Proceedings of the 2013 USENIX Annual Technical Conference (USENIX ATC’13). 79–90.

[6] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. 2009. DFTL: A flash translation layer employing demand-

based selective caching of page-level address mappings. In Proceedings of the International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS’09).

[7] Jen-Wei Hsieh, Tei-Wei Kuo, and Li-Pin Chang. 2006. Efficient identification of hot data for flash memory storage

systems. ACM Transactions on Storage 2, 1 (Feb. 2006), 22–40.

[8] Min Huang, Zhaoqing Liu, and Liyan Qiao. 2014. Asymmetric programming: A highly reliable metadata allocation

strategy for MLC NAND flash memory-based sensor systems. 14, 10 (Oct. 2014), 18851–18877.

[9] Soojun Im and Dongkun Shin. 2010. ComboFTL: Improving performance and lifespan of MLC flash memory using

SLC flash buffer. Journal of Systems Architecture 56, 12 (2010), 641–653.

ACM Transactions on Storage, Vol. 13, No. 4, Article 37. Publication date: November 2017.

37:22 S.-H. Kim et al.

[10] Swaroop Kavalanekar, Bruce Worthington, Qi Zhang, and Vishal Sharda. 2008. Characterization of storage work-

load traces from production windows servers. In Proceedings of the 2008 IEEE International Symposium on Workload

Characterization (IISWC’08).

[11] Atsuo Kawaguchi, Shingo Nishioka, and Hiroshi Motoda. 1995. A flash-memory based file system. In Proceedings of

the Winter 1995 USENIX Technical Conference (TCON’95).

[12] Hyojun Kim, Ki Yong Lee, JaeGyu Jung, and Kyoungil Bahng. 2008. A new transactional flash translation layer for

embedded database systems based on MLC NAND flash memory. In Proceedings of the 2008 International Conference

on Consumer Electronics (ICCE’08).

[13] Jesung Kim, Jong Min Kim, Sam H. Noh, Sang Lyul Min, and Yookun Cho. 2002. A space-efficient flash translation

layer for compactflash systems. IEEE Transactions on Consumer Electronics 48, 2 (2002), 366–375.

[14] Ryusuke Konishi, Yoshiji Amagai, Koji Sato, Hisashi Hifumi, Seiji Kihara, and Satoshi Moriai. 2006. The Linux imple-

mentation of a log-structured file system. 40, 3 (July 2006), 102–107.

[15] Min Cheol Kwon, Woon Hyug Jee, Dong Jun Shin, and Shine Kim. 2011. Nonvolatile memory system and related

method of preserving stored data during power interruption. US Patent No. 20110093650. Filed June 23, 2010; Issued

April 21, 2011.

[16] Jongsung Lee and Jin-Soo Kim. 2013. An empirical study of hot/cold data separation policies in solid state drives

(SSDs). In Proceedings of the 6th International Systems and Storage Conference (SYSTOR’13).

[17] Jaeil Lee and Dongkun Shin. 2014. Adaptive paired page prebackup scheme for MLC NAND flash memory. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems 33, 7 (2014), 1110–1114.

[18] Sungjin Lee, Dongkun Shin, Young-Jin Kim, and Jihong Kim. 2008. LAST: Locality-aware sector translation for NAND

flash memory-based storage systems. ACM SIGOPS Operating Systems Review 42, 6 (2008), 36–42.

[19] Sang-Won Lee, Won-Kyoung Choi, and Dong-Joo Park. 2006. FAST: An efficient flash translation layer for flash mem-

ory. In Proceedings of the 2006 International Conference on Emerging Directions in Embedded and Ubiquitous Computing

(EUC’06). 879–887.

[20] Sang-Won Lee, Bongki Moon, and Chanik Park. 2009. Advances in flash memory SSD technology for enterprise

database applications. In Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data

(SIGMOD’09).

[21] Sang-Won Lee, Bongki Moon, Chanik Park, Jae-Myung Kim, and Sang-Woo Kim. 2008. A case for flash memory SSD

in enterprise database applications. In Proceedings of the 2008 ACM SIGMOD International Conference on Management

of Data (SIGMOD’08). 1075–1086.

[22] Sang-Won Lee, Dong-Joo Park, Tae-Sun Chung, Dong-Ho Lee, Sangwon Park, and Ha-Joo Song. 2007. A log buffer-

based flash translation layer using fully-associative sector translation. ACM Transactions on Embedded Computing

Systems 6, 3 (2007), 18.

[23] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-Won Lee, and Young Ik Eom. 2012. SFS: Random write con-

sidered harmful in solid state drives. In Proceedings of the 10th USENIX Conference on File and Storage Technologies

(USENIX FAST’12).

[24] Mark Moshayedi and Patrick Wilkison. 2008. Enterprise SSDs. ACM Queue (August 2008), 32–39.

[25] Dushyanth Narayanan, Eno Thereska, Austin Donnelly, Sameh Elnikety, and Antony Rowstron. 2008. Migrating

Enterprise Storage to SSDs: Analysis of Tradeoffs. Technical Report MSR-TR-2008-169. Microsoft Research Ltd.

[26] Dongchul Park and David H. C. Du. 2011. Hot data identification for flash-based storage systems using multiple bloom

filters. In Proceedings of the 2011 IEEE 27th Symposium on Mass Storage Systems and Technologies (MSST’11).

[27] Khyugmin Park. 2008. File system support on multi level cell (MLC) flash in open source. In Proceedings of the 2008

CELF Embedded Linux Conference (ELC’08).

[28] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2005. Analysis and evolution of

journaling file systems. In Proceedings of the 2000 USENIX Annual Technical Conference (USENIX ATC’05).

[29] Frankie F. Roohparvar. 2008. Single level cell programming in a multiple level cell non-volatile memory device. US

Patent No. 7366013. Filed December 9, 2005; Issued April 29, 2008.

[30] Samsung Electronics Co., Ltd. 2006. 2G x 8 Bit NAND Flash Memory, K9GAG08B0M, K9GAG08U0M, K9LBG08U1M.

http://n2k1.com/n2k1/NB7/PDF/K9GAG08U0E.pdf.

[31] Samsung Electronics Co., Ltd. 2010. 32Gb A-die NAND Flash Datasheet, K9GBG08U0A, K9LCG08U1A,

K9HDG08U5A. http://dl.btc.pl/kamami_wa/k9gbg08u0a_ds.pdf.

[32] Marco A. A. Sanvido, Frank R. Chu, Anand Kulkarni, and Robert Selinger. 2008. NAND flash memory and its role in

storage architectures. Proc. IEEE 96, 11 (Nov. 2008), 1864–1874.

[33] SNIA IOTTA Repository. 2011. Microsoft Enterprise Traces - Exchange Server Traces. Retrieved from http://iotta.

snia.org/traces/130.

[34] Anil Vasudeva. 2011. Are SSDs Ready for Enterprise Storage Systems. Retrieved from http://www.snia.org/sites/

default/files/AnilVasudeva_Are_SSDs_Ready_Enterprise_Storage_Systemsv4.pdf.

ACM Transactions on Storage, Vol. 13, No. 4, Article 37. Publication date: November 2017.

http://n2k1.com/n2k1/NB7/PDF/K9GAG08U0E.pdf
http://dl.btc.pl/kamami_wa/k9gbg08u0a_ds.pdf
http://iotta.snia.org/traces/130
http://www.snia.org/sites/default/files/AnilVasudeva_Are_SSDs_Ready_Enterprise_Storage_Systemsv4.pdf

GCMix: An Efficient Data Protection Scheme 37:23

[35] Wenguang Wang, Yanping Zhao, and Rick Bunt. 2004. HyLog: A high performance approach to managing disk layout.

In Proceedings of the 3rd USENIX Conference on File and Storage Technologies (FAST’04). 145–158.

[36] Han Bin Yoon, Yeong-Jae Woo, and Jung Been Im. Method and apparatus for controlling page buffer of non-volatile

memory device. US Patent No. 20110199822. Filed February 16, 2011; Issued August 18, 2011.

[37] Jae-Sung Yu and Jin-Hyeok Choi. 2010. Programming methods of memory systems having a multilevel cell flash

memory. US Patent No. 7755950. Filed April 30, 2007; Issued July 13, 2010.

[38] George Kingsley Zipf. 1932. Selected Studies of the Principle of Relative Frequency in Language. Harvard University

Press.

Received March 2016; revised June 2017; accepted September 2017

ACM Transactions on Storage, Vol. 13, No. 4, Article 37. Publication date: November 2017.

