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Abstract — Flash translation layers play an important role 

in determining the storage performance and lifetime of NAND 
flash-based consumer electronics devices. In this paper, we 
present a flash translation layer called zFTL, which reduces 
the amount of data written to NAND flash memory by 
supporting on-line, transparent data compression based on 
the X-Match algorithm. To minimize compression overhead 
and power consumption, we also propose a novel prediction 
scheme that identifies incompressible data in advance without 
going through full compression. 

Our evaluations with five real-world workloads show that 
zFTL successfully enhances storage performance and lifetime 
by improving the write amplification factor (WAF) by a factor 
of 2.6 (geometric mean) compared to the case without 
compression support. In addition, we find that the proposed 
prediction scheme is effective in reducing power consumption 
by skipping compression for incompressible data1. 

  
Index Terms — NAND flash memory, flash translation layer 

(FTL), data compression, incompressible data prediction. 

I. INTRODUCTION 

Recently, NAND flash memory has become a necessity as a 
storage medium for mobile consumer electronics devices, 
thanks to its non-volatility, superior performance, shock 
resistance, and low-power consumption. With technology 
advancing, the capacity of NAND flash memory is getting 
larger and its price is getting lower.  

However, NAND flash memory has several limitations. 
First, previous data should be erased before a new data can be 
written in the same place. This is usually called erase-before-
write characteristic. Second, normal read and write operations 
are performed on a per-page basis, whereas erase operations 
on a per-block basis. The erase block size is larger than the 
page size by 64-128 times. In MLC (Multi-Level Cell) NAND 
flash memory, the typical page size is 4KB and each block 
consists of 128 pages. Finally, flash memory has limited 
lifetime; MLC NAND flash memory wears out after 1K to 5K 
write/erase cycles.  
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The aforementioned limitations are effectively hidden 
through the use of an intermediate software layer called Flash 
Translation Layer (FTL) [1]. The basic role of the FTL is to 
emulate the traditional block interface on top of NAND flash 
memory so that the existing disk-based file systems can be 
used without any modification. For this reason, many NAND 
flash-based consumer electronics devices, such as MP3 
players, in-car navigators, smartphones, tablets, and digital 
TVs, implement the FTL in the operating system.  

Most FTLs employ an address remapping technique, which 
writes incoming data into one or more pre-erased pages and 
maintains the mapping information between the host’s logical 
sector number and the on-flash physical page number. As the 
new data are written, the previous version is invalidated, and 
those obsolete pages are collected and then eventually 
converted to free pages via the procedure known as garbage 
collection. To cope with the limited write/erase cycles, FTLs 
also perform wear-leveling which distributes erase operations 
evenly across the entire flash memory blocks [2], [3].  

Although garbage collection and wear-leveling improve the 
overall performance and lifetime, they cause additional writes. 
One way to quantify the added cost of an FTL is to measure 
the write amplification factor (WAF) [4]. The WAF is defined 
as the ratio of actual data written into NAND flash memory as 
compared to the actual data written by the host system. A 
lower WAF is a measure of efficient storage and 
housekeeping algorithms inside FTL, improving the overall 
life expectancy of NAND flash memory by lowering the total 
write/erase cycles required to manage the data stored in flash 
memory. Although the WAF of hard disks is 1.0, the WAF 
can be as high as 10 on low-end flash memory cards. 

In this paper, we present the design and implementation of 
a flash translation layer called zFTL, which internally 
compresses or decompresses data. Data compression is an 
effective way to lower the WAF further down to below 1.0, 
thus improving FTL performance and lengthening flash 
lifetime. Specifically, this paper discusses and evaluates 
several design issues arise when we support on-line, 
transparent compression/decompression inside FTL. zFTL is 
based on page-level address remapping [5] and the 
compression unit size is set to 4KB. We focus on the 
management of the compressed data, assuming the actual 
compression/decompression is done by dedicated hardware. 
For this reason, zFTL uses the X-Match [6] algorithm which 
allows for fast hardware implementation. In addition, this 
paper proposes a novel prediction scheme called 
Incompressible Data Predictor (IDP) for the X-Match 
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algorithm, which identifies incompressible data before they 
are fully compressed. The purpose of the IDP is to avoid data 
compression for incompressible data, thereby saving time and 
power consumption.  

zFTL is evaluated with five real-world workloads. Our 
results show that the use of data compression improves the 
WAF by a factor of 1.8 to 4.7. We also find that the proposed 
IDP is effective in reducing power consumption especially 
when many of the input data are incompressible. From these 
results, we believe zFTL is a power-efficient way of 
enhancing the storage performance and lifetime of NAND 
flash-based consumer electronics devices.  

The rest of the paper is organized as follows. The next 
section discusses the related work. Section III introduces the 
overall architecture and design issues of zFTL. Section IV 
describes the proposed IDP scheme in detail. Section V 
presents the experimental results and section VI concludes the 
paper. 

II. RELATED WORK 

Data compression techniques have been studied in various 
layers in computer systems. JFFS2 [7] is a representative 
flash-aware file system inspired by the log-structured file 
system [8]. JFFS2 provides an option to use Zlib-based data 
compression [9]. CramFS [10] and SquashFS [11] are 
compressed read-only file systems, mainly targeting the root 
file system in small embedded systems. Hyun et al. [12] 
proposed LeCramFS which modifies CramFS for NAND flash 
memory. These flash-aware file systems do not require FTL, 
as they work directly on NAND flash memory.  

Yim et al. [13] studied a flash compression layer for 
SmartMedia card system, proposing an internal packing 
scheme (IPS) to manage internal fragmentation. The IPS best-
fit scheme can reduce the internal fragmentation effectively, 
but it may incur some read overhead as unrelated logical 
sectors are packed together to minimize internal fragmentation. 
Chen et al. [14] proposed another internal packing scheme 
called IPS real-time. In the IPS real-time scheme, the 
compressed data can be stored into consecutive flash pages, 
but it has no consideration for random reads; it needs to access 
two flash pages to read a sector which spans two pages. Both 
approaches focused only on reducing internal fragmentation, 
without considering other issues such as mapping information 
management and garbage collection under the presence of 
compressed data. In addition, they are devised for old 512-
byte flash page size, which has been outdated by new 
generations of NAND flash memory chips.  

Special hardware compressor/decompressor engines have 
been proposed in several literatures. The Memory Expansion 
Technology (MXT) [15] performs compression and 
decompression between the shared cache and the main 
memory, to expand the effective main memory size using 
hardware implementation of the LZ77 algorithm [16], [17]. 
Benini et al. [18] investigated a hardware-assisted data 
compression for memory energy minimization. They describe 

the implementation of hardware compression algorithms 
including LZ-like one in detail and show no penalty in 
performance. Kjelso et al. [6] proposed the X-Match 
compression algorithm for main memory, which is easy to 
implement in hardware. X-Match is another variant of LZ77, 
differing in that phrases matching works in four bytes unit 
[19]. For brevity, we assume data compression and 
decompression is assisted by special hardware that is fast 
enough to hide its overhead.  
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Fig.  1.  The overall system architecture of zFTL. The shaded area 
indicates the added components to support data compression in zFTL. 

III. ZFTL 

A. System Architecture 

Fig. 1 shows the overall architecture of zFTL. File systems 
issue read/write requests to zFTL. The size of each request is a 
multiple of the disk sector size (512B). For write requests, 
zFTL aggregates the requested data in the Write Buffer (WB), 
whose size is equal to the compression unit size. If the WB is 
full, the data in the buffer are compressed and the compressed 
data (called a “chunk”) are appended into the Flash Write 
Buffer (FWB). The size of the FWB is a multiple of the flash 
page size (4KB in MLC NAND). Although the compression 
unit size is fixed, the resulting chunk is highly variable in size. 
Hence, the FWB may hold a number of chunks depending on 
the compression ratio. 

When the FWB has not enough space for the incoming 
chunk, the FWB is flushed into flash memory. Before flushing 
data, the corresponding logical sectors are remapped to new 
physical pages by zFTL. In case the previous data are 
available in any of buffers, they are removed from the buffer, 
ensuring data consistency and preventing the invalidated data 
from being flushed into flash memory. If the number of free 
blocks is below a certain threshold, zFTL initiates garbage 
collection to reclaim erase blocks. We will discuss the garbage 
collection process of zFTL in section III.D. 

For reads, zFTL first searches for the requested data in the 
WB as it may have the most recent version of the data. When 
the search fails, zFTL looks up the data in the FWB. If the 
data are found in the FWB, the corresponding chunk is 
decompressed and then loaded into the Read Buffer (RB). 
When the data are still not found in the FWB, zFTL examines 
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the RB and the Flash Read Buffer (FRB). Note that the two 
write buffers (WB and FWB) should be looked up before the 
two read buffers (RB and FRB), as they may keep the up-to-
date data. While the requested data are stored in any of these 
buffers, the read request can be satisfied without issuing any 
flash read operations. Otherwise, zFTL needs to decompress 
the requested chunk after reading the corresponding page 
from flash memory.  

Some data are inherently incompressible. This happens if 
the data belong to multimedia files (such as *.jpg, *.mp3, 
*.avi, *.mpg, etc.) or compressed archive files (such as *.zip, 
*.rar, *.gz, etc.). zFTL identifies those incompressible data 
based on the resulting size after compression. When the 
compression ratio is not good enough to justify the overhead 
of storing the data in compressed form (currently, 6 bytes for 
each chunk), zFTL stores the original (uncompressed) data 
into flash memory in order to save space. While reading these 
data, zFTL directly copies the contents of the FRB to the RB, 
bypassing the decompressor. This also saves the time and 
energy that might be spent on decompressing such data.  

One problem with this approach is that it is uncertain 
whether the current data are sufficiently compressible or not 
until the entire data are processed by the compressor engine. If 
we could determine whether the incoming data are 
incompressible or not in advance before the actual 
compression, the compression overhead can be avoided for 
incompressible data. In Fig. 1, the Incompressible Data 
Predictor (IDP) is introduced for this reason. The IDP 
examines a small subset of data in the WB and predicts 
whether the current data are incompressible or not. If the data 
are predicted incompressible, the compressor engine is 
bypassed and the original data are forwarded to the FWB. The 
prediction scheme used in the IDP will be described in detail 
in section IV. 

B. Compression Algorithms 

The choice of compression algorithms is one of the 
important design issues, because it determines the speed of 
compression/decompression, the compression ratio, and the 
complexity of hardware implementation. Many hardware 
implementations of LZ77 [16] or variants have been proposed 
in previous studies. Among them, we choose a variant of 
LZ77 called the X-Match [6] algorithm for zFTL. X-Match 
not only shows fairly reasonable compression ratio across the 
workloads, but also allows for efficient hardware 
implementation. Moreover, we show that it is possible to 
develop an effective Incompressible Data Predictor (IDP) for 
the X-Match algorithm in section IV. 

The unit of data compression is another important factor 
affecting the compression ratio and speed. In particular, 
dictionary-based algorithms such as LZ77 and X-Match have 
the characteristic that the bigger compression unit tends to 
yield the better compression ratio. This is because these 
algorithms replace a repeated pattern of strings within the 
compression unit by a much shorter but uniquely identifiable 
string. 

We have considered two options related to the unit of 
compression. One is to compress the variable-sized data as a 
whole as it is delivered by a single write request from the file 
system. The number of sectors written by a write request is 
usually a multiple of the file system block size and can be as 
large as 256 sectors (i.e., 128KB) for sequential writes. Thus, 
this scheme can improve the overall compression ratio and 
reduce the number of mapping entries. However, the use of 
the variable-sized compression unit presents a number of 
issues that need careful handling. For example, when a portion 
of the compressed data is read by a read request, the entire 
compressed data should be fetched from flash memory for 
decompression. An even worse scenario occurs when the 
compressed data are partly updated by a later write operation. 
In this case, the original data should be merged with the new 
data after decompression. Then, it can be either recompressed 
and stored into flash memory as a single compression unit, or 
split into two or three pieces each of which is separately 
compressed and stored. 

Another option is to compress a fixed size of data at a time. 
In fact, any power of two multiple of the sector size, such as 
512B, 1KB, 2KB, 4KB, 8KB, etc., can be used as the 
compression unit size. As discussed before, the use of larger 
compression unit size is favored for better compression ratio. 
However, if the compression unit size becomes too large, the 
system suffers from unnecessary overhead when the 
compressed data are partly read or updated. Moreover, 
enlarging the compression unit size has a diminishing return 
in the compression ratio. Burrows et al. [20] and Yim et al. 
[13] have shown that there is no significant difference in the 
compression ratio for 2KB to 8KB compression unit sizes. 

For the above reasons, zFTL uses a fixed compression unit 
size of 4KB. Since most file systems use at least 4KB as the 
file system block size, they rarely issue I/O operations smaller 
than this size and the read/write request sizes are usually a 
multiple of 4KB. In addition, the compression unit size of 
4KB is large enough to achieve good compression ratio. 

C. Address Mapping 

zFTL employs a page-level mapping technique [5] where a 
per-page mapping entry from the logical page number to the 
physical flash page number is maintained in the Page Mapping 
Table (PMT). Similar to other FTLs with page-level mapping, 
PMT is accessed by the logical page number. To support data 
compression, zFTL extends the structure of PMT slightly. 
Each 32-bit mapping entry includes the incompressible data 
flag (FLAG) and the page index (IDX), as well as the physical 
page number (PPN) where the page is stored. FLAG indicates 
whether the corresponding logical page is compressed or not. 
Since a single flash page may accommodate compressed 
chunks from several logical pages in zFTL, IDX is used to 
represent the relative position of each logical page within the 
physical page. Fig. 2 illustrates an example of PMT in zFTL. 
Note that PMT entries for the logical page number 100, 101, 
and 102 have the same value for the PPN field, representing 
that the data for those logical pages are compressed and stored 
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in the same physical page number 320 in the order indicated 
by the IDX value. For incompressible data, the corresponding 
FLAG is set to 1 (cf. the PMT entry of the logical page number 
103 in Fig. 2). 

 

 
Fig.  2.  The structure of page mapping table (PMT) and on-flash layout 
in zFTL. The contents of logical page numbers (LPNs) 100-102 are 
compressed and stored in physical page number (PPN) 320. The data in 
LPN 103 are incompressible (FLAG==1), hence they are stored 
uncompressed in PPN 400. 

 
Depending on FLAG, the physical flash page has two 

different structures. For incompressible data (FLAG = 1), the 
entire page is devoted to the (uncompressed) original data. 
When the page size is larger than the compression unit size, 
each data block is identified by IDX. On the other hand, when 
the value of FLAG is 0, the related physical page includes such 
information as the total number of chunks in the page, a set of 
offsets for each chunk, and a set of chunks, as depicted in Fig. 
2. The offset indicates the last byte position of the 
corresponding chunk in the page. 

D. Garbage Collection 

As in other FTLs, zFTL reserves a set of erase blocks (5% 
of the total erase blocks, by default) to absorb the incoming 
write requests. When zFTL runs out of available erase blocks, 
garbage collection is invoked to reclaim the space allocated to 
obsolete pages. zFTL uses the greedy policy to choose a 
victim erase block, i.e., the erase block which has the smallest 
number of valid pages is selected as a victim. During garbage 
collection, the remaining valid pages in the victim erase block 
are copied into another erase block and the victim erase block 
is cleared to be used later.  

Since each physical page normally contains the data from 
more than one logical page in zFTL, it can be partially 
invalidated by subsequent write operations. Therefore, zFTL 
should be able to identify the current status of each chunk 
stored in the same physical page, in order to copy only the 
valid chunk during garbage collection. For this reason, zFTL 
maintains the Page Status Table (PST) in memory. Unlike 
PMT, PST is indexed by the physical page number, and each 
PST entry keeps track of the number of valid chunks and the 
bitmap for each chunk stored in the given physical page 
number. The bitmap indicates whether the corresponding 
chunk is valid or not. 

Fig. 3 shows an example 8-bit PST entry designed for 4KB 
physical pages. Fig. 3 represents that two chunks (the second 
and the third one) are currently valid in the physical page 
number 330. Under this PST structure, up to five logical pages 
can be packed into a 4KB physical page. Our experiments 
show that about three chunks are stored in a single 4KB flash 

page on average for the most of well-compressed workloads. 
Thus, we believe the 8-bit entry is sufficient for 4KB flash 
pages. If the page size is increased, we can add a few more 
bits to each PST entry. 

 

 
Fig.  3.  An example PST (Page Status Table) entry. This example shows 
that there are two valid chunks (the second and the third one) in physical 
page number (PPN) 330.  
 

E. Internal Fragmentation 

The flash page size is fixed whereas the resulting chunk 
size varies after compression. Unless we allow a chunk to be 
stored in more than one page, internal fragmentation is 
unavoidable. The relative amount of internal fragmentation 
will be getting smaller as the page size becomes larger than 
the compression unit size. Considering the recent trend in 
NAND flash memory architecture where the page size grows 
progressively larger, the impact of internal fragmentation can 
be of minor significance, compared to the benefit of 
compression support. 

Currently, zFTL does not implement any special scheme to 
reduce internal fragmentation. zFTL simply packs the 
incoming data in the order they are issued from the upper 
layer. We leave a more comprehensive analysis and possible 
optimization on internal fragmentation for future work. 

F. Memory Requirement 

The memory requirement of zFTL is comparable to other 
FTLs with page-level mapping. The use of block-level 
mapping can decrease the memory requirement by a factor of 
64 to 128, but the increasing number of flash-based storage is 
adopting page-level mapping due to its superior performance 
and higher flexibility.  Since other page-mapping FTLs also 
keep page-level address mapping information in memory (i.e., 
PMT in zFTL), only the memory used by PST is the added 
cost in zFTL, which requires 512KB for 2GB flash memory 
with 4KB page size.  

If PMT and PST are too large to be accommodated in 
memory, zFTL may use the selective caching method used in 
DFTL [5], where the whole mapping table is stored in flash 
memory and only the needed part of the mapping table is 
loaded into memory. 

IV. PREDICTING INCOMPRESSIBLE DATA 

A. Overview of the X-Match Algorithm 

The goal of the Incompressible Data Predictor (IDP) shown 
in Fig. 1 is to identify the incompressible data in advance 
without going through full compression. To design an effective 
predictor, it is necessary to investigate the characteristics of the 
underlying X-Match compression algorithm. 

The X-Match algorithm is a dictionary-based lossless data 
compression algorithm. X-Match maintains a dictionary of 
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data previously seen and attempts to match the current data 
with an entry in the dictionary [6]. Its dictionary is composed 
of up to 128 entries and each entry has 4 bytes. X-Match reads 
4 bytes from the input data (referred to as a “tuple”) at a time 
for matching. Fig. 4 illustrates the basic idea of the X-Match 
algorithm with example cases.  

If the incoming tuple fully matches with an entry in the 
dictionary as shown in Fig. 4(a), a single bit of ‘0’ is emitted 
first as an output to indicate a match, followed by the 
information on the match location (<ML>) and the match type 
(<MT>). The match location is encoded with the phased 
binary code and represents the location of the matched 
directory entry. The match type denotes the Huffman code for 
the full match. Note that the matched directory entry is moved 
to the top of the dictionary. 

A partial hit occurs when at least any two characters of the 
incoming tuple match with a dictionary entry, as depicted in 
Fig. 4(b). In this case, the match type encodes (using the 
Huffman code) which characters from the incoming tuple 
matched a dictionary entry. Any unmatched characters from 
the incoming tuple are then sent literally (‘Z’ in Fig. 4(b)). 
Otherwise, a miss occurs and a single bit of ‘1’ is transmitted 
followed by the tuple itself as illustrated in Fig. 4(c). For a 
partial hit or a miss, the incoming tuple is inserted at the top of 
the dictionary. 

 

 
Fig.  4.  Example cases of the X-Match algorithm. <ML> represents the 
match location (i.e., the location of the matching entry in the dictionary) 
encoded with the phased binary code. <MT> indicates the Huffman code 
for the match type. 
 

B. Incompressible Data Predictor (IDP) 

As described in the previous subsection, X-Match 
repeatedly matches a 4-byte tuple against the dictionary 
entries. For a tuple to be compressed, at least two characters 

should be matched with any of the dictionary entries. Our IDP 
is based on the following observations. First, since the 
dictionary is gradually filled with the incoming tuples, X-
Match works better if there are many overlapped characters 
between tuples. Second, only the overlap of characters in the 
same byte position in a tuple matters. For example, although 
two tuples “AACC” and “CCAA” have many characters in 
common, it is not helpful for X-Match as they have different 
characters in each byte position. 

The basic idea behind the proposed IDP is to count the 
number of distinct characters in each byte position for the 
incoming tuples, and then use this count to predict whether the 
data will be compressed or not. Fig. 5 presents the case when 
the number of tuples is eight. Each tuple is arranged vertically, 
and we count the number of unique characters in each column, 
C1, C2, C3, and C4. If this count is small, it means that many 
characters are overlapped in the particular column. The large 
count indicates that there are many unique characters in that 
column, lowering the possibility of full hits or partial hits. 

 

 
Fig.  5.  The basic idea of predicting incompressible data. The number of 
unique characters in each column can be used to predict whether the data 
are incompressible or not. 

 
To confirm this idea, we have conducted an experiment 

with real data. Fig. 6 illustrates the cumulative distribution of 
the number of unique characters in the third column for the 
data produced while office productivity software is installed. 
As we use the compression unit size of 4KB, there are 1,024 
tuples per compression unit to be processed by the X-Match 
algorithm. Since each byte can have the value between 0 and 
255, the count of each column will have the value between 1 
and 256. Out of the total 243,897 compression units generated 
during this experiment, 137,474 units (56.4%) were 
incompressible, i.e., the size of the compressed data plus 6 
bytes (the metadata size for each chunk) exceeded the size of 
the original data (4KB). Fig. 6 shows that 99.7% of these 
incompressible units have the number of unique characters 
greater than 239 characters in the third column. On the other 
hand, the number of unique characters is distributed over a 
much wider range for compressible units.  

Fig. 6 suggests that the number of unique characters can be 
an effective means to predict whether a certain compression 
unit is compressible or not. For example, we may use a 
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prediction policy such that a compression unit is 
incompressible if it has more than 239 unique characters in the 
third column. If we use this policy, only 0.4% of 
incompressible units are mispredicted as compressible and 
4.5% of compressible units are mispredicted as 
incompressible, according to Fig. 6. Although we count the 
number of unique characters only for the third column, the 
results for the other columns are similar. 

This idea can be extended further to minimize overhead. 
Instead of looking at all the tuples to count the number of 
distinct characters in each column, we found that the 
prediction using only a subset of tuples works quite well. 
Specifically, the proposed Incompressible Data Predictor 
(IDP) only counts the number of distinct characters in the 
third column for the first 32 tuples and predicts that a 
compression unit is incompressible if the count is greater than 
25 characters. When we use this prediction policy, 99.4% of 
incompressible units and 86.2% of compressible units are 
predicted correctly for the same workload shown in Fig. 6. 
Although the misprediction rate is slightly higher, our 
prediction policy has the benefit that it can make a decision 
whether the compression for the current data should be 
continued or stopped after looking at just 32 tuples out of the 
total 1,024 tuples. 

 

 
Fig.  6.  The cumulative distribution of the number of unique characters 
in the third column for incompressible/compressible units. Each unit is 
4KB in size and the data are collected while installing office productivity 
software. 
 

C. Hardware Implementation of IDP 

Because the prediction for incompressible data should be 
performed as fast as the hardware compressor, the IDP also 
needs to be implemented in hardware. The IDP hardware is 
placed within the compressor and synchronizes its clock cycle 
with the compressor to minimize the prediction delay. The 
IDP hardware has 256 1-bit registers as shown in Fig. 7. The 
prediction hardware takes the third byte of the tuple read by 
the X-Match compressor for each cycle, and sets the 
corresponding register to the value of ‘1’. The number of 
registers which have the value of ‘1’ represents the number of 
unique characters. To eliminate the delay for counting the 
registers whose values are ‘1’, the original value of each 
register is inverted and then added to the counter before the 

value is updated in the selected register. After the first 32 
cycles, the prediction hardware compares the counter value 
with the threshold configured beforehand (25 by default). If 
the counter value is greater than the threshold, the prediction 
hardware sends the stop signal to the controller of the X-
Match compressor.  

 

 
Fig.  7.  The hardware implementation of the Incompressible Data 
Predictor (IDP). The third byte of each tuple is used to set the value of the 
corresponding register to ‘1’. When the value is transitioned from ‘0’ to 
‘1’, the counter is incremented. If the counter value is greater than the 
threshold value after 32 cycles, the current unit is predicted 
incompressible and the compressor is stopped. 

 
We have designed and implemented the prediction 

hardware using an FPGA. The cost of the IDP hardware is 
about 482 LUTs which is approximately 2K in ASIC gates. It 
is very small compared with the X-Match 
compressor/decompressor which is known to cost 110K gates 
[6]. The prediction takes 165 ns for a single 4KB unit 
according to the simulation result. Therefore, the performance 
degradation due to the prediction is almost negligible. 

V. EVALUATION 

A. Experimental Setup 

zFTL is implemented as one of block device drivers in an 
open-source operating system. The compression support can 
be turned off anytime using a special kernel interface. Instead 
of using bare NAND flash chips, we use the generic kernel 
subsystem which emulates the behavior and timing of various 
memory devices including NAND flash chips. We configured 
the parameters of the subsystem to model a 2GB MLC NAND 
flash memory chip where the page size is 4KB and each erase 
block has 128 pages. The latency of read, write, and erase 
operation is assumed to be 60 μs, 800 μs, and 1.5 ms, 
respectively, according to the data sheet of a representative 
MLC NAND flash memory chip. 

Table 1 shows the basic information of five workloads used 
in this paper. UNTAR and COMPILE are the real workloads 
executed on the evaluation platform, which untar and compile 
the source code of a version of open-source operating system, 
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respectively. TEMP denotes the set of files downloaded from 
the Internet while a web browser visits social network sites, e-
commerce sites, video sharing sites, and Internet portal sites. 
We periodically collect the files in the browser’s temporary 
directory and then copied them onto zFTL.  
SYSTEM and INSTALL workloads are mainly used to 

investigate the compression ratios of the files used in a 
commercial operating system. The SYSTEM workload is 
obtained by copying system files to zFTL which are 
frequently used by the commercial operating system. The 
INSTALL workload represents the storage access requests 
generated while office productivity software is installed in the 
commercial operating system. The installation process has 
been mimicked by extracting file system access traces with a 
profiling tool and replaying them on the evaluation platform. 

 
TABLE I  

WORKLOADS USED IN THIS PAPER 

Workload 
Write 

Requests 
Read 

Requests 
Sectors 
Written 

Sectors 
Read 

UNTAR  35,720 16,184 967,232 129,472
COMPILE  63,976 33,216 937,232 265,728
TEMP  63,064 8 1,864,112 64

SYSTEM  77,384 9 2,319,160 72
INSTALL  65,704 8,281 1,948,008 66,248
 
To model an aged file system, we initialize zFTL by 

running Postmark 1.51 [21] before each experiment. Postmark 
is configured with 25K files, 50K transactions, and file sizes 
ranging from 30KB to 80KB. The total amount of data written 
by Postmark is about 3GB. During this preconditioning phase, 
we turn off the compression support in zFTL.  

The performance of X-Match with the proposed 
Incompressible Data Predictor is compared to those of Zlib [9], 
LZ77 [16], and the original X-Match [6]. Zlib and LZ77 are 
very well-known compression algorithms for their 
performance and reliability. Zlib is a representative software 
library used for data compression. Although it is expensive to 
implement the Zlib algorithm in hardware, we incorporate it 
into our evaluation as it shows the best compression ratios for 
the workloads shown in Table I. Overall, LZ77 exhibits 
slightly worse compression ratio than Zlib, but efficient 
hardware implementations of LZ77 or variants have been 
proposed in several previous studies. In fact, the X-Match 
algorithm is also a variant of LZ77.  

B. Average Compression Ratio 

Fig. 8 shows the average compression ratios for each 
workload with Zlib, LZ77, X-Match, and X-Match with IDP. 
The compression ratio is defined as the ratio of the 
compressed chunk size to the original (uncompressed) data 
size (4KB). Hence, the lower the compression ratio, the better. 
The average compression ratio varies from workload to 
workload, but Zlib always results in the best compression ratio. 
In particular, workloads which manipulate text-based files 

such as UNTAR and COMPILE exhibit fairly good compression 
ratios as low as 27% with Zlib. Because X-Match compresses 
the data in four bytes unit, the compression ratios of X-Match 
is not as good as those of Zlib or LZ77 in these text-based 
workloads. 

On the other hand, TEMP shows much worse compression 
ratio since most files are image files and movie clips which 
have been already compressed. We find that system files 
touched in the SYSTEM workload also reveal good 
compression ratios. The compression ratio of INSTALL is 
higher than that of SYSTEM by 21% (Zlib) or by 24% (LZ77). 
This is because INSTALL handles many files in a special file 
format that stores a library of compressed files. X-Match with 
IDP presents almost the same compression ratio as the original 
X-Match. The difference between X-Match and X-Match with 
IDP comes from a small number of mispredictions in X-Match 
with IDP, but the difference is hardly noticeable in many cases. 

 

 
Fig.  8.  Average compression ratio. The compression ratio depends on the 
contents of the data and the compression algorithms. X-Match with IDP 
shows slightly worse compression ratio than the original X-Match due to 
mispredictions, but the difference is hardly noticeable. 
 

C. Write Amplification Factor (WAF) 

Fig. 9 compares the Write Amplification Factor (WAF) 
before and after the compression support is enabled. The 
WAF breaks down according to the source of writes; it is 
either for the actual data writes or for the writes issued during 
garbage collection. The upper bar indicates the amount of 
additional writes caused by garbage collection, which is as 
high as 4.19 (in COMPILE) when the compression is not 
enabled.  
UNTAR and COMPILE show very low WAFs under zFTL 

due to their low compression ratios. Since the amount of data 
written into NAND flash memory is reduced effectively, 
garbage collection hardly occurs. As a result, their WAFs are 
improved by a factor of 11.3 (UNTAR) and 15.0 (COMPILE) 
with the Zlib algorithm. The WAFs for TEMP, SYSTEM, and 
INSTALL are also improved by a factor of 3.5, 5.5, and 2.6, 
respectively, with Zlib. LZ77 and X-Match perform slightly 
worse than Zlib, resulting in improvements in WAFs by a 
factor of 2.1 (INSTALL) to 10.8 (COMPILE) with LZ77, and by 
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a factor of 1.9 (INSTALL) to 5.0 (COMPILE) with X-Match. X-
Match with IDP reduces the WAFs for UNTAR, COMPILE, 
TEMP, SYSTEM, and INSTALL workloads by a factor of 2.1, 4.7, 
2.0, 3.1, and 1.8, respectively, with the geometric mean of 2.6. 
Compared to X-Match, X-Match with IDP increases WAFs by 
5.0% on average due to mispredicted data. 
 

 
Fig. 9.  Write amplification factor (WAF). The leftmost bar in each 
workload shows the WAF without compression support. X-Match with 
IDP improves WAFs by a factor of 2.6 (geometric mean). 
 

D. Garbage Collection Overhead 

Fig. 10 illustrates the total time spent on garbage collection. 
It is estimated by multiplying the number of flash read, write, 
and erase operations during garbage collection by the 
respective operational latencies of MLC NAND flash memory. 
The final results are normalized to the values obtained when 
the compression support is disabled.  

 

 
Fig.  10.  Normalized garbage collection overhead. The final results are 
normalized to the values obtained when the compression support is 
disabled. We can see that the use of compression effectively reduces the 
time spent on garbage collection. 

 
In UNTAR and COMPILE workloads, the garbage collection 

overhead is almost negligible for Zlib and LZ77 because of 
good compression ratios. X-Match with IDP shows the largest 
overhead, but it is still much better than the case without any 
compression. We observe that the overall trend of Fig. 10 is 
highly correlated to that of Fig. 8. 

E. Power Consumption 

Fig. 11 shows how much power is saved by using the 
proposed Incompressible Data Predictor (IDP) with the X-
Match algorithm with respect to the original X-Match 
algorithm. In the original X-Match algorithm, all tuples in 
each 4KB compression unit should go through the compressor 
engine for 1,024 cycles. Thus, the power consumption, Porg, 
required to process the total N compression units by the 
original X-Match algorithm can be given by  

1024 comporg PNP  (1) 

where Pcomp represents the unit power consumed by the 
compressor hardware per cycle. Under the X-Match algorithm 
with the proposed IDP, the data predicted incompressible stop 
using the compressor engine after 32 cycles. Therefore, the 
power consumption of the proposed approach can be 
approximated as follows: 

32)102432(  predpcpicompIDP PNNNPP . (2) 

In (2), Npi and Npc denote the number of compression units 
that are predicted incompressible and compressible, 
respectively, where N = Npi + Npc. Ppred indicates the unit 
power spent by the prediction hardware per cycle. We 
estimated that Ppred is one-fiftieth of Pcomp, assuming that the 
power consumption is roughly proportional to the number of 
logic gates required to implement the hardware (cf. section 
IV.C). 

 

 
Fig.  11.  Estimated power consumption of X-Match with the proposed 
IDP. The values are normalized to the estimated power consumption in 
the original X-Match algorithm. In UNTAR, COMPILE, and SYSTEM, there 
are no significant benefit as most of the data are compressible in these 
workloads. However, INSTALL and TEMP show power savings by 60% and 
by 69%, respectively. 
  

As can be seen in (2), the power saving due to the proposed 
IDP greatly depends on Npi, the number of compression units 
that are predicted incompressible. One extreme workload is 
UNTAR, where only 0.02% of the input data are predicted 
incompressible. In this case, virtually no power saving has 
been achieved as shown in Fig. 11. In COMPILE and SYSTEM, 
3.2% and 5.6% of the data are predicted incompressible, 
respectively, resulting in 3.9% (COMPILE) and 10.8% 
(SYSTEM) of power savings. When there are modest number 
of incompressible data as in TEMP and INSTALL, the use of 
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IDP achieves 68.6% and 60.0% of power savings, respectively. 
In TEMP and INSTALL, 63.0% and 56.1% of the data are 
predicted incompressible. With our evaluation with another 
extreme workload which is composed of 99% of 
incompressible data, we observe that the proposed approach 
saves power consumption by 97%. 

V.  CONCLUSION 

Due to inherent characteristics of NAND flash memory 
which does not allow in-place update and wears out after 
repeated write/erase cycles, flash translation layers have been 
using a variety of techniques to enhance the overall 
performance and lifetime of NAND flash-based consumer 
electronics devices. Many previous researches on flash 
translation layers have focused on efficient address mapping 
and garbage collection schemes. However, another orthogonal 
issue that can reduce the amount of data written into NAND 
flash memory is to support data compression inside the flash 
translation layer.  

In this paper, we present zFTL, a flash translation layer 
which supports on-line, transparent data compression based 
on the X-Match algorithm. We have examined several design 
issues to support data compression in the flash translation 
layer, including some required extensions in address mapping 
and garbage collection. To reduce the compression overhead 
and power consumption associated with incompressible data, 
we have also proposed a novel scheme called Incompressible 
Data Predictor (IDP) that can predict whether the input data 
are incompressible or not by examining only a subset of data. 

Through the use of five real-world workloads, we confirm 
that zFTL improves the WAF by a factor of 2.6 (geometric 
mean) compared to the case without compression support. The 
proposed IDP is effective in reducing power consumption 
especially when there are many incompressible units among 
input data. When 63.0% of the data are predicted 
incompressible, zFTL reduces power consumption by 68.4% 
compared to the original X-Match algorithm without any 
prediction scheme. 
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