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NAND flash memory has become one of the most popular storage media for mobile multimedia systems. A key issue in designing
storage systems for mobile multimedia systems is handling large-capacity storage media and numerous large files with lim-
ited resources such as memory. However, existing flash file systems, including JFFS2 and YAFFS in particular, exhibit many
limitations in addressing the storage capacity of mobile multimedia systems.

In this article, we design and implement a scalable flash file system, called ScaleFFS, for mobile multimedia systems. ScaleFFS
is designed to require only a small fixed amount of memory space and to provide fast mount time, even if the file system size
grows to more than tens of gigabytes. The measurement results show that ScaleFFS can be instantly mounted regardless of the
file system size, while achieving the same write bandwidth and up to 22% higher read bandwidth compared to JFFS2.
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1. INTRODUCTION

During the past few years, there has been explosive growth in the sales of portable multimedia systems
such as MP3 players and portable media players [Paulson 2005]. As their functions and capabilities
become more diverse and complex, they demand increasingly large storage capacity. Mobile multimedia
systems such as MP3 players, portable media players (PMPs), and digital camcorders require huge
storage space to store still pictures, audio, and video files. Unlike other general purpose systems, these
multimedia systems usually deal with large files. For example, the size of a 4-minute-long MP3 audio
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file encoded in 128Kbps is 3.8MB and the size of 1Mbps one-hour video is 450MB. Typically, 1–10 MB
of audio and image files and more than 100MB video files are exchanged in a P2P file sharing system
[Gummadi et al. 2003; Saroiu et al. 2002]. Saroiu et al. [2002] also showed that the typical size of audio
files shared in Napster is 3.7MB on average and files from several kilobytes to hundreds of megabytes
are shared. In order to handle these large files, the systems need to manage large storage media space
as well as numerous large files. In addition, mobile multimedia systems should operate with limited
resources.

Flash memory has become an attractive storage medium for mobile multimedia systems due to
its outstanding characteristics such as nonvolatility, small and lightweight form factor, solid-state
reliability, and low power consumption [Douglis et al. 1994; Marsh et al. 1994; Kim et al. 2002].
Among various flash memory types, NAND flash memory provides higher density with low cost, and
has hence become standard data storage for portable devices. Recently, the capacity of NAND flash
memory has been dramatically increased. A 32Gbit NAND flash chip is already commercially avail-
able, and portable devices equipped with several gigabytes of NAND flash memory are widely available.
The growth in NAND flash memory capacity is expected to continue or even accelerate in the coming
years.

In spite of offering many advantageous features, flash memory has unique operational characteristics.
Most notably, in-place updates are not possible in flash memory, that is, previous data should be erased
first in order to overwrite other data in the same location. An erase operation is performed in a unit
of flash erase block, which is much larger than a read and write unit, and the operation has much
higher latency than read or write operations. Obviously, it is unacceptable to erase a whole erase block
whenever a portion of the block is updated. Another limitation of flash memory is that the number
of erase/write cycles allowed for a single erase block is limited to 10,000–1,000,000 times. Thus, it is
necessary to perform wear-leveling, a scheme to distribute erase/write cycles evenly across all erase
blocks in order to extend the lifetime of flash memory storage.

As NAND flash memory shows radically different characteristics compared to hard disks, many
studies focusing on using NAND flash memory efficiently as part of the storage system have been
conducted [Marsh et al. 1994; Kim et al. 2002; Woodhouse 2001; AlephOne Ltd. 2003]. In particular,
building an efficient file system over NAND flash memory presents a considerable challenge, since
legacy disk-based file systems cannot be directly used for NAND flash memory. Recently, several small-
scale flash-aware file systems, such as JFFS2 [Woodhouse 2001] and YAFFS [AlephOne Ltd. 2003],
have been proposed to cope with the unique characteristics of NAND flash memory. These flash-aware
file systems work directly on NAND flash memory, performing block erase and wear-leveling as needed.

The present work is primarily motivated by the fact that the architecture of traditional flash-aware
file systems, especially JFFS2 and YAFFS, is not appropriate for large-capacity flash storage. When
using JFFS2 or YAFFS for mobile multimedia systems with large-capacity NAND flash memory, the
following problems are confronted. First, they consume too much memory by keeping all index structures
in memory to find the latest file data on flash memory. Obviously, the larger memory requires more
electrical power [Huang et al. 2003; Park et al. 2004]. Second, they use too much time to mount a file
system, since the entire flash media are scanned to construct the index structures at the mount time.
This could lead to frustration for mobile multimedia system users, since they face a considerable wait
until their devices become ready.

In JFFS2 and YAFFS, the mount time and the memory consumption are linear functions of the file
system size and the amount of the stored data. This stems partly from these file systems having been
originally designed for small flash memory, where the overhead can be negligible. However, the slow
mount time and the large memory footprint are becoming increasingly serious problems as the size of
flash memory scales upward into the gigabyte range.
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Another popular approach used for flash memory-based storage is employing a software layer called
FTL (Flash Translation Layer) [Marsh et al. 1994; Kim et al. 2002; Kang et al. 2006] that emulates
common block I/O interfaces. Owing to this layer, most systems can use legacy disk-based file systems
to flash memory-based storages without any kernel or file system modifications. While this layered
approach makes it easy to deploy flash memory-based storage devices, FTL can make bad decisions
when managing flash memory, because liveness information is not available within storage systems
[Sivathanu and Bairavasundaram 2004]. As a result, the performance of flash memory-based storage
using FTL is degraded [Lim and Park 2006].

In this paper, we present ScaleFFS, a scalable flash file system for large-capacity NAND flash memory,
to address the aforementioned problems of conventional flash-aware file systems. ScaleFFS is designed
to support flash memory capacity of more than tens of gigabytes, while requiring only a small fixed
amount of memory space. ScaleFFS does not keep its index structures permanently in memory and does
not scan the entire flash media to build index structures or directory trees. In addition, ScaleFFS fully
utilizes the kernel’s cache mechanism for fast file system operation and flexible memory management.

The remainder of this paper is organized as follows. We provide background and discuss related work
in Section 2. In Section 3, we present the design and implementation of ScaleFFS. We describe detailed
file system operations of ScaleFFS in Section 4. Section 5 presents our experimental results, and we
conclude in Section 6.

2. BACKGROUND AND RELATED WORK

2.1 The Organization of NAND Flash Memory

A NAND flash memory chip consists of a fixed number of erase blocks. The first generation of NAND
flash memory has 32 pages per erase block. Each page comprises 512bytes of data area and 16bytes of
spare area. The spare area is usually used to store management information and error correcting code
(ECC). As flash memory technology has improved, a new generation of NAND flash memory, called
large block NAND, has been introduced to provide higher capacity. In large block NAND, an erase block
consists of 64 pages. The page size is also increased by 4 times; each page contains 2KB of data area
plus 64bytes of spare area. Note that, in NAND flash memory, read and write operations are performed
on a page basis, while an erase operation is done on a much larger erase block basis.

2.2 JFFS2 (Journaling Flash File System, Version 2)

JFFS2 is a log-structured file system designed for use with flash memory in embedded systems [Wood-
house 2001]. JFFS2 was originally designed and optimized for small NOR flash, and the support for
NAND flash was added later.

JFFS2 uses a variable-sized unit called a node to store file system metadata and data. The maxi-
mum node size is restricted to half the size of a flash erase block, and each flash block can contain one
or more nodes. In JFFS2, there are three types of nodes, and each node has its own header. First, a
JFFS2 NOTETYPE INODE node contains all the inode metadata, as well as a range of file data belonging
to the inode. File data may be compressed using a compression algorithm that can be plugged into
the JFFS2 code. Currently, JFFS2 supports three compression algorithms, ZLIB, RTIME, and RU-
BIN. Typically, a single file consists of a number of JFFS2 NODETYPE INODE nodes. Another node type is
JFFS2 NODETYPE DIRENT, which is used to represent a directory entry. A JFFS2 NODETYPE DIRENT node
contains the inode number of the directory, the name of the directory or the file, the inode number of its
parent directory, etc. This information is used to construct the directory tree of JFFS2. The final node
type is JFFS2 NODETYPE CLEANMARKER. When an erase block is successfully erased, this node is written
to that block so that JFFS2 can safely use the block as free space.
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JFFS2 maintains several lists to manage the status of each erase block: clean list, dirty list, and
free list. Clean list contains only the blocks that are full of valid nodes, and blocks on the dirty list
have at least one obsolete node. If JFFS2 erases a block, the block is added to the free list.

Since JFFS2 does not have a fixed index structure to locate nodes in flash memory, JFFS2 keeps the
pertinent and minimal information in memory for each node. JFFS2 maintains a data structure that
consists of the physical address on flash memory, the length of a node, and pointers to the next structure
related to the same file so as to be able to retrieve further information later. JFFS2 also retains some
hints in memory to traverse the full directory tree, because a directory entry does not have any pointers
to child entries.

These in-memory data structures consume considerable memory space, especially when the file sys-
tem size grows. The memory footprint of JFFS2 is usually proportional to the number of nodes, and
is also increased as the size of the file system contents becomes larger. For instance, JFFS2 requires
more than 4MB of memory space to construct these data structures for 128MB data if each node size
is 512bytes.

On the other hand, these in-memory data structures cannot be built cost-free. They are constructed
at mount time by scanning the entire flash memory media. This procedure takes from several seconds to
tens of seconds, depending on the number of nodes in the file system. In addition, there exists runtime
overhead, because the full information on a file or a directory such as the offset within the file, the
latest file attributes, and the file name list of the directory is retrieved by reading every node header
from flash memory that belongs to the file or the directory upon the first access to them. This further
exacerbates the problem.

2.3 YAFFS (Yet Another Flash File System)

YAFFS is another variant of a log-structured file system designed for NAND flash memory [AlephOne
Ltd. 2003]. The structure of YAFFS is similar to that of the original version of JFFS. The main difference
is that node header information is moved to NAND’s spare area and the size of a data unit, called a
chunk, is the same as the page size in NAND flash memory to efficiently utilize NAND flash memory.

Similar to JFFS2, YAFFS keeps data structures in memory for each chunk to identify the location of
the chunk on flash memory. YAFFS also maintains the full directory structures in memory, since a chunk
representing a directory entry has no information about its children. In order to build these in-memory
data structures, YAFFS scans all spare areas across the whole NAND flash memory. Therefore, YAFFS
inherits the same problems as JFFS2. Moreover, YAFFS is not scalable, because various internal data
structures are compacted to support only up to 1GB of flash memory, 512MB per file, and total 256,000
files. In practice, YAFFS can directly cover only 32MB of flash memory due to its 16-bit index structure
and it requires an additional lookup operation be used with larger size flash memory.

2.4 LFS (Log-Structured File System)

As presented in the previous subsections, the basic structures of JFFS2 and YAFFS are based on a
log-structured file system (LFS). LFS was originally proposed as a disk-based file system in order to
efficiently utilize a disk’s raw write bandwidth and to provide fast crash recovery [Rosenblum and
Ousterhout 1992; Seltzer et al. 1993]. When LFS was first introduced, other Unix file systems showed
poor write performance due to disk seek operations, and they relied on fsck, which needed to scan the
entire disk to recover file system consistency.

The basic concept of LFS is to improve the file system performance by storing all file system data in
a sequential structure called a log. LFS buffers all writing operations in memory and flushes them to a
log sequentially at once if its buffers are full or a sync operation is requested by a kernel. Figure 1 shows
how data and index structures are stored in LFS. LFS increases the write performance by eliminating
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 5, No. 1, Article 9, Publication date: October 2008.
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Fig. 1. Log structure of LFS.

almost all disk seeks. The log structure also allows crash recovery that is as fast as that of other logging
schemes.

Data structures used in LFS, such as inode, indirect block, and directory block, are similar to those
in the Berkeley Unix fast file system [McKusick et al. 1984] or Linux ext2/ext3 file system [Card et al.
1994]. A data block stores file contents, and a directory block has a list of subdirectories and/or file
names with their corresponding inode numbers. An inode has file metadata such as file permission,
owner, size, etc., and points to data blocks associated with a file. Indirect blocks are used to locate all
data blocks for large files. For a given file, every data block can be located by the inode and, if necessary,
by indirect blocks. Since an inode block itself is floating in the log, as shown in Figure 1, LFS uses a data
structure called an inode map to maintain the current locations of all inodes. The inode map occupies
0.2% of live data and is usually cached in memory during file system operations.

One of the most important design issues in LFS is how to maintain large free extents for writing
new logs. LFS divides the disk into large fixed-extents called segments. The log is written to a segment
sequentially from the segment’s beginning to its end. Once the log fills the current segment, the log
continues at another segment. In LFS, segments are logically threaded, that is, any segment may be
chosen to be the next segment provided that it contains no live data. The segment size is either 512KB
or 1MB.

LFS also performs segment cleaning to generate free segments. In a segment, there could be live data,
as well as obsolete data caused by file deletion or modification. During segment cleaning, LFS first reads
one or more segments to be reclaimed and identifies live data by examining segment summary blocks.
A segment summary block is a data block containing a file inode number and offset for each block
stored in a segment. LFS then copies live data to other free segments and mark old segments as clean.
This cleaning procedure is repeated until a number of clean segments (typically 50–100 segments) are
produced. For better cleaning efficiency, LFS summarizes segment usage information in the segment
usage table and refers to it to choose victim segments.

In order to make file system start and recovery faster, LFS stores the information necessary for
the file system mount in a fixed, known location called the checkpoint region. During the checkpoint
operation, LFS flushes all modified data to the log, and writes the locations of all the inode map blocks,
the segment usage table blocks, and a pointer to the last written segment into the checkpoint region.
The checkpoint operation is triggered periodically by LFS.

Even though LFS provides scalable performance on disks, it cannot be directly used on flash memory,
because it is designed only for disks. In particular, LFS violates one of the flash memory characteristics;
it overwrites several areas such as super blocks and checkpoint area. In addition, LFS is not aware
of flash memory and it does not actually erase its segments while it performs the segment cleaning
operation.

Table I compares the characteristics of LFS, JFFS2, YAFFS, and ScaleFFS.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 5, No. 1, Article 9, Publication date: October 2008.
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Table I. Comparisons among LFS, JFFS2, YAFFS, and ScaleFFS
File System LFS JFFS2 YAFFS ScaleFFS

Target Hard disk NOR NAND NAND
storage media (NAND)
Target <0.5GB <64MB <64MB >32MB
storage size (max 4GB) (max 1GB)
Index Inode Linked list Tree Inode
structure (in disk) (in memory) (in memory) (in flash)
Memory Small Large Large Small
footprint
Mount time Fast Slow Slow Fast

3. DESIGN AND IMPLEMENTATION OF SCALEFFS

In this section, we present the basic design of ScaleFFS, a new scalable flash file system proposed for
mobile multimedia systems with large-capacity NAND flash memory. ScaleFFS has two advantages
over other flash file systems such as JFFS2 and YAFFS: (i) the memory space required by ScaleFFS is
small and independent of the file system size, and (ii) the mount time in ScaleFFS is short and constant.

3.1 Design Goals

As presented in Section 2, traditional flash-aware file systems, especially JFFS2 and YAFFS, suffer
from excessive memory consumption and long mount time. Memory consumption is one of the most
important issues in designing mobile multimedia systems, because the amount of memory is directly
related to the cost and the battery lifetime. The mount time can also significantly increase the system
start-up time. Making this even more critical, both the memory consumption and the mount time are
proportional to the storage capacity. ScaleFFS is proposed here to solve these problems, the main design
goals of which are as follows.

—Support for large-capacity NAND flash memory. ScaleFFS can support more than tens of gigabytes
of storage capacity composed of NAND flash memory. Individual files can be as large as several
gigabytes.

—Small memory footprint. ScaleFFS does not keep file system information in memory permanently.
Most metadata, such as directory entries and index structures, are easily locatable on flash media so
that the file system can retrieve them on demand at runtime.

—Fast mount. Scanning the entire flash memory is not practical for large-capacity storage media. Even
if the file system crashes, it can be recovered quickly to minimize the start up time.

—Comparable performance. ScaleFFS provides I/O throughput comparable to that of other flash file
systems. The I/O performance should not be sacrificed even if the index structures are fetched from
flash memory on demand. Thus, for ScaleFFS the overhead associated with reading or writing the
index structures should be reduced.

3.2 ScaleFFS Basic Design

ScaleFFS is a log-structured file system whose metadata and directory structure are more similar to
LFS [Rosenblum and Ousterhout 1992] than to JFFS2 or YAFFS. The structure of LFS is not only
scalable to large storage capacity, but also suitable for flash memory. The entire indexes and directory
structures of LFS do not have to be read into memory at mount time. In LFS, most information can
be easily accessed from storage media on demand. In addition, the log structured architecture avoids
in-place updates and facilitates a fast recovery operation. Therefore, the structure of LFS is a perfect
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 5, No. 1, Article 9, Publication date: October 2008.
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Table II. Extra Information Stored in Spare Area
Field Size (bytes)

Next Log Block (First page only (cf. Sec. 4.3)) 4
Bad Block Indicator 2
Block Type 1
Inode Number 4
Offset with its file 4
ECC 12
Last Modified Time 4
Reserved 1

Total 32

choice for achieving our design goals, and in this regard many philosophies and mechanisms from LFS
were borrowed in designing ScaleFFS.

Although both JFFS2 and YAFFS also employ a log structure, they are not scalable, because they
only adopt a sequential logging scheme, which writes data in a sequential manner, from LFS. They do
not use inode-like or any other index structures that are easily locatable and accessible at runtime.
Consequently, they need to scan the entire flash media to construct the index structures and to keep
them in memory. This causes scalability problems such as slow mount time and large memory footprint.

While our basic design borrows many aspects from LFS, there are numerous differences between
ScaleFFS and LFS, particularly between hard disks and flash memories. In the following, we highlight
some of the unique features in ScaleFFS. First, the buffering scheme of ScaleFFS is different from that
of LFS. LFS buffers all the modified data until its buffers are full or a checkpoint operation is initiated
to maximize write throughput by eliminating disk seeks. In contrast, ScaleFFS attempts to write a
block to flash memory immediately if the block is completely filled with new data. This is because,
in flash memory, bulk writing provides little performance gain, but rather increases the latency of
flushing.

Second, ScaleFFS utilizes spare areas of NAND flash memory to store extra information whenever
it updates a block. For crash recovery and garbage collection, the block type, inode number of the file
containing that block, the offset within the file, and the last modified time are stored in the spare area.
Spare area also has an error-correcting code (ECC) for error correction.1 Currently, ScaleFFS combines
two 512-byte sectors as a single block (1KB), and uses associated 32 bytes of spare area to store these
extra data. Table II summarizes the extra information stored in spare area. On the other hand, LFS is
not aware of spare area and cannot utilize it, as it is designed only for hard disks.

Third, the segment size of ScaleFFS is different from that of LFS. In ScaleFFS, utilizing large size for
a segment is useless, because there is little performance benefit from sequential bulk write operations.
The segment size of ScaleFFS is the same as the flash memory erase block size while LFS uses much
larger sizes.

Finally, the checkpoint region of ScaleFFS is designed to lengthen the lifetime of flash memory. LFS
writes checkpoint data in a fixed position. This can lead to early wear-out of the checkpoint region in
flash memory. In order to prevent wear-out of the checkpoint region, ScaleFFS allocates larger space for
the checkpoint and uses smaller checkpoint data by employing indirect inode map blocks. In ScaleFFS,
a checkpoint region is located at the end of the flash memory space, as shown in Figure 2. We present
details of the checkpoint region in the next section.

1In this paper 1-bit ECC, which requires 3-byte codes for 512 byte data, is used. Currently, manufacturers recommend a 1-bit
ECC for large block NAND flash [Samsung Electronics Co., Ltd. 2007, 2006, 2007].

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 5, No. 1, Article 9, Publication date: October 2008.



9:8 • D. Jung et al.

Flash
Erase
Block

Flash
Erase
Block

Flash
Erase
Block

Flash
Erase
Block

Flash
Erase
Block

Flash
Erase
Block

Flash
Erase
Block

Bad
Block

Checkpoint AreaLog Area

… …

Fig. 2. The overall physical flash layout of ScaleFFS. ScaleFFS manages virtually sequential log space with spare areas. The
checkpoint area is positioned at the fixed region, which is the end of the flash memory space.

4. DETAILED FILE SYSTEM OPERATIONS

In this section, we present detailed file system operations of ScaleFFS. Although the basic design of
ScaleFFS originates from LFS, ScaleFFS is modified and optimized for NAND flash memory, owing to
the unique characteristics of this type of flash memory.

4.1 Read and Write

To read a file, ScaleFFS first identifies the inode number of the file from directory entries. ScaleFFS
then locates the inode block of the file by searching the inode map with the inode number. After locating
the inode block, the file system reads the requested block. If the inode and indirect blocks are cached
in memory, this process can be accelerated.

When ScaleFFS writes a file, it updates the modified block in a sequential fashion, in the same
manner as LFS. ScaleFFS first writes data blocks of the file, and then writes the inode and/or indirect
blocks if necessary. Inode map blocks are written during the checkpoint operation.

As described in the previous section, ScaleFFS will immediately flush modified data. ScaleFFS al-
locates a data buffer that can store a single data block (currently 1KB) and several metadata block
buffers in memory. If the data buffer is full, ScaleFFS immediately writes the data in the buffer to flash
memory.

After flushing data blocks, ScaleFFS updates the inode and indirect blocks. This is done only in the
metadata buffers, since metadata are more likely to be updated again than are data blocks. When a
kernel or user makes a request to sync file system data, ScaleFFS writes all modified metadata blocks.
This approach can dramatically reduce the overhead caused by metadata updates.

Whenever ScaleFFS writes a block, the extra information described in Table II is simultaneously
recorded in the spare area. The information is used during mount time to recover the file system from
crashes and during garbage collection to reclaim obsolete blocks.

4.2 Directory Operations

Whenever directory operations such as creation, deletion, and rename take place in ScaleFFS, the
corresponding directory block is updated. Since directory updates are less frequent than data updates
in a mobile multimedia file system, directory updates are directly applied to flash memory. This makes
it easier to recover directory structures in the case of power-off failure than caching and flushing the
updates at a later time.

The aforementioned strategy is still not sufficient to make the file system consistent for several
directory operations such as creation, deletion, and rename after power-off failure. These operations
accompany multiple blocks to be updated. For instance, a file creation requires that both directory and
inode blocks be updated, and a rename operation writes directory blocks with renamed entries followed
by updating of directory blocks where the original entry was removed. In order to detect incomplete
directory operations after power-off failure, each directory block contains directory update information.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 5, No. 1, Article 9, Publication date: October 2008.
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This information includes the inode number of an updated file or a directory, and the type of update
operation.

4.3 Free Log Management

Unlike LFS, which attemtps to secure large extents of free space to fully utilize disk bandwidth,
ScaleFFS only maintains the log space in a virtually sequential order. The virtually sequential log
is a log that can be accessed sequentially regardless of the physical order of the space. In ScaleFFS,
each flash erase block is logically threaded similar to a linked list structure, as shown in Figure 2. This
eases free space reclamation, since the flash erase block is the unit of erase operation. Note that the
size of the flash erase block (128KB for large block NAND) is much smaller than that of the extent used
in LFS, which is usually larger than 512KB.

ScaleFFS uses spare areas to manage free log space. ScaleFFS allocates a pointer to the next flash
erase block in the spare area of the first page of each block (see Table II). If a free flash erase block
is filled with newly written data, ScaleFFS simply follows the pointer and allocates new space in the
next erase block. Initially, every flash erase block, except for the last one, has a pointer indicating the
logically adjacent flash erase block. Once a flash erase block is erased, it is added to the end of the free
log space by updating the spare area of the log.

4.4 Checkpoint

A checkpoint ensures that all the file system structures before the checkpoint are consistent and com-
plete. ScaleFFS performs the checkpoint operation occasionally to keep the file system consistent. In
ScaleFFS, the checkpoint operation involves two steps. First, it writes all modified data to the log,
including the internal buffers, indirect blocks, inodes, and inode map blocks. Second, it writes the
checkpoint information in the checkpoint region in a round-robin manner.

File system operations after the last checkpoint would be incomplete and inconsistent. For example,
inode map blocks and indirect inode map blocks are not complete if the checkpoint is not triggered.
These data must be scanned and handled during mounting of the file system. This can lengthen the
mount time, and the time is dependent on the size of the log written after the last checkpoint.

In order to reduce the recovery time, ScaleFFS makes a checkpoint at every 4MB data written and
at the unmount time. Since scanning the spare area of 4MB flash space takes about 221ms, ScaleFFS
can bound the mount time even in the event of a file system crash.

Repeated checkpoint operations may wear out the flash erase blocks in the checkpoint region rapidly,
thus eventually reducing the file system lifetime. Suppose that a user copies 1GB of multimedia files
such as movie files or MP3 files everyday, and flash memory has a limit of 100,000 erase cycles. The
checkpoint region is then overwritten 256 times a day, and the flash erase block containing the check-
point data will be worn out in 391 days.

In order to lengthen the lifetime of the checkpoint region, we apply two simple approaches: allocating
a larger flash memory space to the checkpoint region and compacting the amount of checkpoint data. In
the current implementation, ScaleFFS uses 512KB for the checkpoint region and the size of checkpoint
data is 1KB. Even if 4GB of data is written to the file system per day, the estimated lifetime of the
checkpoint region will be 137 years according to Equation (1).

Lifetime = Erase limit × Total checkpoint region size
Checkpoint size per day

= 100, 000 × 512KB
4

(
GB/day

)
/4MB × 1KB

= 50, 000days ≈ 137years. (1)
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Fig. 3. Log structure of ScaleFFS. ScaleFFS writes only modified data blocks at the end of the log, and it flushes metadata
during sync operations. Indirect Inode Map Blocks point to Inode Map Blocks.

Although the lifetime of flash storage varies depending on the behavior of the user, we can see that
this configuration provides sufficient lifetime for a mobile system.

One problem with the checkpoint is that the size of checkpoint data to record all the locations of inode
map blocks can exceed 1KB, if the number of files increases. In order to allow all checkpoint data to
be able to fit into 1KB, ScaleFFS introduces an indirect inode map, as shown in Figure 3. The indirect
inode map holds all the addresses of inode map blocks and ScaleFFS stores only the locations of the
indirect inode map blocks in the checkpoint region. Therefore, using the indirect inode map blocks, we
can find the location of an inode map block, and the inode map block in turn has the information to
locate a specific inode. This additional indirection enables ScaleFFS to support several millions of files
without increasing the size of checkpoint data. For example, if 128 indirect inode map blocks are used,
ScaleFFS can store more than eight million files.2 This number is large enough for mobile multimedia
systems and even for normal desktop computers.

To summarize, the checkpoint region of ScaleFFS consists of the addresses of indirect inode map
blocks, the position of the last written block in the log, and the last erase block to identify the end of
the log. Table III presents the details of the checkpoint region, and the resulting layout of the log is
illustrated in Figure 3.

4.5 Mount and Recovery

During the file system mount, ScaleFFS reads the last version of checkpoint data and uses it to initialize
the file system. In order to find the last version of checkpoint data, ScaleFFS finds the last written
checkpoint block by scanning the checkpoint region. Scanning the checkpoint region requires a two-
phase operation. First, ScaleFFS scans the spare area of the first page in each block in the checkpoint
region and finds the block with the most recent modified time. ScaleFFS then searches for the last

2ScaleFFS currently uses 1KB blocks. Each inode map block points to 256 inodes and an indirect inode map block points to 256
inode map blocks.
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Table III. Summary of Checkpoint Region
Field Size (byte) Description

highest inode 4 The highest inode number
nr used inodes 4 The number of used inodes
nr valid blocks 4 The number of live blocks
nr free blocks 4 The number of free blcks
nr invalid blocks 4 The number of dead blocks
nr bad blocks 4 The number of bad blocks
current log block 4 The position of the last written block
last log block 4 The position of the block of the free log
indirect inode map blocks 512 The array of pointers to indirect inode

map blocks
time 4 Timestamp
reserved 476 Reserved area for future use

Total 1024

checkpoint data within that block by comparing the last modified time field in each spare area. This
two-phase scan provides faster mount time than scanning all spare areas in the checkpoint region.

After reading the last checkpoint data, ScaleFFS reads all the indirect inode map blocks and stores
them in its own buffer. While the maximum size of these blocks is 128KB, it is usually less than 16KB
if the number of files does not exceed one million. Thus, reading and storing all the indirect inode map
blocks rarely affects memory consumption and mount time.

In the event of a file system crash, ScaleFFS automatically detects the crash and runs a recovery
procedure at the next mount. At the beginning of the file system mount, ScaleFFS looks up the latest
checkpoint data and scans spare areas of the log after the last log position pointed to by the checkpoint
data. Since ScaleFFS makes a checkpoint at each unmount, data after the last log position indicate
that a file system crash has occurred.

The recovery procedure follows the log after the last checkpoint, and replays or undoes file system
operations that are inconsistent or incomplete. For example, if a data block is written, but its inode
is not, the block is discarded. On the other hand, if the inode is successfully written, write operations
can be completed by recovering the inode map and indirect inode map. The inode map and indirect
inode map are easily recovered if the inode is correctly written. For an incomplete directory operation,
ScaleFFS makes the file system consistent by undoing the operation.

4.6 Garbage Collection

In our current implementation, ScaleFFS employs a round-robin garbage collection policy that is also
adopted in the original JFFS and YAFFS. During garbage collection, ScaleFFS scans spare areas in a
victim erase block and identifies whether each block is alive or dead by consulting the corresponding
inode map and inode. Note that examining the inode map and inode takes little time, because they can
be cached in memory, and the total amount of time to reclaim a block that has only invalid pages is
2.4ms when the inode map is cached.

5. EXPERIMENTAL RESULTS

5.1 Evaluation Methodology

We have implemented an initial version of ScaleFFS based on Linux kernel 2.6.15. We evaluated the
performance of ScaleFFS on a PC with a Pentium IV processor and 512MB RAM. NAND flash memory
was emulated by NANDSIM included in the Linux MTD (Memory Technology Device) package [MTD
1999]. NANDSIM is a virtual NAND flash memory chip that provides flash memory space using RAM
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Table IV. The Characteristics of NANDSIM
Flash Memory Operation Access Time (μs)

Read a page (512B) 55.7
Read a spare area (512B) 27.0
Write a page (512B) 237.7
Erase a block (16KB) 2005
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and emulates the latency of flash operations with busy waiting. In our evaluation, NANDSIM is modified
to emulate the actual flash memory performance. The characteristics of NANDSIM are summarized in
Table IV. During our experiments, we used 256MB flash memory emulated by NANDSIM.

The performance of ScaleFFS is compared with that of JFFS2 without data compression and YAFFS,3

respectively. We primarily measured the mount time and the file system throughput. First, in order
to evaluate the effect of file system size to the mount time, we repeated the mount operation several
times changing both the total flash memory size and the amount of data stored in the file system. To
fill each file system, 5MB MP3 files are used. Second, we ran a microbenchmark to measure the file
system throughput. The microbenchmark evaluates the read and write performance of file systems by
accessing MP3 files. It also measures random seek latency within a 100MB movie file. In addition,
we analyze the memory consumption of each file system and the metadata overhead of ScaleFFS by
counting the number of accessed blocks for each type (data, inode, indirect, etc.).

For microbenchmarks, we collected the characteristics of multimedia files from a user using a MP3
player. The audio files are classified into three genres, pop, classical music, and original sound track
(OST). 92.6% of the pop audio clips and 98.3% of the OST audio clips are smaller than 10MB, and the
average sizes of the pop and OST MP3 files are 5.2MB and 3.5MB, respectively. The maximum size of
classical music files is 55MB, and the average size is 5.9MB. The distribution of file length is illustrated
in Figure 4. In the microbenchmark, 25 pop music files, 15 OST music files, and 9 classical music files
are selected according to the distribution.

5.2 Mount Time

Figure 5 shows the mount time with respect to the total capacity of NAND flash memory when the file
system has no data. We can clearly see that ScaleFFS requires much shorter time to mount a file system
and the time is almost constant, only seven milliseconds in our environment. This is because ScaleFFS
only scans spare areas in the checkpoint region and indirect inode map blocks. Since the checkpoint

3The results for JFFS2 and YAFFS are obtained from actual implementations running on the Linux kernel 2.6.15.
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region consists of a fixed number of flash erase blocks in ScaleFFS, the mount time remains constant
regardless of the file system size. In contrast, the time to mount JFFS2 or YAFFS almost linearly
increases as the capacity of flash memory grows. Even though no data are stored in the file system,
JFFS2 scans the JFFS2 NODETYPE CLEANMARKER node in each flash erase block, and YAFFS examines the
first page of each flash erase block to find chunks. Note that the mount time results for file systems
using NAND flash memory size larger than 256MB are estimated values based on the number of flash
memory access to be scanned during mounting of each file system, because NANDSIM can only emulate
NAND flash memory whose size is less than the available system memory size.

Figure 6 illustrates the mount time when the amount of stored data is varied and the total file system
size is 256MB. The results present similar patterns, as can be seen in Figure 5. Since ScaleFFS scans
a limited number of flash erase blocks, the results are always the same for all conditions. However,
JFFS2 and YAFFS again take much longer time, in proportion to the amount of stored data.

The mount time is also affected by the number of files in the file system. Figure 7 shows the mount
time according to the number of zero-size files in each file system. The mount time of ScaleFFS remains
almost constant while JFFS2 and YAFFS require longer time to start up as the number of files increases.
Because one indirect inode map block in ScaleFFS can cover up to 65536 files, ScaleFFS only needs
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to scan two indirect inode map blocks to handle 100,000 files. On the other hand, JFFS2 and YAFFS
require time consuming scanning operations to retrieve metadata of all files from flash memory. The
latency to mount JFFS2 or YAFFS is a linear function of the number of nodes or chunks in flash memory.
Typically, the number of nodes or chunks is directly related to the number of files and directories, the
number of flash erase blocks, and file sizes.

From Figures 5, 6, and 7, we can observe that, in terms of the mount time, ScaleFFS is scalable to
large-capacity NAND flash memory. Long mount time of up to several tens of seconds makes JFFS2
and YAFFS impractical for portable devices equipped with a few gigabytes of NAND flash memory.

5.3 File System Throughput

The microbenchmark results are depicted in Figure 8, where “read” and “write” represent the through-
put of read and write operations, respectively. For the write throughput, the microbenchmark measures
the latency to write 155MB of MP3 files to each file system that initially has no data. Read throughput
is measured by reading all the MP3 files from flash memory.

ScaleFFS, JFFS2, and YAFFS show almost the same write bandwidth. The three file systems utilize
more than 93% of the write bandwidth of NANDSIM (2.05MB/sec). The slight difference in the write
performance comes from the additional cost of each file system. For example, ScaleFFS reads spare area
to get the next free block and flushes metadata block and checkpoint data. In YAFFS, there are read
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operations to test whether a block is erased or not, because YAFFS does not use a mark that represents
a block is erased. During the benchmark, it was measured that ScaleFFS performs 0.6% additional
write operations compared to YAFFS for managing inode blocks, indirect blocks, inode map blocks, and
checkpoint blocks. In addition, ScaleFFS reads spare area to find the next free block whenever a block
is fully filled with newly updated data. In JFFS2, there are no extra operations except for writing node
headers. Since data is not aligned to the size of the page due to the node header, JFFS2 performs 2%
more write operations than YAFFS. Because writing data is the dominant component of write time,
this overhead is tolerable for a large-capacity flash file system.

The read performance, however, varies substantially among the three file systems. ScaleFFS shows
about 22% and 45% higher read throughput than JFFS2 and YAFFS, respectively. Once inode and
indirect blocks are read into the kernel buffer cache, they are rarely removed from the cache, because
they are frequently accessed. Thus, ScaleFFS can utilize the full read bandwidth in transferring file
data. According to the results, ScaleFFS provides 7.9MB/s read bandwidth, which is enough to play a
movie file that is more than 1Mbps. In JFFS2, however, all node headers of a file first need to be scanned
to build detailed index structures in memory from the minimal in-memory data structure before reading
the actual file data (cf. Section 2.2). This procedure makes JFFS2 scan the pages containing the headers
twice. Moreover, if a node is not aligned to the NAND flash memory page boundary due to its header,
there is an additional overhead to read more pages. As a result, JFFS2 can utilize only 74.1% of the
read bandwidth of NANDSIM (8.77MB/sec).

YAFFS shows much lower read performance than the others. Since YAFFS maintains 16-bit index
information in memory, it can only locate 65,536 pages. If flash memory has more than 65,536 pages,
YAFFS groups several pages and uses 16-bit addresses to find a group. YAFFS then scans spare areas
within the group to find the exact page. For this reason, the read performance of YAFFS is degraded
according to the flash memory size.

Figure 9 compares the random seek performance of ScaleFFS, JFFS2, and YAFFS. The average
latency is measured by reading 4KB data blocks at random offsets from a 100MB movie clip. The
average latency of JFFS2 is about 3.3% shorter than that of ScaleFFS. This is because ScaleFFS reads
index structures (inode and/or indirect blocks) from flash memory on demand, while JFFS2 exploits in-
memory structures to find data. However, JFFS2 should build the in-memory structures for a fast seek
when it opens a file. This takes about 14.6 seconds for a 100MB file. Therefore, JFFS2 is not suitable
for handling large multimedia files. The random seek latency of YAFFS is more than 20% longer than
other file systems, due to the same factors described above that led to degraded read performance.
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Table V. Summary of Memory Consumption in ScaleFFS, JFFS2, and YAFFS
Memory Consumption

ScaleFFS
Component/Scenario (maximum value) JFFS2 YAFFS

Checkpoint data and super block 1KB 0.3KB 3.6KB
Write buffer 1KB 0.5KB 5KB
Indirect inode map 128KB N/A N/A
Metadata cached during writing a 10MB file 43KB 185KB 46.9KB
Metadata cached during writing a 100MB file 410KB 1.8MB 459.3KB
Metadata cached during writing a 1GB file <4.5MB >18MB <4.5MB

(estimated) (estimated) (estimated)

5.4 Memory Consumption

One of our design goals is to reduce the memory consumption even if a large-capacity flash memory
is used. In order to achieve this goal, ScaleFFS only keeps minimal information in memory such as
the indirect inode map and the checkpoint data. The indirect inode map occupies at most 128KB when
the file system has eight million files, and the checkpoint data requires only 1KB. Thus, operation of
ScaleFFS requires limited and almost constant memory space.

During file system operations, various metadata and file data are cached temporarily in memory
for better performance. Cached data could be evicted at any time except for modified metadata. Even
though the total size of metadata in ScaleFFS is proportional to the size of data, metadata does not
need to be kept in memory. Thus, the amount of modified metadata is of no consequence in ScaleFFS.
Table V summarizes the memory consumed by ScaleFFS.

On the other hand, JFFS2 permanently keeps all metadata of files in memory while the files are
being used by a user or the kernel. If JFFS2 reads or writes a 1GB movie file, it requires at least 18MB
of memory space, as shown in Table V. Moreover, JFFS2 needs 16-byte additional memory space for
each data node stored in flash memory media. YAFFS consumes two bytes for each chunk (page) and
124 bytes for each file even if a file is not opened to be accessed. The total metadata size needed by
YAFFS to write a 1GB file appears to be similar to that in the case of ScaleFFS (cf. Table V). However,
cached metadata in ScaleFFS can be evicted if the memory space is not sufficient whereas this cannot
be done in YAFFS. Thus, both JFFS2 and YAFFS suffer from significant memory footprint size when
applied to large-scale flash memory storage and multimedia data. This memory problem of JFFS2 and
YAFFS is exacerbated as the size of the flash memory and data grow.

5.5 Metadata Overhead

Unlike JFFS2 or YAFFS, ScaleFFS stores metadata and file data separately, and hence it requires
additional write or read operations to update or access metadata blocks. Nevertheless, the performance
of ScaleFFS is comparable to that of JFFS2 or YAFFS, because these metadata blocks are cached and
updated in the memory cache.

Table VI summarizes the percentage of time taken to access each block type for three scenarios.
The scenario denoted as “Downloading MP3 files” models copying MP3 files from a host to a player.
The second scenario, labeled “Playing MP3 files,” is a workload produced by a media player in Linux
that selects MP3 files in random order from its play list and plays them. The player first reads header
information of MP3 files in its player list, and then reads audio data in a file sequentially. The last
scenario (“Random seek test”) is the random seek test presented in Section 5.3.

If a file is accessed sequentially, the hit ratio of the metadata is high, and thus the overhead for
accessing metadata is negligible. This means that the overhead is not significant for multimedia appli-
cations that exhibit sequential file I/O patterns. In contrast, if files are small, the portion for accessing
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Table VI. Percentage of Time Taken to Access Each Block Type in
ScaleFFS

Workloads
Downloading Playings Random

File System Block Type MP3 Files MP3 Files Seek Test

Data block 99.40% 99.40% 80.2%
Inode block 0.04% 0.01% 0.4%
Indirect block 0.47% 0.58% 18.8%
Inode map block 0.03% <0.01% 0.2%
Indirect inode map 0.03% <0.01% 0.2%
Checkpoint block 0.03% <0.01% 0.2%

metadata becomes significant, because ScaleFFS needs to access an inode map block and an inode block
to read or to write a file.

The metadata overhead during the random seek test is relatively higher than sequential workloads.
This results from the aspect that if the memory cache does not contain needed metadata, ScaleFFS
requires at most three flash memory accesses to find the location of a data block. However, as already
seen in Figure 9, this does not significantly degrade the overall performance since the metadata are
rarely evicted from the cache once they are read from flash memory.

6. CONCLUSIONS AND FUTURE WORK

This paper presented the design and implementation of ScaleFFS, a scalable flash file system for mobile
multimedia systems equipped with large-capacity NAND flash memory. The structure of ScaleFFS was
originally inspired by LFS, but is significantly modified and optimized for NAND flash memory. In
particular, ScaleFFS exploits spare areas of NAND flash memory to store extra information and flushes
data as soon as possible. In addition, ScaleFFS does not maintain large extents of free space, and its
checkpoint mechanism is designed to provide long lifetime with flash memory.

Our measurement results have shown that ScaleFFS requires only a small fixed amount of time
to mount a file system. In terms of file system performance, ScaleFFS shows almost the same write
bandwidth and up to 45% higher read bandwidth relative to JFFS2 and YAFFS. Given its small memory
footprint and fast mount time, combined with higher performance than the existing flash file systems,
ScaleFFS is an ideal choice for large-scale NAND flash memory.

For our current implementation, it has been confirmed that the index structure of a disk-based file
system is also applicable for NAND flash memory. The overhead to manage the index structure is found
to be acceptable. In the near future, we plan to redesign the garbage collection of ScaleFFS to achieve
more efficient flash memory utilization and better I/O performance.
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