
1148 IEEE Transactions on Consumer Electronics, Vol. 57, No. 3, August 2011

Contributed Paper
Manuscript received 07/15/11
Current version published 09/19/11
Electronic version published 09/19/11. 0098 3063/11/$20.00 © 2011 IEEE

zFTL: Power-Efficient Data Compression Support
for NAND Flash-based Consumer Electronics Devices

Youngjo Park and Jin-Soo Kim, Member, IEEE

Abstract — Flash translation layers play an important role

in determining the storage performance and lifetime of NAND
flash-based consumer electronics devices. In this paper, we
present a flash translation layer called zFTL, which reduces
the amount of data written to NAND flash memory by
supporting on-line, transparent data compression based on
the X-Match algorithm. To minimize compression overhead
and power consumption, we also propose a novel prediction
scheme that identifies incompressible data in advance without
going through full compression.

Our evaluations with five real-world workloads show that
zFTL successfully enhances storage performance and lifetime
by improving the write amplification factor (WAF) by a factor
of 2.6 (geometric mean) compared to the case without
compression support. In addition, we find that the proposed
prediction scheme is effective in reducing power consumption
by skipping compression for incompressible data1.

Index Terms — NAND flash memory, flash translation layer

(FTL), data compression, incompressible data prediction.

I. INTRODUCTION

Recently, NAND flash memory has become a necessity as a
storage medium for mobile consumer electronics devices,
thanks to its non-volatility, superior performance, shock
resistance, and low-power consumption. With technology
advancing, the capacity of NAND flash memory is getting
larger and its price is getting lower.

However, NAND flash memory has several limitations.
First, previous data should be erased before a new data can be
written in the same place. This is usually called erase-before-
write characteristic. Second, normal read and write operations
are performed on a per-page basis, whereas erase operations
on a per-block basis. The erase block size is larger than the
page size by 64-128 times. In MLC (Multi-Level Cell) NAND
flash memory, the typical page size is 4KB and each block
consists of 128 pages. Finally, flash memory has limited
lifetime; MLC NAND flash memory wears out after 1K to 5K
write/erase cycles.

1 This work was supported by Future-based Technology Development

Program (No. 2010-0020730) and by Mid-career Researcher Program (No.
2010-0026511) through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education, Science and Technology.

Youngjo Park is with Memory Division, Samsung Electronics Co.,
Hwasung 445-701, South Korea (e-mail: yj113.park@samsung.com).

Jin-Soo Kim (corresponding author) is with the School of Information and
Communication Engineering, Sungkyunkwan University, Suwon 440-746,
South Korea (e-mail: jinsookim@skku.edu).

The aforementioned limitations are effectively hidden
through the use of an intermediate software layer called Flash
Translation Layer (FTL) [1]. The basic role of the FTL is to
emulate the traditional block interface on top of NAND flash
memory so that the existing disk-based file systems can be
used without any modification. For this reason, many NAND
flash-based consumer electronics devices, such as MP3
players, in-car navigators, smartphones, tablets, and digital
TVs, implement the FTL in the operating system.

Most FTLs employ an address remapping technique, which
writes incoming data into one or more pre-erased pages and
maintains the mapping information between the host’s logical
sector number and the on-flash physical page number. As the
new data are written, the previous version is invalidated, and
those obsolete pages are collected and then eventually
converted to free pages via the procedure known as garbage
collection. To cope with the limited write/erase cycles, FTLs
also perform wear-leveling which distributes erase operations
evenly across the entire flash memory blocks [2], [3].

Although garbage collection and wear-leveling improve the
overall performance and lifetime, they cause additional writes.
One way to quantify the added cost of an FTL is to measure
the write amplification factor (WAF) [4]. The WAF is defined
as the ratio of actual data written into NAND flash memory as
compared to the actual data written by the host system. A
lower WAF is a measure of efficient storage and
housekeeping algorithms inside FTL, improving the overall
life expectancy of NAND flash memory by lowering the total
write/erase cycles required to manage the data stored in flash
memory. Although the WAF of hard disks is 1.0, the WAF
can be as high as 10 on low-end flash memory cards.

In this paper, we present the design and implementation of
a flash translation layer called zFTL, which internally
compresses or decompresses data. Data compression is an
effective way to lower the WAF further down to below 1.0,
thus improving FTL performance and lengthening flash
lifetime. Specifically, this paper discusses and evaluates
several design issues arise when we support on-line,
transparent compression/decompression inside FTL. zFTL is
based on page-level address remapping [5] and the
compression unit size is set to 4KB. We focus on the
management of the compressed data, assuming the actual
compression/decompression is done by dedicated hardware.
For this reason, zFTL uses the X-Match [6] algorithm which
allows for fast hardware implementation. In addition, this
paper proposes a novel prediction scheme called
Incompressible Data Predictor (IDP) for the X-Match

Y. Park and J.-S. Kim: zFTL: Power-Efficient Data Compression Support for NAND Flash-based Consumer Electronics Devices 1149

algorithm, which identifies incompressible data before they
are fully compressed. The purpose of the IDP is to avoid data
compression for incompressible data, thereby saving time and
power consumption.

zFTL is evaluated with five real-world workloads. Our
results show that the use of data compression improves the
WAF by a factor of 1.8 to 4.7. We also find that the proposed
IDP is effective in reducing power consumption especially
when many of the input data are incompressible. From these
results, we believe zFTL is a power-efficient way of
enhancing the storage performance and lifetime of NAND
flash-based consumer electronics devices.

The rest of the paper is organized as follows. The next
section discusses the related work. Section III introduces the
overall architecture and design issues of zFTL. Section IV
describes the proposed IDP scheme in detail. Section V
presents the experimental results and section VI concludes the
paper.

II. RELATED WORK

Data compression techniques have been studied in various
layers in computer systems. JFFS2 [7] is a representative
flash-aware file system inspired by the log-structured file
system [8]. JFFS2 provides an option to use Zlib-based data
compression [9]. CramFS [10] and SquashFS [11] are
compressed read-only file systems, mainly targeting the root
file system in small embedded systems. Hyun et al. [12]
proposed LeCramFS which modifies CramFS for NAND flash
memory. These flash-aware file systems do not require FTL,
as they work directly on NAND flash memory.

Yim et al. [13] studied a flash compression layer for
SmartMedia card system, proposing an internal packing
scheme (IPS) to manage internal fragmentation. The IPS best-
fit scheme can reduce the internal fragmentation effectively,
but it may incur some read overhead as unrelated logical
sectors are packed together to minimize internal fragmentation.
Chen et al. [14] proposed another internal packing scheme
called IPS real-time. In the IPS real-time scheme, the
compressed data can be stored into consecutive flash pages,
but it has no consideration for random reads; it needs to access
two flash pages to read a sector which spans two pages. Both
approaches focused only on reducing internal fragmentation,
without considering other issues such as mapping information
management and garbage collection under the presence of
compressed data. In addition, they are devised for old 512-
byte flash page size, which has been outdated by new
generations of NAND flash memory chips.

Special hardware compressor/decompressor engines have
been proposed in several literatures. The Memory Expansion
Technology (MXT) [15] performs compression and
decompression between the shared cache and the main
memory, to expand the effective main memory size using
hardware implementation of the LZ77 algorithm [16], [17].
Benini et al. [18] investigated a hardware-assisted data
compression for memory energy minimization. They describe

the implementation of hardware compression algorithms
including LZ-like one in detail and show no penalty in
performance. Kjelso et al. [6] proposed the X-Match
compression algorithm for main memory, which is easy to
implement in hardware. X-Match is another variant of LZ77,
differing in that phrases matching works in four bytes unit
[19]. For brevity, we assume data compression and
decompression is assisted by special hardware that is fast
enough to hide its overhead.

Write Buffer (WB) Read Buffer (RB)

Incompressible
Data Predictor (IDP)

Compressor

Flash Write Buffer
(FWB)

Flash Read Buffer
(FRB)

Decompressor

Address translation Garbage collection

NAND Flash Memory

Host (File System)

Write sectors Read sectors

zFTL

Fig. 1. The overall system architecture of zFTL. The shaded area
indicates the added components to support data compression in zFTL.

III. ZFTL

A. System Architecture

Fig. 1 shows the overall architecture of zFTL. File systems
issue read/write requests to zFTL. The size of each request is a
multiple of the disk sector size (512B). For write requests,
zFTL aggregates the requested data in the Write Buffer (WB),
whose size is equal to the compression unit size. If the WB is
full, the data in the buffer are compressed and the compressed
data (called a “chunk”) are appended into the Flash Write
Buffer (FWB). The size of the FWB is a multiple of the flash
page size (4KB in MLC NAND). Although the compression
unit size is fixed, the resulting chunk is highly variable in size.
Hence, the FWB may hold a number of chunks depending on
the compression ratio.

When the FWB has not enough space for the incoming
chunk, the FWB is flushed into flash memory. Before flushing
data, the corresponding logical sectors are remapped to new
physical pages by zFTL. In case the previous data are
available in any of buffers, they are removed from the buffer,
ensuring data consistency and preventing the invalidated data
from being flushed into flash memory. If the number of free
blocks is below a certain threshold, zFTL initiates garbage
collection to reclaim erase blocks. We will discuss the garbage
collection process of zFTL in section III.D.

For reads, zFTL first searches for the requested data in the
WB as it may have the most recent version of the data. When
the search fails, zFTL looks up the data in the FWB. If the
data are found in the FWB, the corresponding chunk is
decompressed and then loaded into the Read Buffer (RB).
When the data are still not found in the FWB, zFTL examines

1150 IEEE Transactions on Consumer Electronics, Vol. 57, No. 3, August 2011

the RB and the Flash Read Buffer (FRB). Note that the two
write buffers (WB and FWB) should be looked up before the
two read buffers (RB and FRB), as they may keep the up-to-
date data. While the requested data are stored in any of these
buffers, the read request can be satisfied without issuing any
flash read operations. Otherwise, zFTL needs to decompress
the requested chunk after reading the corresponding page
from flash memory.

Some data are inherently incompressible. This happens if
the data belong to multimedia files (such as *.jpg, *.mp3,
*.avi, *.mpg, etc.) or compressed archive files (such as *.zip,
*.rar, *.gz, etc.). zFTL identifies those incompressible data
based on the resulting size after compression. When the
compression ratio is not good enough to justify the overhead
of storing the data in compressed form (currently, 6 bytes for
each chunk), zFTL stores the original (uncompressed) data
into flash memory in order to save space. While reading these
data, zFTL directly copies the contents of the FRB to the RB,
bypassing the decompressor. This also saves the time and
energy that might be spent on decompressing such data.

One problem with this approach is that it is uncertain
whether the current data are sufficiently compressible or not
until the entire data are processed by the compressor engine. If
we could determine whether the incoming data are
incompressible or not in advance before the actual
compression, the compression overhead can be avoided for
incompressible data. In Fig. 1, the Incompressible Data
Predictor (IDP) is introduced for this reason. The IDP
examines a small subset of data in the WB and predicts
whether the current data are incompressible or not. If the data
are predicted incompressible, the compressor engine is
bypassed and the original data are forwarded to the FWB. The
prediction scheme used in the IDP will be described in detail
in section IV.

B. Compression Algorithms

The choice of compression algorithms is one of the
important design issues, because it determines the speed of
compression/decompression, the compression ratio, and the
complexity of hardware implementation. Many hardware
implementations of LZ77 [16] or variants have been proposed
in previous studies. Among them, we choose a variant of
LZ77 called the X-Match [6] algorithm for zFTL. X-Match
not only shows fairly reasonable compression ratio across the
workloads, but also allows for efficient hardware
implementation. Moreover, we show that it is possible to
develop an effective Incompressible Data Predictor (IDP) for
the X-Match algorithm in section IV.

The unit of data compression is another important factor
affecting the compression ratio and speed. In particular,
dictionary-based algorithms such as LZ77 and X-Match have
the characteristic that the bigger compression unit tends to
yield the better compression ratio. This is because these
algorithms replace a repeated pattern of strings within the
compression unit by a much shorter but uniquely identifiable
string.

We have considered two options related to the unit of
compression. One is to compress the variable-sized data as a
whole as it is delivered by a single write request from the file
system. The number of sectors written by a write request is
usually a multiple of the file system block size and can be as
large as 256 sectors (i.e., 128KB) for sequential writes. Thus,
this scheme can improve the overall compression ratio and
reduce the number of mapping entries. However, the use of
the variable-sized compression unit presents a number of
issues that need careful handling. For example, when a portion
of the compressed data is read by a read request, the entire
compressed data should be fetched from flash memory for
decompression. An even worse scenario occurs when the
compressed data are partly updated by a later write operation.
In this case, the original data should be merged with the new
data after decompression. Then, it can be either recompressed
and stored into flash memory as a single compression unit, or
split into two or three pieces each of which is separately
compressed and stored.

Another option is to compress a fixed size of data at a time.
In fact, any power of two multiple of the sector size, such as
512B, 1KB, 2KB, 4KB, 8KB, etc., can be used as the
compression unit size. As discussed before, the use of larger
compression unit size is favored for better compression ratio.
However, if the compression unit size becomes too large, the
system suffers from unnecessary overhead when the
compressed data are partly read or updated. Moreover,
enlarging the compression unit size has a diminishing return
in the compression ratio. Burrows et al. [20] and Yim et al.
[13] have shown that there is no significant difference in the
compression ratio for 2KB to 8KB compression unit sizes.

For the above reasons, zFTL uses a fixed compression unit
size of 4KB. Since most file systems use at least 4KB as the
file system block size, they rarely issue I/O operations smaller
than this size and the read/write request sizes are usually a
multiple of 4KB. In addition, the compression unit size of
4KB is large enough to achieve good compression ratio.

C. Address Mapping

zFTL employs a page-level mapping technique [5] where a
per-page mapping entry from the logical page number to the
physical flash page number is maintained in the Page Mapping
Table (PMT). Similar to other FTLs with page-level mapping,
PMT is accessed by the logical page number. To support data
compression, zFTL extends the structure of PMT slightly.
Each 32-bit mapping entry includes the incompressible data
flag (FLAG) and the page index (IDX), as well as the physical
page number (PPN) where the page is stored. FLAG indicates
whether the corresponding logical page is compressed or not.
Since a single flash page may accommodate compressed
chunks from several logical pages in zFTL, IDX is used to
represent the relative position of each logical page within the
physical page. Fig. 2 illustrates an example of PMT in zFTL.
Note that PMT entries for the logical page number 100, 101,
and 102 have the same value for the PPN field, representing
that the data for those logical pages are compressed and stored

Y. Park and J.-S. Kim: zFTL: Power-Efficient Data Compression Support for NAND Flash-based Consumer Electronics Devices 1151

in the same physical page number 320 in the order indicated
by the IDX value. For incompressible data, the corresponding
FLAG is set to 1 (cf. the PMT entry of the logical page number
103 in Fig. 2).

Fig. 2. The structure of page mapping table (PMT) and on-flash layout
in zFTL. The contents of logical page numbers (LPNs) 100-102 are
compressed and stored in physical page number (PPN) 320. The data in
LPN 103 are incompressible (FLAG==1), hence they are stored
uncompressed in PPN 400.

Depending on FLAG, the physical flash page has two

different structures. For incompressible data (FLAG = 1), the
entire page is devoted to the (uncompressed) original data.
When the page size is larger than the compression unit size,
each data block is identified by IDX. On the other hand, when
the value of FLAG is 0, the related physical page includes such
information as the total number of chunks in the page, a set of
offsets for each chunk, and a set of chunks, as depicted in Fig.
2. The offset indicates the last byte position of the
corresponding chunk in the page.

D. Garbage Collection

As in other FTLs, zFTL reserves a set of erase blocks (5%
of the total erase blocks, by default) to absorb the incoming
write requests. When zFTL runs out of available erase blocks,
garbage collection is invoked to reclaim the space allocated to
obsolete pages. zFTL uses the greedy policy to choose a
victim erase block, i.e., the erase block which has the smallest
number of valid pages is selected as a victim. During garbage
collection, the remaining valid pages in the victim erase block
are copied into another erase block and the victim erase block
is cleared to be used later.

Since each physical page normally contains the data from
more than one logical page in zFTL, it can be partially
invalidated by subsequent write operations. Therefore, zFTL
should be able to identify the current status of each chunk
stored in the same physical page, in order to copy only the
valid chunk during garbage collection. For this reason, zFTL
maintains the Page Status Table (PST) in memory. Unlike
PMT, PST is indexed by the physical page number, and each
PST entry keeps track of the number of valid chunks and the
bitmap for each chunk stored in the given physical page
number. The bitmap indicates whether the corresponding
chunk is valid or not.

Fig. 3 shows an example 8-bit PST entry designed for 4KB
physical pages. Fig. 3 represents that two chunks (the second
and the third one) are currently valid in the physical page
number 330. Under this PST structure, up to five logical pages
can be packed into a 4KB physical page. Our experiments
show that about three chunks are stored in a single 4KB flash

page on average for the most of well-compressed workloads.
Thus, we believe the 8-bit entry is sufficient for 4KB flash
pages. If the page size is increased, we can add a few more
bits to each PST entry.

Fig. 3. An example PST (Page Status Table) entry. This example shows
that there are two valid chunks (the second and the third one) in physical
page number (PPN) 330.

E. Internal Fragmentation

The flash page size is fixed whereas the resulting chunk
size varies after compression. Unless we allow a chunk to be
stored in more than one page, internal fragmentation is
unavoidable. The relative amount of internal fragmentation
will be getting smaller as the page size becomes larger than
the compression unit size. Considering the recent trend in
NAND flash memory architecture where the page size grows
progressively larger, the impact of internal fragmentation can
be of minor significance, compared to the benefit of
compression support.

Currently, zFTL does not implement any special scheme to
reduce internal fragmentation. zFTL simply packs the
incoming data in the order they are issued from the upper
layer. We leave a more comprehensive analysis and possible
optimization on internal fragmentation for future work.

F. Memory Requirement

The memory requirement of zFTL is comparable to other
FTLs with page-level mapping. The use of block-level
mapping can decrease the memory requirement by a factor of
64 to 128, but the increasing number of flash-based storage is
adopting page-level mapping due to its superior performance
and higher flexibility. Since other page-mapping FTLs also
keep page-level address mapping information in memory (i.e.,
PMT in zFTL), only the memory used by PST is the added
cost in zFTL, which requires 512KB for 2GB flash memory
with 4KB page size.

If PMT and PST are too large to be accommodated in
memory, zFTL may use the selective caching method used in
DFTL [5], where the whole mapping table is stored in flash
memory and only the needed part of the mapping table is
loaded into memory.

IV. PREDICTING INCOMPRESSIBLE DATA

A. Overview of the X-Match Algorithm

The goal of the Incompressible Data Predictor (IDP) shown
in Fig. 1 is to identify the incompressible data in advance
without going through full compression. To design an effective
predictor, it is necessary to investigate the characteristics of the
underlying X-Match compression algorithm.

The X-Match algorithm is a dictionary-based lossless data
compression algorithm. X-Match maintains a dictionary of

1152 IEEE Transactions on Consumer Electronics, Vol. 57, No. 3, August 2011

data previously seen and attempts to match the current data
with an entry in the dictionary [6]. Its dictionary is composed
of up to 128 entries and each entry has 4 bytes. X-Match reads
4 bytes from the input data (referred to as a “tuple”) at a time
for matching. Fig. 4 illustrates the basic idea of the X-Match
algorithm with example cases.

If the incoming tuple fully matches with an entry in the
dictionary as shown in Fig. 4(a), a single bit of ‘0’ is emitted
first as an output to indicate a match, followed by the
information on the match location (<ML>) and the match type
(<MT>). The match location is encoded with the phased
binary code and represents the location of the matched
directory entry. The match type denotes the Huffman code for
the full match. Note that the matched directory entry is moved
to the top of the dictionary.

A partial hit occurs when at least any two characters of the
incoming tuple match with a dictionary entry, as depicted in
Fig. 4(b). In this case, the match type encodes (using the
Huffman code) which characters from the incoming tuple
matched a dictionary entry. Any unmatched characters from
the incoming tuple are then sent literally (‘Z’ in Fig. 4(b)).
Otherwise, a miss occurs and a single bit of ‘1’ is transmitted
followed by the tuple itself as illustrated in Fig. 4(c). For a
partial hit or a miss, the incoming tuple is inserted at the top of
the dictionary.

Fig. 4. Example cases of the X-Match algorithm. <ML> represents the
match location (i.e., the location of the matching entry in the dictionary)
encoded with the phased binary code. <MT> indicates the Huffman code
for the match type.

B. Incompressible Data Predictor (IDP)

As described in the previous subsection, X-Match
repeatedly matches a 4-byte tuple against the dictionary
entries. For a tuple to be compressed, at least two characters

should be matched with any of the dictionary entries. Our IDP
is based on the following observations. First, since the
dictionary is gradually filled with the incoming tuples, X-
Match works better if there are many overlapped characters
between tuples. Second, only the overlap of characters in the
same byte position in a tuple matters. For example, although
two tuples “AACC” and “CCAA” have many characters in
common, it is not helpful for X-Match as they have different
characters in each byte position.

The basic idea behind the proposed IDP is to count the
number of distinct characters in each byte position for the
incoming tuples, and then use this count to predict whether the
data will be compressed or not. Fig. 5 presents the case when
the number of tuples is eight. Each tuple is arranged vertically,
and we count the number of unique characters in each column,
C1, C2, C3, and C4. If this count is small, it means that many
characters are overlapped in the particular column. The large
count indicates that there are many unique characters in that
column, lowering the possibility of full hits or partial hits.

Fig. 5. The basic idea of predicting incompressible data. The number of
unique characters in each column can be used to predict whether the data
are incompressible or not.

To confirm this idea, we have conducted an experiment

with real data. Fig. 6 illustrates the cumulative distribution of
the number of unique characters in the third column for the
data produced while office productivity software is installed.
As we use the compression unit size of 4KB, there are 1,024
tuples per compression unit to be processed by the X-Match
algorithm. Since each byte can have the value between 0 and
255, the count of each column will have the value between 1
and 256. Out of the total 243,897 compression units generated
during this experiment, 137,474 units (56.4%) were
incompressible, i.e., the size of the compressed data plus 6
bytes (the metadata size for each chunk) exceeded the size of
the original data (4KB). Fig. 6 shows that 99.7% of these
incompressible units have the number of unique characters
greater than 239 characters in the third column. On the other
hand, the number of unique characters is distributed over a
much wider range for compressible units.

Fig. 6 suggests that the number of unique characters can be
an effective means to predict whether a certain compression
unit is compressible or not. For example, we may use a

Y. Park and J.-S. Kim: zFTL: Power-Efficient Data Compression Support for NAND Flash-based Consumer Electronics Devices 1153

prediction policy such that a compression unit is
incompressible if it has more than 239 unique characters in the
third column. If we use this policy, only 0.4% of
incompressible units are mispredicted as compressible and
4.5% of compressible units are mispredicted as
incompressible, according to Fig. 6. Although we count the
number of unique characters only for the third column, the
results for the other columns are similar.

This idea can be extended further to minimize overhead.
Instead of looking at all the tuples to count the number of
distinct characters in each column, we found that the
prediction using only a subset of tuples works quite well.
Specifically, the proposed Incompressible Data Predictor
(IDP) only counts the number of distinct characters in the
third column for the first 32 tuples and predicts that a
compression unit is incompressible if the count is greater than
25 characters. When we use this prediction policy, 99.4% of
incompressible units and 86.2% of compressible units are
predicted correctly for the same workload shown in Fig. 6.
Although the misprediction rate is slightly higher, our
prediction policy has the benefit that it can make a decision
whether the compression for the current data should be
continued or stopped after looking at just 32 tuples out of the
total 1,024 tuples.

Fig. 6. The cumulative distribution of the number of unique characters
in the third column for incompressible/compressible units. Each unit is
4KB in size and the data are collected while installing office productivity
software.

C. Hardware Implementation of IDP

Because the prediction for incompressible data should be
performed as fast as the hardware compressor, the IDP also
needs to be implemented in hardware. The IDP hardware is
placed within the compressor and synchronizes its clock cycle
with the compressor to minimize the prediction delay. The
IDP hardware has 256 1-bit registers as shown in Fig. 7. The
prediction hardware takes the third byte of the tuple read by
the X-Match compressor for each cycle, and sets the
corresponding register to the value of ‘1’. The number of
registers which have the value of ‘1’ represents the number of
unique characters. To eliminate the delay for counting the
registers whose values are ‘1’, the original value of each
register is inverted and then added to the counter before the

value is updated in the selected register. After the first 32
cycles, the prediction hardware compares the counter value
with the threshold configured beforehand (25 by default). If
the counter value is greater than the threshold, the prediction
hardware sends the stop signal to the controller of the X-
Match compressor.

Fig. 7. The hardware implementation of the Incompressible Data
Predictor (IDP). The third byte of each tuple is used to set the value of the
corresponding register to ‘1’. When the value is transitioned from ‘0’ to
‘1’, the counter is incremented. If the counter value is greater than the
threshold value after 32 cycles, the current unit is predicted
incompressible and the compressor is stopped.

We have designed and implemented the prediction

hardware using an FPGA. The cost of the IDP hardware is
about 482 LUTs which is approximately 2K in ASIC gates. It
is very small compared with the X-Match
compressor/decompressor which is known to cost 110K gates
[6]. The prediction takes 165 ns for a single 4KB unit
according to the simulation result. Therefore, the performance
degradation due to the prediction is almost negligible.

V. EVALUATION

A. Experimental Setup

zFTL is implemented as one of block device drivers in an
open-source operating system. The compression support can
be turned off anytime using a special kernel interface. Instead
of using bare NAND flash chips, we use the generic kernel
subsystem which emulates the behavior and timing of various
memory devices including NAND flash chips. We configured
the parameters of the subsystem to model a 2GB MLC NAND
flash memory chip where the page size is 4KB and each erase
block has 128 pages. The latency of read, write, and erase
operation is assumed to be 60 μs, 800 μs, and 1.5 ms,
respectively, according to the data sheet of a representative
MLC NAND flash memory chip.

Table 1 shows the basic information of five workloads used
in this paper. UNTAR and COMPILE are the real workloads
executed on the evaluation platform, which untar and compile
the source code of a version of open-source operating system,

1154 IEEE Transactions on Consumer Electronics, Vol. 57, No. 3, August 2011

respectively. TEMP denotes the set of files downloaded from
the Internet while a web browser visits social network sites, e-
commerce sites, video sharing sites, and Internet portal sites.
We periodically collect the files in the browser’s temporary
directory and then copied them onto zFTL.
SYSTEM and INSTALL workloads are mainly used to

investigate the compression ratios of the files used in a
commercial operating system. The SYSTEM workload is
obtained by copying system files to zFTL which are
frequently used by the commercial operating system. The
INSTALL workload represents the storage access requests
generated while office productivity software is installed in the
commercial operating system. The installation process has
been mimicked by extracting file system access traces with a
profiling tool and replaying them on the evaluation platform.

TABLE I

WORKLOADS USED IN THIS PAPER

Workload
Write

Requests
Read

Requests
Sectors
Written

Sectors
Read

UNTAR 35,720 16,184 967,232 129,472
COMPILE 63,976 33,216 937,232 265,728
TEMP 63,064 8 1,864,112 64

SYSTEM 77,384 9 2,319,160 72
INSTALL 65,704 8,281 1,948,008 66,248

To model an aged file system, we initialize zFTL by

running Postmark 1.51 [21] before each experiment. Postmark
is configured with 25K files, 50K transactions, and file sizes
ranging from 30KB to 80KB. The total amount of data written
by Postmark is about 3GB. During this preconditioning phase,
we turn off the compression support in zFTL.

The performance of X-Match with the proposed
Incompressible Data Predictor is compared to those of Zlib [9],
LZ77 [16], and the original X-Match [6]. Zlib and LZ77 are
very well-known compression algorithms for their
performance and reliability. Zlib is a representative software
library used for data compression. Although it is expensive to
implement the Zlib algorithm in hardware, we incorporate it
into our evaluation as it shows the best compression ratios for
the workloads shown in Table I. Overall, LZ77 exhibits
slightly worse compression ratio than Zlib, but efficient
hardware implementations of LZ77 or variants have been
proposed in several previous studies. In fact, the X-Match
algorithm is also a variant of LZ77.

B. Average Compression Ratio

Fig. 8 shows the average compression ratios for each
workload with Zlib, LZ77, X-Match, and X-Match with IDP.
The compression ratio is defined as the ratio of the
compressed chunk size to the original (uncompressed) data
size (4KB). Hence, the lower the compression ratio, the better.
The average compression ratio varies from workload to
workload, but Zlib always results in the best compression ratio.
In particular, workloads which manipulate text-based files

such as UNTAR and COMPILE exhibit fairly good compression
ratios as low as 27% with Zlib. Because X-Match compresses
the data in four bytes unit, the compression ratios of X-Match
is not as good as those of Zlib or LZ77 in these text-based
workloads.

On the other hand, TEMP shows much worse compression
ratio since most files are image files and movie clips which
have been already compressed. We find that system files
touched in the SYSTEM workload also reveal good
compression ratios. The compression ratio of INSTALL is
higher than that of SYSTEM by 21% (Zlib) or by 24% (LZ77).
This is because INSTALL handles many files in a special file
format that stores a library of compressed files. X-Match with
IDP presents almost the same compression ratio as the original
X-Match. The difference between X-Match and X-Match with
IDP comes from a small number of mispredictions in X-Match
with IDP, but the difference is hardly noticeable in many cases.

Fig. 8. Average compression ratio. The compression ratio depends on the
contents of the data and the compression algorithms. X-Match with IDP
shows slightly worse compression ratio than the original X-Match due to
mispredictions, but the difference is hardly noticeable.

C. Write Amplification Factor (WAF)

Fig. 9 compares the Write Amplification Factor (WAF)
before and after the compression support is enabled. The
WAF breaks down according to the source of writes; it is
either for the actual data writes or for the writes issued during
garbage collection. The upper bar indicates the amount of
additional writes caused by garbage collection, which is as
high as 4.19 (in COMPILE) when the compression is not
enabled.
UNTAR and COMPILE show very low WAFs under zFTL

due to their low compression ratios. Since the amount of data
written into NAND flash memory is reduced effectively,
garbage collection hardly occurs. As a result, their WAFs are
improved by a factor of 11.3 (UNTAR) and 15.0 (COMPILE)
with the Zlib algorithm. The WAFs for TEMP, SYSTEM, and
INSTALL are also improved by a factor of 3.5, 5.5, and 2.6,
respectively, with Zlib. LZ77 and X-Match perform slightly
worse than Zlib, resulting in improvements in WAFs by a
factor of 2.1 (INSTALL) to 10.8 (COMPILE) with LZ77, and by

Y. Park and J.-S. Kim: zFTL: Power-Efficient Data Compression Support for NAND Flash-based Consumer Electronics Devices 1155

a factor of 1.9 (INSTALL) to 5.0 (COMPILE) with X-Match. X-
Match with IDP reduces the WAFs for UNTAR, COMPILE,
TEMP, SYSTEM, and INSTALL workloads by a factor of 2.1, 4.7,
2.0, 3.1, and 1.8, respectively, with the geometric mean of 2.6.
Compared to X-Match, X-Match with IDP increases WAFs by
5.0% on average due to mispredicted data.

Fig. 9. Write amplification factor (WAF). The leftmost bar in each
workload shows the WAF without compression support. X-Match with
IDP improves WAFs by a factor of 2.6 (geometric mean).

D. Garbage Collection Overhead

Fig. 10 illustrates the total time spent on garbage collection.
It is estimated by multiplying the number of flash read, write,
and erase operations during garbage collection by the
respective operational latencies of MLC NAND flash memory.
The final results are normalized to the values obtained when
the compression support is disabled.

Fig. 10. Normalized garbage collection overhead. The final results are
normalized to the values obtained when the compression support is
disabled. We can see that the use of compression effectively reduces the
time spent on garbage collection.

In UNTAR and COMPILE workloads, the garbage collection

overhead is almost negligible for Zlib and LZ77 because of
good compression ratios. X-Match with IDP shows the largest
overhead, but it is still much better than the case without any
compression. We observe that the overall trend of Fig. 10 is
highly correlated to that of Fig. 8.

E. Power Consumption

Fig. 11 shows how much power is saved by using the
proposed Incompressible Data Predictor (IDP) with the X-
Match algorithm with respect to the original X-Match
algorithm. In the original X-Match algorithm, all tuples in
each 4KB compression unit should go through the compressor
engine for 1,024 cycles. Thus, the power consumption, Porg,
required to process the total N compression units by the
original X-Match algorithm can be given by

1024 comporg PNP (1)

where Pcomp represents the unit power consumed by the
compressor hardware per cycle. Under the X-Match algorithm
with the proposed IDP, the data predicted incompressible stop
using the compressor engine after 32 cycles. Therefore, the
power consumption of the proposed approach can be
approximated as follows:

32)102432( predpcpicompIDP PNNNPP . (2)

In (2), Npi and Npc denote the number of compression units
that are predicted incompressible and compressible,
respectively, where N = Npi + Npc. Ppred indicates the unit
power spent by the prediction hardware per cycle. We
estimated that Ppred is one-fiftieth of Pcomp, assuming that the
power consumption is roughly proportional to the number of
logic gates required to implement the hardware (cf. section
IV.C).

Fig. 11. Estimated power consumption of X-Match with the proposed
IDP. The values are normalized to the estimated power consumption in
the original X-Match algorithm. In UNTAR, COMPILE, and SYSTEM, there
are no significant benefit as most of the data are compressible in these
workloads. However, INSTALL and TEMP show power savings by 60% and
by 69%, respectively.

As can be seen in (2), the power saving due to the proposed
IDP greatly depends on Npi, the number of compression units
that are predicted incompressible. One extreme workload is
UNTAR, where only 0.02% of the input data are predicted
incompressible. In this case, virtually no power saving has
been achieved as shown in Fig. 11. In COMPILE and SYSTEM,
3.2% and 5.6% of the data are predicted incompressible,
respectively, resulting in 3.9% (COMPILE) and 10.8%
(SYSTEM) of power savings. When there are modest number
of incompressible data as in TEMP and INSTALL, the use of

1156 IEEE Transactions on Consumer Electronics, Vol. 57, No. 3, August 2011

IDP achieves 68.6% and 60.0% of power savings, respectively.
In TEMP and INSTALL, 63.0% and 56.1% of the data are
predicted incompressible. With our evaluation with another
extreme workload which is composed of 99% of
incompressible data, we observe that the proposed approach
saves power consumption by 97%.

V. CONCLUSION

Due to inherent characteristics of NAND flash memory
which does not allow in-place update and wears out after
repeated write/erase cycles, flash translation layers have been
using a variety of techniques to enhance the overall
performance and lifetime of NAND flash-based consumer
electronics devices. Many previous researches on flash
translation layers have focused on efficient address mapping
and garbage collection schemes. However, another orthogonal
issue that can reduce the amount of data written into NAND
flash memory is to support data compression inside the flash
translation layer.

In this paper, we present zFTL, a flash translation layer
which supports on-line, transparent data compression based
on the X-Match algorithm. We have examined several design
issues to support data compression in the flash translation
layer, including some required extensions in address mapping
and garbage collection. To reduce the compression overhead
and power consumption associated with incompressible data,
we have also proposed a novel scheme called Incompressible
Data Predictor (IDP) that can predict whether the input data
are incompressible or not by examining only a subset of data.

Through the use of five real-world workloads, we confirm
that zFTL improves the WAF by a factor of 2.6 (geometric
mean) compared to the case without compression support. The
proposed IDP is effective in reducing power consumption
especially when there are many incompressible units among
input data. When 63.0% of the data are predicted
incompressible, zFTL reduces power consumption by 68.4%
compared to the original X-Match algorithm without any
prediction scheme.

REFERENCES
[1] Intel Corporation, “Understanding the flash translation layer (FTL)

specification,” Application Note AP-684, Dec. 1998.
[2] A. Kawaguchi, S. Nishioka, and H. Motoda, “A flash-memory based file

system,” In Proc. of the USENIX Winter Technical Conference, pp. 155–
164, 1995.

[3] J. Kim, J. M. Kim, S. Noh, S. L. Min, and Y. Cho, “A space-efficient
flash translation layer for CompactFlash systems,” IEEE Transactions
on Consumer Electronics, vol. 48, no. 2, pp.366-375, 2002.

[4] X.-Y. Hu, E. Eleftheriou, R. Haas, I Iliadis, and R. Pletka, “Write
amplification analysis in flash-based solid state drives,” In Proc. Of the
Israeli Experimental Systems Conference (SYSTOR), 2009.

[5] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a flash translation layer
employing demand-based selective caching of page-level address
mappings,” In Proc. of the Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pp. 229–240, 2009.

[6] M. Kjelso, M. Gooch, and S. Jones, “Design and performance of a main
memory hardware data compressor,” In Proc. of the 22nd EUROMICRO
Conference, pp.2-5, Sep. 1996.

[7] D. Woodhouse, “JFFS: the journaling flash file system,” In Proc. of the
Ottawa Linux Symposium (OLS), 2001.

[8] M. Rosenblum, and J. K. Ousterhout, “The design and implementation
of a log-structured file system,” ACM Transactions on Computer
Systems, vol. 10, no. 1, pp. 26–52, Feb. 1992.

[9] J.-L. Gailly and M. Adler, Zlib general purpose compression library
(version 1.2.5), Apr. 2010.

[10] N. Goyal and R. Mahapatra, “Energy characterization of CRAMFS for
embedded systems,” In Proc. of the International Workshop on Software
Support for Portable Storage (IWSSPS), 2005.

[11] A. I. Pavlov and M. Cecchetti, SquashFS HOWTO (revision 1.9), Jul.
2008.

[12] S. Hyun, H. Bahn, and K. Koh, “LeCramFS: an efficient compressed file
system for flash-based portable consumer devices,” IEEE Transactions
on Consumer Electronics, vol. 53, no. 2, pp. 481–488, May 2007.

[13] K. S. Yim, H. Bahn, and K. Koh, “A flash compression layer for
SmartMedia card systems,” IEEE Transactions on Consumer
Electronics, vol. 50, no.1, pp. 192–197, Feb. 2004.

[14] C. H. Chen, C. T. Chen, and W. T. Huang, “The real-time compression
layer for flash memory in mobile multimedia devices,” In Proc. of the
International Conference on Multimedia and Ubiquitous Engineering,
pp. 171–176, Apr. 2007.

[15] R. B. Tremaine, P. A. Franaszek, J. T. Robinson, C. O. Schulz, T. B.
Smith, M. E. Wazlowski, and P. M. Bland, “IBM memory expansion
technology (MXT),” IBM Journal of Research and Development, vol. 45,
no. 2, pp.271–285, Mar. 2001.

[16] J. Ziv and A. Lempel, “A universal algorithm for sequential data
Compression,” IEEE Transactions on Information Theory, vol. 23, no. 3,
pp. 337–343, May 1977.

[17] P. A. Franaszek, J. Robinson, and J. Thomas, “Parallel compression with
cooperative dictionary construction,” In Proc. of the Data Compression
Conference, pp. 200–209, 1996.

[18] L. Benini, D. Bruni, A. Macii, and E. Macii, “Hardware-assisted data
compression for energy minimization in systems with embedded
processors,” In Proc. of Design, Automation and Test in Europe (DATE),
pp. 449–453, 2002.

[19] C. D. Benveniste, P. A. Franaszek, and J. T. Robinson, “Cache-memory
interfaces in compressed memory systems,” IEEE Transactions on
computers, vol. 50, no. 11, pp. 1106–1116, Nov. 2001

[20] M. Burrows, C. Jerian, B. Lampson, and T. Mann, “On-line data
compression in a log-structured file system,” In Proc. of the
Architectural Support for Programming Languages and Operating
System (ASPLOS), pp. 2–9, 1992.

[21] J. Katcher, “PostMark: a new filesystem benchmark,” Technical Report
TR3022, Network Appliance, 1997.

BIOGRAPHIES

Youngjo Park received his BS degree in computer
engineering from Kookmin University, Korea, in 2009, and
the MS degree in embedded software from Sungkyunkwan
University (SKKU), Korea, in 2011. He is currently an
assistant engineer in Samsung Electronics Co. His research
interests include NAND flash memory, storage systems,
and embedded systems.

Jin-Soo Kim (M’89) received the BS, MS, and PhD
degrees in computer engineering from Seoul National
University, Korea, in 1991, 1993, and 1999, respectively.
He is currently an associate professor in Sungkyunkwan
University (SKKU). Before joining SKKU, he was an
associate professor at Korea Advanced Institute of Science
and Technology (KAIST) from 2002 to 2008. He was also

with the Electronics and Telecommunications Research Institute (ETRI) from
1999 to 2002 as a senior member of research staff, and with the IBM T. J.
Watson Research Center as an academic visitor from 1998 to 1999. His
research interests include embedded systems, storage systems, and operating
systems. He is a member of the IEEE and the IEEE Computer Society.

