
Contributed Paper
Manuscript received April 14, 2010
Current version published 06 29 2010;
Electronic version published 07 06 2010. 0098 3063/10/$20.00 © 2010 IEEE

AppWatch: Detecting Kernel Bug for Protecting
Consumer Electronics Applications

Jeaho Hwang, Jinkyu Jeong, Hwanju Kim, Jin-Soo Kim and Joonwon Lee

Abstract — Most consumer electronics products are

equipped with diverse devices since they try to provide more
services following the convergence trends. Device drivers for
those devices are known to cause system failures. Most
previous approaches to enhance reliability have been
concerned with the kernel, not with applications. In consumer
electronics, however, a main application plays a core role of
the product. This paper proposes a new mechanism called
AppWatch to keep a consumer electronics application reliable
against misbehavior of device drivers. AppWatch exploits
page management mechanism of the operating system to
protect the address space of the application. Since AppWatch
can be implemented at a low engineering cost, it is applicable
to most systems only if they have the virtual memory system.
AppWatch also provides selective protection of applications
so that other unprotected applications are isolated from
performance loss, if any. We have tested AppWatch in a
consumer electronics environment. The result shows that
AppWatch effectively protects application programs at a
reasonable performance overhead in most workloads,
whereas data-intensive workloads show high overhead.
AppWatch also protects applications with little performance
interference to other unprotected applications. 1

Index Terms — Application Reliability, Embedded
System, Device Drivers, Memory Protection

I. INTRODUCTION
Recently, the consumer electronics market has grown

considerably, occupying a major portion of the embedded
system products. Various types of consumer electronics
device such as a digital TV are installed embedded system. [1].
In this market, requirement of the product is changing rapidly
so that many companies regard the time-to-market as a crucial
factor. Moreover, these embedded systems are equipped with
many novel devices. Manufacturers find it hard to secure
enough time to test and verify the sanity of drivers for those
devices while satisfying the time-to-market constraint. At the

1 This work was partially supported by Defense Acquisition Program

Administration and Agency for Defense Development under the contract.
J. Hwang, J. Jeong and H. Kim are with the Department of Computer

Science, Korea Advanced Institute of Science and Technology, Daejeon,
Korea (e-mail: jhhwang@calab.kaist.ac.kr, jinkyu@calab.kaist.ac.kr,
hjukim@calab.kaist.ac.kr)

J. Kim is with the School of Information and Communication Engineering,
Sungkyunkwan University, Suwon, Korea (e-mail: jinsookim@skku.edu)

J. Lee is the corresponding author with the School of Information and
Communication Engineering, Sungkyunkwan University, Suwon, Korea (e-
mail: joonwon@skku.edu)

same time, consumers are still complaining about buggy
software in consumer electronics devices [2]. Although some
companies try to provide software updates or to recall
products in order to fix the software bug, it is not easy to
recover their damaged confidence.

The device control software, called device driver, has been
one of the major sources of system failures [3][4]. Most
consumer electronics products have various devices such as
USB controller and display, and the device drivers are
embedded into the operating system to control the devices.
Since many device drivers run in the same address space as
the kernel at the privileged level, a buggy driver may cause
catastrophic system failure by accessing unpermitted memory
locations. This type of error is pathological since its
occurrence is not deterministic and the symptoms are usually
observable at later times [5].

Many ideas have been proposed to protect memory space
from illegal accesses of faulty device drivers [6][7]. Most of
them are focused on protecting kernel since application failure
does not propagate to other applications or the kernel. In
consumer electronics, however, reliability of a core application
is as important as the kernel. In order to guarantee the primary
functionality of a consumer electronics product, it is important
to protect the core application software from the misbehaving
device drivers. For example, in portable media player (PMP), a
media player is one of the core applications of the device. If a
device driver bug invades the player application’s memory, it
would not work correctly so that the PMP may fail to provide its
expected service fully. Therefore, core applications should be
protected to maintain the device’s functionality.

In this paper, we propose a protection scheme to improve
the reliability of core application software against device
driver misbehavior. Our scheme is based on a threat model
that a faulty device driver can corrupt any random location of
the application’s memory. AppWatch, a prototype of our
scheme, protects core application software from invalid
writing of device drivers to the application’s memory by
exploiting a memory management unit (MMU). After
protecting the corruption, AppWatch prepares a report to help
the debugging task.

Compared to previous work, AppWatch has three
distinguished characteristics. First, AppWatch is implemented
with a few lines of code in the kernel so that it can be
efficiently ported to other operating systems at a low
engineering cost. This is an important feature since porting a
complex software solution to diverse platforms will cause
huge cost. AppWatch can be ported to any operating system
without a hassle. Consumer electronics developers would
benefit especially from this feature.

J. Hwang et al.: AppWatch: Detecting Kernel Bug for Protecting Consumer Electronics Applications 687

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on August 12,2010 at 06:09:13 UTC from IEEE Xplore. Restrictions apply.

Second, AppWatch does not need any specific hardware
support other than a standard MMU. Since an embedded
system is typically equipped with an MMU to manage virtual
memory, most consumer electronics devices can adopt
AppWatch. It makes AppWatch even more portable.

Finally, the protection mechanism of AppWatch can be
applied selectively to a specific application for efficient
testing. Since AppWatch scrutinizes memory operations made
only to a region that belongs to a specified application, other
ones can run with almost native performance. This isolation
let non-core applications run without AppWatch overhead.

The rest of this paper is organized as follows: In Section II
we provide related work, and Section III describes the
architecture of memory management for background. We set
up the threat models and present our design and
implementation of AppWatch in Section IV. Section V shows
the result of evaluation. Finally we conclude and suggest
future work of this paper in Section VI.

II. RELATED WORK
Until recently, most reliability issues have been addressed

in the context of the kernel since a faulty application does not
hurt the whole system. With the advent of kernel extension
schemes and more diverse device drivers inside the kernel,
these issues gain more attention.

One of traditional and well known approach is component
isolation. There are several works that have sought to isolate
system components in order to enhance reliability [7]. Vino
encapsulates kernel extensions using software fault isolation
and uses transactions to repair kernel state after a failure [8].
Nooks architecture allows each device driver to run in its
private address space in order to ensure driver isolation [6][9].
A shadow driver which is based on the Nooks subsystem
provides transparent recovery from device driver faults [10].

Microkernel has dealt with the core problem of a monolithic
kernel in which a kernel component shares memory with each
other. Instead of a single large kernel, only a tiny kernel runs
in the kernel mode, and the rest of the operating system such
as device drivers and file systems run as fully isolated user-
mode servers and driver processes respectively. The
microkernel concept has been around for 20 years [10]-[14],
and recently microkernel is noticed again due to its reliability.
Minix 3 [16][17] contains much smaller kernel code and fully
separated server structure. CuriOS [18] protects each
component with strengthened recovery. Singularity [19] is a
microkernel that is mostly written in Sing#, a type-safe
language to prevent memory corruption.

Virtualization is also used for device driver isolation [7].
Each virtual machine (VM) has own address space and cannot
access another VM’s memory region directly. Exploiting this
property, entire kernel components including device driver
can be isolated. LeVasseur et al. suggested Device Driver OS
on a VM environment [20]. Placing device drivers in a
specific VM, a fault cannot corrupt other components because
VMM guarantees isolation of each VM. Overshadow, another
approach using the virtualization concept, uses shadow page
table to protect an application from other codes including
kernel [21]. There are two shadow page tables for each

protected application in order to prevent its own data from
being accessed by other components.

Though these isolation techniques efficiently prevent error
propagation on commodity computer hardware, they impose
significant engineering cost on implementation. The main
source of this cost comes from the fact that they intend to
protect a kernel object from accesses of other kernel code.
Since they all reside in the same address space, virtually every
memory access should be examined for its validity.

Finally, hardware-based approaches have been proposed to
protect memory from invalid accesses. In Mondriaan Memory
Protection (MMP) [22][23], CPU checks permission every
memory reference. MMP uses a memory segment instead of a
memory page and provides a permissions table which
represents permission for each segment. Although this
hardware approach can protect memory effectively and shows
acceptable performance, most consumer electronics cannot
afford to be equipped with this specialized hardware.

III. BACKGROUND
This section describes how the memory management works

in a commodity operating system. Most modern CPUs have
similar MMU, and we only describe the detail of memory
management of the x86 processor.

UserUserUser

Kernel

0x00000000

0xC0000000

0B

896MB

1GB

Physical memory Address space
user page table

kernel
page table

Fig. 1. Memory management system on the 32-bit x86

Figure 1 describes memory management of a commodity

operating system running on 32-bit x86 architecture [24]. With
32bits address, the processor can access 4GB size of virtual
memory address. There are two types of address space. First, the
lowest address space is called a user address space. Usually
2~3GB is allocated to the user address space. Note that every
process has its own copy of address space. Second, the highest
address space is assigned for the kernel. Data and codes used in
the kernel mode are stored in this area. Contrary to user address
space, there is only one kernel address space, and only a
privileged process can directly access this area. The kernel treats
a page as the basic unit of memory management, and a virtual
address is translated into a physical address via a page table.

A user page table, also called a process page table, maps a
user address to a certain physical address. When a CPU
references a physical page via a virtual address, it traverses
the corresponding page table and checks the access privilege
of the page. If the access is validated, the page is read by the
CPU with the translated physical address.

688 IEEE Transactions on Consumer Electronics, Vol. 56, No. 2, May 2010

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on August 12,2010 at 06:09:13 UTC from IEEE Xplore. Restrictions apply.

The kernel also has a page table, named a kernel page table
or a master kernel page global directory. Most kernel
addresses are direct mapped to physical addresses by the
kernel page table. For example, one of the commodity
operating systems maps the linear kernel addresses
0xc0000000 through 0xf7ffffff into the physical addresses
0x00000000 through 0x37ffffff. Direct mapping enhances
performance, since address translation can be simply done.
CPU can access the kernel area using the same mechanism as
a user page table.

Memory management system allocates an available
physical page and makes a map via user page table when a
process requires a page allocation. If the address of the
allocated physical page is direct-mapped to the kernel virtual
address, the physical page is mapped to the kernel as well as
to the user space as shown in Figure 1 although the kernel
virtual address is not assigned to any kernel component. In
this case, accessing the kernel virtual address may intrude into
the user virtual address because they share one physical
address. It is one of the prevalent cases of unauthorized
memory accesses from device drivers.

IV. APPWATCH
In the memory management system we described,

application’s memory can be corrupted by a misbehaving
device driver. This section describes the threat model under
which a core application process can be invaded by the kernel
code and our solutions to protect the application.

A. Threat model
Most embedded processors provide two mechanisms to

access application’s memory space. One is via MMU and the
other is via DMA. Any store instruction in the device driver
code can corrupt any part of application address space. It can
easily happen by miscalculation of an address value. DMA
based access, however, must be passed through DMA
subsystem in the kernel. Since our target is the threat from a
device driver itself, we do not consider DMA case.

1) Writing to User Address
In the kernel mode, the process has the privilege to access

any memory location. A device driver is invoked either by a
system call from a user application or by a hardware interrupt.
Upon initiation, the device driver code may access a wrong
location if there is a mistake in address calculation, and the
location may be in a physical page that belongs to a user
application. Then, the application may lead to an unsafe state
of computation.

2) Writing Through Direct-Mapping
Direct mapping of the kernel can also cause unauthorized

accesses from device drivers since physical pages are mapped
both to the kernel and to the application. A buggy device
driver would make a wrong access to pages which are also
mapped to the application. Therefore, if the kernel address is
mapped to the double mapped physical address, the writing to
the kernel address affects the user address that is also mapped.

Writing through the direct mapping is especially harmful
because it can affect all the processes in the system. In the
former case, the kernel can only access the process which has

current context. Direct mapped memory, however, could be
mapped to any process’s user address space so that a kernel
code could corrupt a process which has no relation the current
system status. It would delay the effect of the invasion and
make it difficult to find and to track the bug.

B. Protection Mechanism
One of design goals in designing the solution to the

aforementioned threat model is the low engineering cost since
this solution is targeted for a variety of consumer electronics
devices. Since most memory protection solutions call for
kernel coding, a complex mechanism would incur
considerable amount of engineering cost, especially for a wide
spectrum of embedded platforms. Though protecting a kernel
object from illegal accesses of other kernel parts needs a
complex mechanism, the address space of a user application is
much easier to protect since this space is isolated from the
kernel space.

In order to successfully protect the user address from two
threat models mentioned in the previous section with
satisfying our design principle, we exploit memory
management system. By setting write-protection to page table
entries, AppWatch can detect wrong accesses at a negligible
overhead. Also, the applications to be protected can be
selected according to desired degree of protection coverage
and efficiency.

Our AppWatch solution is implemented by modifying a
commodity operating system that is widely employed in many
embedded systems. Since most operating systems have the
similar memory management system, other embedded systems
can adopt it without any difficulties.

1) User Address Space Protection
Our approach named User Address Space Protection

(UASP) is to protect the application space from writes of the
kernel. Writes from the kernel code are possible only when
the kernel code is invoked either by a system call or by an
interrupt. In either case, when a process enters kernel mode,
UASP disables write permission of the kernel to all user
address spaces by modifying the permission bits of each page
table entry. If a malicious kernel code tries to write to a user
address space, it would be failed because no write permission
is on the page table. Their write permissions are restored when
the kernel finishes its task and resume the suspended user
process.

The kernel needs to read from or write to a user address
space in order to communicate with the application. For
example, the read system call copies kernel memory contents
which is read from a file, network, or pipe, into a user address
space. Likewise, the write system call copies the data stored in
user address space into the kernel address space. Reading
from a user address space works normally since read
permission is not modified. Writing to user address, however,
will be denied even though it should be allowed for correct
kernel operations. Therefore, it needs to enable the disabled
write permissions for the target address if the writes are valid
ones. The target address becomes re-protected after the end of
writing.

The protection function of the UASP scheme should be
placed before invoking the kernel code, and the entry point of

J. Hwang et al.: AppWatch: Detecting Kernel Bug for Protecting Consumer Electronics Applications 689

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on August 12,2010 at 06:09:13 UTC from IEEE Xplore. Restrictions apply.

system calls is the proper location for the function. When a
system call is called, protection function is called before
system call handler. If the current process is to be protected,
the function traverses all the page table entries to disable write
permissions. When the system call is finished write
permissions are restored.

When the kernel code is running, valid writes should be
allowed, and thus it needs to know which pages are allowed to
be written by which functions. Several functions such as
copy_to_user and put_user are used to write to user address
space. To ensure that such a function runs correctly, write
permissions of the pages which map the addresses to be
written are allowed only during the execution of the function.
The pages are re-protected at the end of the function.

2) Direct-Mapping Protection
Direct-Mapping Protection (DMP) is to protect user spaces

from kernel writes when they occur through the
aforementioned direct mapping. Since two virtual addresses
are mapped to a same physical address, it could make
confusion. If a physical page is assigned for the kernel, it
cannot be mapped to a user address space. Therefore an issue
arises only when a direct mapped page is mapped again to the
user address space.

DMP is called when the page allocator of memory
management system maps the physical address in the direct-
mapped area to user address, as shown in Figure 1. After
mapping is finished, the write permission of the page is
disabled. If a process in the kernel tries to write to the
protected kernel virtual address, exception would occur and
the writing would be blocked. The write permission is restored
after the user virtual address is unmapped.

Implementing DMP for a commodity operating system can
be done by adding of a few lines of code in the page allocation
and free function. When an application requests a page
mapping, the kernel allocates a physical page. If the physical
page is located in the direct-mapped memory zone, DMP finds
kernel virtual address which is mapped to the physical address.
Then, the page table entry to which this address belongs is
deprived of write permission. After the allocated page is freed,
the write permission of the kernel page table entry is
reinstated.

For a kernel page, Page Size Extension (PSE) may be
applied to when a larger size of page is needed. When it is set
on a page table entry, this entry represents much larger size of
a page [25]. Since the number of page table entries gets
smaller with this feature, the hit ratio of the Translation
Lookaside Buffer (TLB) increases, and so does the
performance. PSE complicates our DMP scheme since
protecting a small user page which is mapped to a large kernel
page would incur unnecessary blocking of kernel writes. If a
large user page is mapped to a small kernel page, some part of
the user page would be left unprotected. Therefore, it is
necessary for the DMP scheme to prohibit the use of PSE
flags. Since our schemes are for debugging during software
development, the performance loss of the finalized software
will not be affected.

C. Discussion
Additional 400 lines of the kernel code were developed for

UASP, and 200 lines for the DMP part. UASP needs more
work since all the functions of the invoked kernel code should
be examined to decide which pages are updated. For DMP it
needs to examine only when a page in the direct mapped
region is allocated.

Compared to Nooks, a kernel protection approach based on
fault isolation consisted of about 22,000 lines of code [6], the
coding overhead of AppWatch is negligible. Smaller code size
usually means less engineering cost and better reliability,
hence better software quality.

Furthermore, the kinds of operating systems for embedded
systems are so diverse that porting a scheme to various
platforms incur tremendous cost. In this sense, AppWatch
boasts its low engineering cost for real world deployment. In
summary, AppWatch shows better reliability and portability
than other large-size techniques. In consumer electronics
market, these two benefits make easy to develop and deploy a
device.

Most embedded systems are equipped with limited
computing power, and thus any tool like AppWatch, Nooks
[6], or Overshadow [21] should avoid spending too much
computing power if it is to be used for embedded systems.
Unlike the rest of them, AppWatch can be removed from the
kernel for final products since it does not change any original
functions of the kernel. Since it is expected to be used only
during the debugging stage, it would not cause any waste of
computing power for the final product.

V. EVALUATION
When the initial idea was incubated, we were concerned

with the protection coverage of our schemes. To answer this
issue, a fault model was set up to inject artificial faults to
device drivers and to measure how much can be detected by
our schemes. Also, though performance issue is not an
important issue it needs to be assessed since a significant
overhead even in the debugging phase would be a burden for
a tool like AppWatch.

AppWatch is implemented on Netbook which consists of
1.6GHz CPU, 1 GB RAM and 12GB SSD. Although Netbook
is hardly classified as a consumer electronics device, it can be
used to test consumer electronics environment because the
processor is developed for a small mobile device as well as a
laptop.

A. Fault Detection
To test the coverage of our schemes, a new fault injection

model was set up since other previous models [6][26] corrupts
random locations of the kernel. Though it is valid to test
protection schemes for the kernel, it would not generate
enough faults in user applications. Our fault injection tool
corrupts application’s memory through either user address
directly or direct-mapped area. Since the target address to be
corrupted is randomly chosen, the behavior of a target
application can be varied.

690 IEEE Transactions on Consumer Electronics, Vol. 56, No. 2, May 2010

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on August 12,2010 at 06:09:13 UTC from IEEE Xplore. Restrictions apply.

TABLE I

FAULT INJECTION ON APPWATCH

Writing to user address Writing through direct
mapping

Symptom
runs AppWach

Protected # runs AppWach
protected

none 408 408 (all) 879 879 (all)
crash 531 531 (all) 48 48 (all)

corruption 61 61 (all) 73 73 (all)

The tool injects 1000 faults into the tiffmedian workload

which is a part of mibench [27]. TABLE I shows the
evaluation results using the fault injection tool. None indicates
that the workload finishes normally and generates a correct
output. Even a corrupted application may finish without any
problem since a corrupted data may not affect the execution of
the application program. Crash represents that the workload
terminates with a fault. This situation would happen when the
code area or pointer variable is corrupted. The last type of
result, corruption represents that the workload finishes
normally but generates an incorrect output. Contrary to none,
this result indicates that the corrupted data affects the
execution of the process.

As shown in TABLE I, two protection schemes of
AppWatch correctly protect an application from injected
faults without any false positive. AppWatch can protect all
corruptions because every memory access is done through
page table, and the page table entry of the protected area is
write-disabled.

B. Overhead
Since one of our design principles is low cost, the overhead

for executing AppWatch needs to be evaluated. Execution
time of each our scheme is compared with native execution
time of the workload.

1) Unit Overhead
Since UASP executes at every system call invocation, we

measured execution time [28] of a simple system call getpid().
As UASP disables all write permission of application’s
address space, it sweeps all the page table entries of the
application. Accordingly, the execution time of getpid() is
proportional to the size of application’s address space. Figure
2 shows the execution time of calling getpid() system call in
the UASP kernel. The figure has revealed that the overhead of
UASP is proportional to the size of address space of the
application. When the address space size is 20MB, which is
large enough for consumer electronics devices, one system
call invocation requires only 0.5ms of additional execution
time.

In order to figure out unit overhead of DMP, the execution
time of the malloc() function is measured. Note that the
malloc() requires memory page allocation, and thus it invokes
DMP mechanism. Figure 3 shows the execution time of
calling malloc() in the DMP kernel, with varying the request
size. Compared to the overhead of UASP, the overhead is
about 0.02ms constant. The unit overhead is unrelated to the
requested memory allocation size since every malloc()
operation provides one page to the application. The rest of

pages are provided by demand paging facility which is
common in modern operating systems. Moreover, invocation
of DMP is less frequent than UASP since DMP works only
one time for each page mapping.

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

address space size (MB)

ex
ec

ut
io

n
tim

e
(m

s)

normal
UASP

Fig. 2. Execution time of getpid system call in the UASP kernel

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

malloc size (MB)

ex
ec

ut
io

n
tim

e
(m

s)
normal
DMP

Fig. 3. Execution time of malloc function in the DMP kernel

2) Read/write overhead

As mentioned earlier, UASP causes more performance
overhead. Main overhead of UASP comprises page table
traverse and TLB flush. When the protection works, the
protection function traverses all the page table entries and
marks them as write-protected. Accordingly, the memory size
of an application would affect the overhead.

In addition, temporally removing protection for the
copy_to_user function also causes overhead since it entails an
additional traverse and permission change. Copy_from_user,
on the other hand, does not need to temporally unprotect any
page because it does not write to user space. Since read and
write system call are representative system calls using
copy_to_user and copy_from_user functions respectively, the
effect of copy_to_user function can be inferred by comparing
the execution time of read and write system calls.

In order to figure out the performance effect of each
component of UASP, we measured the execution time of read

J. Hwang et al.: AppWatch: Detecting Kernel Bug for Protecting Consumer Electronics Applications 691

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on August 12,2010 at 06:09:13 UTC from IEEE Xplore. Restrictions apply.

and write system call with varying the request size. We ran the
test in three kernels: normal, UASP and without write
protection, a modified UASP kernel which only traverses the
page table so that we can observe the performance without the
effect of TLB invalidation.

0 200 400 600 800 1000
0

5

10

15

read size (KB)

ex
ec

ut
io

n
tim

e
(m

s)

normal
UASP
w/o write protection

Fig. 4. Execution time of read system call

0 200 400 600 800 1000
0

5

10

15

write size (KB)

ex
ec

ut
io

n
tim

e
(m

s)

normal
user
w/o TLB flush

Fig. 5. Execution time of write system call

Figure 4 and 5 show the execution times of read and write

system calls. At first comparing normal and UASP, the
overhead is proportional to read and write size. Larger request
size means more pages need to be protected, hence longer
time for our schemes.

The overhead of without TLB flush is mostly caused from
the page table traverse. Since the without TLB flush kernel
does not flush TLB entries, a gap between user and without
TLB flush indicates the overhead of TLB misses. This reveals
that page table traverse causes more overhead than TLB miss
does.

Comparing the overhead of two graphs, read system call
presents more overhead than write system call due to the
copy_to_user function. The graphs show that copy_to_user
function is the largest source of the overhead. Therefore it can
be expected that a workload which reads large size data would
present low performance with UASP.

3) Overhead from benchmark
Other than the unit performance measurement, real

workload is used to evaluate how much overhead is shown
in real consumer electronics environment. The mibench [27]
is a well-known open-source benchmark for embedded
systems. The workloads in automotive, consumer and office
category were selected because they are common workload
in embedded systems. The automotive category mainly
consists of CPU-intensive jobs, and the other two categories
represent application software for consumer electronics such
as PDA.

0

0.5

1

1.5

2

2.5

3

3.5

ex
ec

ut
io

n
tim

e
(n

or
m

al
iz

ed
 to

 n
or

m
al

) normal

UASP

DMP

both

Fig. 6. Execution time of mibench workloads

Figure 6 shows the execution time of normal kernel and

three types of the AppWatch kernel. The execution times are
normalized to the execution time of normal kernel. UASP, in
most cases, shows less than 43% overhead. Especially
automotive workloads such as basicmath and bitcount show
almost zero overhead since CPU-intensive job is not affected
by AppWatch as expected. On the other hand, the tiffmedian
workload, an image modifying tool, shows about 200%
overhead since it reads much larger data (54.4MB) than the
other applications.

In comparison with UASP, DMP shows much less overhead,
maximum 14% in Figure 6. DMP runs only when a page is
allocated and freed, and thus it is less frequently invoked than
system calls. Therefore direct mapping protection makes little
performance degradation.

TABLE II

EXECUTION TIME OF WORKLOAD RUNNING WITH
PROTECTED / UNPROTECTED PROCESS

Status of background process Execution time (s)

Running with unprotected application 1.069
Running with protected application 1.086

In order to figure out how much overhead the workload

shows when a selectively protected application is running in
background, we evaluate the performance of two processes of
the tiffmedian workload running at the same time. We run the
processes both in normal kernel and in UASP kernel but only
one process is selectively protected.

692 IEEE Transactions on Consumer Electronics, Vol. 56, No. 2, May 2010

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on August 12,2010 at 06:09:13 UTC from IEEE Xplore. Restrictions apply.

As shown in TABLE II, the execution time of the process
running with protected process shows about 1.5%
performance degradation compared with running with non
protected process. The result proves that AppWatch can
selectively protect application software with little performance
interference to others.

VI. CONCLUSION
AppWatch is designed to protect core application programs

equipped in a consumer electronics device from bugs in
device drivers. Since it is based on the page protection
mechanism that is widely available in most operating systems,
it is much more efficient than the other memory protection
schemes. Also, it does not cause any modification on kernel
behavior resulting in high portability at an extremely low
engineering cost. Our experiments show that AppWatch
protects core applications without fault negatives and with
acceptable performance overhead in most cases. Even though
it is not an important issue, if the performance overhead is a
concern, the overhead incurred for traversing a page table can
be reduced using a shadow page table as Overshadow [25]
suggested.

REFERENCES
[1] S, Moon, J, Kim, K, Bae, J. Lee and D. Seo, "Embedded Linux

implementation on a commercial digital TV system," Consumer
Electronics, IEEE Transactions on , vol.49, no.4, pp. 1402-1407,
Nov. 2003

[2] L, Cauley and M. Kessler, “Dropped calls plague iPhone 3G, and not
just in U.S.,” USA TODAY, August 17, 2008,

[3] V. Orgovan and M. Tricker, “An introduction to driver quality,”
Microsoft WinHec Presentation DDT301, Redmond, WA, August
2003.

[4] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical
study of operating systems errors,” In Proceedings of the Eighteenth
ACM Symposium on Operating Systems Principles, pp. 73-88, Banff,
Alberta, Canada, October 21 - 24, 2001.

[5] R. Hastings and B. Joyce, “Purify: Fast Detection of Memory Leaks
and Access Errors,” In Proceedings of the Winter Usenix Conference,
pp. 1-12, January 1992.

[6] M. M. Swift, B. N. Bershad, and H. M. Levy, “Improving the
reliability of commodity operating systems,” In Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles, pp.
207-222, Bolton Landing, NY, USA, October 19 - 22, 2003.

[7] A. Tanenbaum, J. Herder, and H. Bos, “Can we make operating
systems reliable and secure?” Computer, 39(5):44–51, 2006.

[8] M. I. Seltzer, Y. Endo, C. Small, K. A. Smith, “Dealing with disaster,
surviving misbehaved kernel extensions,” In Proceedings of the
second USENIX symposium on Operating systems design and
implementation, pp. 213-227, Seattle, Washington, United States,
October 29-November 01, 1996.

[9] M. M. Swift, S. Martin, H. M. Levy, and S. J. Eggers 2002. “Nooks:
an architecture for reliable device drivers,” In Proceedings of the 10th
Workshop on ACM SIGOPS European Workshop, pp. 102-107, Saint-
Emilion, France, July 01 - 01, 2002.

[10] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy,
“Recovering device drivers,” ACM Transactions on Computer System,
pp. 333-360, 24, 4 (Nov. 2006).

[11] J. Liedtke, “On micro-kernel construction.” In Proceedings of the
Fifteenth ACM Symposium on Operating Systems Principles, Copper
Mountain, Colorado, United States, December 03 - 06, 1995.

[12] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian,
and M. Young. “Mach, A new kernel foundation for UNiX
development,” in Proceedings of the Summer 1986 USENIX
Conference, pp. 93-112, July 1986.

[13] D.R. Cheriton, “The V Kernel: A Software Base for Distributed
Systems,” IEEE Software, vol. 1, no.2, pp. 19-42, 1984

[14] A. Bricker, “A new look at micro-kernel-based UNIX operating
systems: Lessons in performance and compatibility,” In
Proceedings of EurOpen Spring'91 Conference, Tromsoe, Norway,
May 1991.

[15] S. J. Mullender, G. van Rossum, A. S. Tananbaum, R. van Renesse,
and H. van Staveren, “Amoeba: a distributed operating system for
the 1990s,” Computer , vol.23, no.5, pp.44-53, May 1990.

[16] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum,
“Modula System Programming in MINIX 3,” USENIX ;login,
April, 2006.

[17] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum,
“MINIX 3: a highly r eliable, self-repairing operating system,”
SIGOPS Operaing System Rev. 40, 3, PP. 80-89, July 2006.

[18] F. M. David, E. M. Chan, J. C. Carlyle and R. H. Campbell,
“CuriOS: Improving Reliability through Operating System
Structure,” In Proceedings of USENIX Symposium on Operating
Systems Design and Implementation, Dec, 2008.

[19] G. C. Hunt et al, “An overview of the Singularity project,” In
Tech. Rep. MSR-TR-2005-135, Microsoft Research, October 2005.

[20] J. LeVasseur, V. Uhlig, J. Stoess, S. Götz, “Unmodified device
driver reuse and improved system dependability via virtual
machines,” In Proceedings of the 6th conference on Symposium on
Opearting Systems Design & Implementation, p.2-2, December 06-
08, 2004, San Francisco, CA.

[21] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A.
Waldspurger, D. Boneh, J. Dwoskin, and D. R. Ports,
“Overshadow: a virtualization-based approach to retrofitting
protection in commodity operating systems.” In Proceedings of the
13th international Conference on Architectural Support For
Programming Languages and Operating Systems, pp. 2-13,
Seattle, WA, USA, March 01 - 05, 2008.

[22] E. Witchel, J. Cates, and K. Asanović, “Mondrian memory
protection,” In Proceedings of the 10th international Conference
on Architectural Support For Programming Languages and
Operating Systems, pp. 304-316, San Jose, California, October 05
- 09, 2002.

[23] E. Witchel, J. Rhee, and K. Asanović, “Mondrix: memory isolation
for linux using mondriaan memory protection,” In Proceedings of
the Twentieth ACM Symposium on Operating Systems Principles,
pp. 31-44, Brighton, United Kingdom, October 23 - 26, 2005

[24] R. Love, “Linux Kernel Development, 2nd ed.,” Novel Press:
Indianapolis, 2005, pp. 181~194.

[25] Intel, “Intel® 64 and IA-32 Architectures Software Developer's
Manual”, August 2008.

[26] P. M. Chen, W. T. Ng, S. Chandra, C. Aycock, G. Rajamani, and
D. Lowell, “The Rio file cache: surviving operating system
crashes,” In Proceedings of the Seventh international Conference
on Architectural Support For Programming Languages and
Operating Systems, pp. 74-83, Cambridge, Massachusetts, United
States, October 01 - 04, 1996.

[27] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.
Mudge, and R. B. Brown, “MiBench: A free, commercially
representative embedded benchmark suite,” In Proceedings of
Workload Characterization, 2001. WWC-4. 2001 IEEE
International Workshop on , vol., no., pp. 3-14, 2 Dec. 2001.

[28] M. Frigo and S. G. Johnson, "The Design and Implementation of
FFTW3," Proceedings of the IEEE 93 (2), 216–231 (2005). Invited
paper, Special Issue on Program Generation, Optimization, and
Platform Adaptation

BIOGRAPHIES
Jeaho Hwang received his BS degree in computer
science from Korea Advanced Institute of Science and
Technology (KAIST) in 2007, and MS degree in
computer science from KAIST in 2009. He is currently
a PhD candidate in the Computer Science Department,
KAIST. His current research interests include operating
systems, system reliability, virtualization and embedded
systems.

J. Hwang et al.: AppWatch: Detecting Kernel Bug for Protecting Consumer Electronics Applications 693

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on August 12,2010 at 06:09:13 UTC from IEEE Xplore. Restrictions apply.

Jinkyu Jeong received his BS degree from the
Computer Science Department, Yonsei University,
and the MS degree in computer science from the
Korea Institute of Science and Technology (KAIST).
He is currently a PhD candidate in the Computer
Science Department, KAIST. His current research
interests include real-time system, operating systems,
virtualization and embedded systems.

Hwanju Kim received his BS degree in information
and computer engineering from Ajou University,
Korea, in 2006, and MS degree in computer science
from Korea Advanced Institute of Science and
Technology (KAIST) in 2008. He is a PhD in the
Computer Science Department, KAIST. His research
interests include virtual machine, embedded system,
and storage system.

Jin-Soo Kim (M’89) received his BS, MS, and PhD
degrees in Computer Engineering from Seoul National
University, Korea, in 1991, 1993, and 1999,
respectively. He is currently an associate professor in
Sungkyunkwan University. Before joining
Sungkyunkwan University, he was an associate
professor in Korea Advanced Institute of Science and
Technology (KAIST) from 2002 to 2008. He was also

with the Electronics and Telecommunications Research Institute (ETRI) from
1999 to 2002 as a senior member of research staff, and with the IBM T. J.
Watson Research Center as an academic visitor from 1998 to 1999. His
research interests include embedded systems, storage systems, and operating
systems.

Joonwon Lee received his BS degree in computer
science from Seoul National University in 1983 and
the MS and PhD degrees from the Georgia Institute of
Technology in 1990 and 1991, respectively. He is
currently a professor in Sungkyunkwan University.
Before joining Sungkyunkwan University, he was a
professor at the Korea Advanced Institute of Science
and Technology (KAIST), Daejeon, Korea from 1992

to 2008. His current research interests include low power embedded systems,
system software, and virtual machines.

694 IEEE Transactions on Consumer Electronics, Vol. 56, No. 2, May 2010

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on August 12,2010 at 06:09:13 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

