
IEEE Transactions on Consumer Electronics, Vol. 54, No. 4, NOVEMBER 2008 

Contributed Paper 
Manuscript received March 17, 2008                                            0098 3063/08/$20.00 © 2008 IEEE 
 

1776 

Memory Management Scheme for Cost-Effective Disk-On-Modules 
in Consumer Electronics Devices 

Young-Sik Lee, Dawoon Jung, Student Member, IEEE, Jin-Soo Kim, Member, IEEE,  
and Seungryoul Maeng 

 
Abstract — A Disk-On-Module (DOM) is a NAND flash 

memory-based device with legacy I/O interface which does 
not require any special device driver due to the presence of 
flash translation layer (FTL). FTL is an intermediate software 
layer which makes DOMs look like conventional hard disk 
drives. Since DOMs are usually used in mass-market 
consumer electronics devices, they are extremely cost-
sensitive; hence FTL should be able to run in a severely 
resource-constrained environment. 

In this paper, we propose TinyFTL, a new FTL which 
employs an efficient memory management scheme for DOMs 
with a very small amount of memory. TinyFTL divides the 
mapping information into multiple levels and caches only 
recently-accessed mapping information in memory. According 
to experimental evaluation, TinyFTL shows the performance 
comparable to or better than the existing FTLs with only 4.3-
6.2% of memory requirement (12KB) for 16 GB NAND flash 
memory. 1 
 

Index Terms — disk-on-module, flash translation layer, 
NAND flash memory, cache management 

I. INTRODUCTION 
NAND flash memory is being used as a primary storage 

medium for many consumer electronics devices such as PDAs, 
GPS navigation devices, MP3 players, PMPs, digital still 
cameras, and digital TVs. This is mainly because NAND flash 
memory is a small and lightweight non-volatile device which 
consumes low power and provides high reliability against 
mechanical shock, vibration, and operating temperature. 

Specifically, it becomes increasingly popular for many 
consumer electronics devices to incorporate NAND flash 
memory in the form of Disk-On-Modules.  A Disk-On-
Module (DOM) is a flash drive with either USB or IDE/SATA 
interface to be used as a computer hard disk drive (HDD) 
within embedded computing systems [1]. For instance, DOMs 
can be used for storing maps in GPS navigation devices or 
 

1 This work was supported by the MKE(Ministry of Knowledge Economy),
 Korea, under the ITRC(Information Technology Research Center) Support 

program supervised by the IITA(Institute of Information Technology
 Advancement)" (IITA-2008-C1090-0801-0020). 

Young-Sik Lee, Dawoon Jung, and Seungryoul Maeng are with the 
Computer Science Department, Korea Advanced Institute of Science and 
Technology (KAIST), Daejeon 305-701, Korea (e-mail: {yslee, dwjung, 
maeng}@camars.kaist.ac.kr) 

Jin-Soo Kim (corresponding author) is with the School of Information and 
Communication Engineering, Sungkyunkwan University, Suwon 440-746,

 Korea (e-mail: jinsookim@skku.edu)  

saving favorite channel lists in digital TVs. Fig. 1 shows 
internal organizations of DOMs with ATA and USB interface. 
DOMs are directly plugged into the interface slot (IDE, SATA, 
or USB) or integrated into a target system with other on-board 
components.  

 

 
(a) ATA-DOM 

  
(b) USB-DOM 

Fig. 1.  DOMs with ATA and USB interface. 
 

DOMs are similar to Solid State Drives (SSDs), but have a 
smaller form factor with less storage capacity. While SSDs are 
optimized for performance to be used in laptops and server 
systems, DOMs are mostly an integral part of mass-market 
consumer electronics devices, making them more cost-sensitive. 
Due to this reason, DOMs tend to be enormously resource-
constrained in terms of processing power and memory capacity.  

An important advantage of using DOMs in consumer 
electronics devices is that an additional or specific device driver 
is not needed to interface with DOMs. Instead, traditional 
device drivers for HDDs/CDROMs can be used for DOMs as 
well without any modification. This is usually achieved by an 
intermediate software layer called flash translation layer (FTL). 

NAND flash memory has many characteristics which are 
different from conventional memory or HDDs. Most notably, 
NAND flash memory requires an erase operation to rewrite 
data and there is a limitation in the number of erase operations 
that can be performed. Moreover, the unit size of an erase 
operation is far larger than that of a read/write operation. 
Hence, NAND flash-based systems, including DOMs and 
SSDs, employ the flash translation layer to support legacy 

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 26, 2008 at 01:40 from IEEE Xplore.  Restrictions apply.



Y.-S. Lee et al.: Memory Management Scheme for Cost-Effective Disk-On-Modules in Consumer Electronics Devices 1777

block device interfaces while providing higher performance. 
The main role of FTL is to redirect each incoming write 
request to a previously-erased area and to manage the internal 
mapping information to access the latest data on NAND flash 
memory. In most cases, this mapping information is kept in 
memory. It should be noted that the performance and the 
reliability of NAND flash-based systems are greatly affected 
by the mapping algorithm implemented in FTL. 

When designing FTL, we should take hardware restriction 
into account as well as software performance. An FTL scheme 
which offers superior performance at the expense of higher 
resource consumption (such as memory) is not necessarily a 
better scheme as there is always some trade-off between 
performance and cost. This is especially true for DOMs which 
are used in mass-market consumer electronics devices. 
Typical DOMs are equipped with a very small amount of 
RAM due to cost pressure. FTL should utilize the small RAM 
space to store not only firmware data but also the mapping 
information used by FTL. Although many innovative FTL 
schemes are proposed in the past few years, none of them has 
focused on the environment where the amount of memory 
usable by FTL is extremely small.  

In this paper, we propose a new FTL called TinyFTL which 
employs an efficient memory management scheme for 
resource-constrained DOMs. In TinyFTL, we divide the 
mapping information into multi-level translation units and 
cache only the recently-accessed translation units in RAM to 
reduce the memory footprint of FTL. Since we do not allocate 
the RAM space permanently to keep track of all the mapping 
information, the required RAM size is not proportional to the 
total NAND flash memory size. According to our 
experimental evaluations, TinyFTL shows the performance 
comparable to or better than the existing FTLs by making use 
of only 4.3-6.2% of memory (12 KB) for 16 GB NAND flash 
memory. 

The rest of this paper is organized as follows. In Section II, 
we overview DOMs, MLC NAND flash memory, and flash 
translation layers. Section III presents the related work and 
Section IV discusses the motivation of our work. Section V 
describes the proposed FTL and memory management scheme 
in detail. In Section VI, we compare experimental results 
between the proposed FTL and the previous work. Finally, we 
conclude in Section VII. 

II. BACKGROUND 

A. Disk-On-Modules (DOMs) 
Fig. 2 illustrates the block diagram of a Disk-On-Module. A 

DOM consists of flash controller, ROM, RAM, I/O interface 
controller, and one or more NAND flash memory chips. The 
flash controller is a programmable microprocessor whose 
codes are stored in ROM. The primary task of the flash 
controller is to run the FTL code so that the DOM can be 
viewed as a hard disk drive to the host system. The run-time 
data and the mapping information used by FTL are maintained 
in RAM. The DOM is interfaced with the host system via the 

I/O interface controller which handles various protocols such 
as USB, ATA, and SATA. 

Since the DOM is typically used as a storage medium for 
mass-market products, its hardware is severely restricted. It 
tends to be constructed with a low-end CPU core and a tiny 
amount of RAM. In particular, the size of RAM is directly 
related to the manufacturing cost and the energy consumption, 
and, in many cases, less than 32 KB. 

 

I/O interface controller

Flash Controller
(micro processor)

NAND Flash 
memory

RAM

ROM

Bus

ROM  
Fig. 2.  The block diagram of a Disk-On-Module (DOM). 

 

B. MLC NAND flash memory 
NAND flash memory is a non-volatile memory which is 

quickly replacing HDDs in portable computing devices. Since 
there are no mechanical parts in NAND flash memory, it has 
many advantages over HDDs in terms of form factor, weight, 
reliability, and energy consumption. 

Recently, a new type of NAND flash memory called Multi-
Level Cell (MLC) NAND flash memory has been developed 
to provide higher density with larger storage capacity than the 
previous Single-Level Cell (SLC) NAND flash memory. 
Whereas SLC NAND flash contains only 1-bit information 
per cell, a cell in MLC NAND flash can represent two or more 
bits of information. However, MLC NAND flash has the 
possibility of more bit errors because of smaller error margins, 
necessitating the use of stronger error correction codes (ECCs). 
Nevertheless, many flash memory-based storage systems are 
using MLC NAND flash memory in favor of low cost and 
high density. 

 There are three types of operations in NAND flash 
memory: read, write, and erase operations. NAND flash 
memory reads and writes data in the unit of page. A page is 
comprised of data area and spare area; the data area size is a 
multiple of sector size (512-4096 B) and the spare area size is 
a fixed fraction (1/32) of the data area size. The spare area is 
used to store bookkeeping information on the page such as 
bad block indicators, ECCs, and the corresponding logical 
page numbers. The data stored in NAND flash memory cannot 
be updated in-place. Instead, a larger area containing the 
original data should be erased first before writing a new data. 
The unit of this erase operation is called a block, which 
usually contains 32-128 pages. To make matters worse, there 

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 26, 2008 at 01:40 from IEEE Xplore.  Restrictions apply.



IEEE Transactions on Consumer Electronics, Vol. 54, No. 4, NOVEMBER 2008 

 

1778 

is a limitation in the number of erase operations that can be 
performed on a single flash memory block. Due to these 
characteristics, it is not easy for the host system to deal with 
the raw NAND flash memory directly. 

C. Flash Translation Layer (FTL) 
FTL is a software layer residing in many NAND flash-

based storage devices such as DOMs, SSDs, memory cards, 
etc. FTL is introduced to hide the unique characteristics of 
NAND flash memory to the host system. Without FTL, the 
host system requires a special NAND flash memory driver to 
perform read, write, and erase operations. However, FTL 
allows the host system to use the conventional device drivers 
for hard disks because FTL makes NAND flash memory look 
like a hard disk drive by bridging the gap between the block 
device interface and NAND flash interface. 

One of the most important tasks in FTL is to manage the 
mapping from the logical page number to the physical location 
in an efficient way. Commonly, FTL maintains a set of free 
blocks which are erased in advance, and then redirects 
incoming write requests to those areas to reduce the number of 
erase operations. This results in a one-to-one correspondence 
between the logical address given from the host system and 
the physical address on NAND flash memory.  

As initial free blocks are filled with new data, FTL needs to 
generate new free blocks to absorb future write requests. This 
is done by the process known as garbage collection (or merge 
operation). During garbage collection, FTL selects a victim 
block and copies all the live pages in the block to the current 
free block. Then, the victim block is erased and converted into 
a new free block. 

III. RELATED WORK 
Several different FTL schemes are proposed in the previous 

literature. According to mapping granularities, they can be 
classified into page-mapped FTLs and block-mapped FTLs. 

In page-mapped FTLs such as DAC [2], the logical-to-
physical mapping unit is a page. This is a fine-grain mapping 
scheme in that each page can be freely located anywhere on 
NAND flash memory. Page-mapped FTLs usually perform 
better than block-mapped FTLs due to flexibility in storage 
management. However, page-mapped FTLs require an 
extremely large RAM space to keep track of mapping 
information for every individual page. For 16 GB NAND 
flash memory with 2 KB page size, page-mapped FTLs should 
have at least 24 MB of memory to operate. 

To reduce the size of mapping information, block-mapped 
FTLs are proposed in which only the block-level mapping 
information is maintained in memory. All the pages belonging 
to a logical block are mapped into the same offset in a 
physical block. The Logblock FTL [3] is a representative 
block-mapped FTL which makes use of a set of reserved log 
blocks. When there is an update in a logical block, the 
Logblock FTL assigns a log block to the logical block. 

Thereafter, all the update operations to the same logical block 
are logged sequentially in the corresponding log block. If all 
of log blocks are exhausted, the Logblock FTL reclaims one 
of log blocks by performing the garbage collection process. 
By using log blocks as temporary buffers, the Logblock FTL 
can delay expensive erase operations and improve the FTL 
performance. Note that the Logblock FTL maintains the page-
level mapping information for a small number of log blocks, 
while the rest of data blocks are mapped with block 
granularity. Therefore, the Logblock FTL consumes a little 
more memory than pure block-mapped FTLs. 

The Superblock FTL [4] aims at improving the performance 
of the Logblock FTL by introducing the notion of superblocks. 
A superblock is defined as a set of adjacent logical blocks. 
Unlike the Logblock FTL, a log block is shared by several 
logical blocks in the same superblock. Superblocks are 
mapped with block granularity, whereas pages inside the 
superblock can be mapped to any location in several physical 
blocks similar to page-mapped FTLs. This will inevitably 
increase the amount of mapping information, but the 
Superblock FTL has a sophisticated mechanism where such 
fine-grain mapping information is stored in the spare area of 
NAND flash memory. Since the spare area is limited in size, 
the whole mapping information is structured in multiple levels.  

In terms of memory footprint, block-mapped FTLs such as 
the Logblock FTL and the Superblock FTL still require too 
much memory to be used in resource-constrained DOMs. For 
example, the Logblock FTL needs at least 128 KB of memory 
(excluding the additional space for log blocks) for 16 GB 
NAND flash memory which has 65,536 blocks. The 
Superblock FTL demands several KBs more to cache the 
page-level mapping information.  

IV. MOTIVATION 
Previously, many researchers have introduced high-

performance FTLs. They assume that there is a sufficient 
amount of RAM to preserve at least the block-level mapping 
information. However, contemporary storage devices such as 
DOMs and memory cards cannot accommodate the whole 
block-level mapping information in memory as the size of RAM 
is limited by the lack of on-chip space and/or manufacturing 
cost and energy consumption constraints. Since the size of the 
block-level mapping information grows in proportion to the 
storage capacity of NAND flash memory, the continuing trend 
of ever increasing storage capacity simply makes the problem 
worse. Thus, it is necessary to develop a new FTL scheme 
which shows comparable performance to the existing FTLs 
even under very small RAM size.  

Since there is not enough space to maintain the whole block-
level mapping information, FTL must store a part of them 
whereas the rest is stored in NAND flash memory. A simple 
way of achieving this is to employ a zone-switching scheme. In 
the zone-switching scheme, FTL splits the whole logical space 

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 26, 2008 at 01:40 from IEEE Xplore.  Restrictions apply.



Y.-S. Lee et al.: Memory Management Scheme for Cost-Effective Disk-On-Modules in Consumer Electronics Devices 1779

into a fixed size of consecutive areas (or zones), and loads only 
the mapping information of the currently accessed zone into 
memory. If there is a read/write request to a different zone, the 
current mapping information is flushed and replaced with the 
mapping information of the new zone. Although it is relatively 
easy to extend the traditional block-mapped FTLs with the 
zone-switching scheme, it incurs significant overhead when 
several different zones are actively accessed simultaneously. 
Unfortunately, the trace analysis results indicate that such an 
access pattern is frequently seen in the real workload [5].  

The basic idea of the proposed TinyFTL is to cache only 
the recently-accessed mapping information in memory. This is 
not a new idea, but difficult to implement in FTL since it 
requires a unit structure to manipulate easily, a tag structure to 
identify the wanted unit fast, and an effective eviction policy. 
Moreover, it remains very challenging to exhibit the similar 
level of performance to other block-mapped FTLs even in the 
presence of cache miss overhead. Wu et al. have investigated 
the use of a cache mechanism in the address translation of 
FTL [6]. However, they utilize the cache only for fast access 
of address translation information. The existing mapping 
information is still stored in RAM, thus there is no advantage 
at all in memory footprint. 

V. DESIGN 

A. Overall structure of TinyFTL 
Basically, TinyFTL is a block-mapped FTL where each 

logical block is associated with one physical block. A small 
portion of physical blocks are reserved for log blocks. When 
there are write requests in a logical block, TinyFTL allocates a 
log block to the logical block to absorb incoming write 
requests. One of the important characteristics of TinyFTL is 
that pages in a logical block can reside anywhere in the 
associated physical block or, if any, in the log block. 

Fig. 3 illustrates the overall structure of TinyFTL. The 
block mapping table translates the logical block number to the 
corresponding physical block number. Then, TinyFTL finds 
the right location of a page with the help of the page mapping 
table. As shown in Fig. 3, some of logical blocks have an 
additional log block, which is used to log incoming write 
requests directed to the corresponding logical block. When the 
reserved log blocks are exhausted, TinyFTL starts the garbage 
collection process to generate a new free block. 

Compared to the Logblock FTL, the major distinction of 
TinyFTL is that pages need not be sorted according to their 
logical page numbers in the physical block. This out-of-place 
scheme provides a greater flexibility in locating pages, 
improving the overall FTL performance. If a page should be 
in a fixed position in the physical block as is done in the 
Logblock FTL, more overhead is incurred to put each page in 
the right position during garbage collection. 

In a sense, TinyFTL can be viewed as a simplified version 
of the Superblock FTL. Although the Superblock FTL is one 
of the best FTL algorithms, it cannot be used in its present 
form for MLC NAND-based DOMs. First, the original 
Superblock FTL is proposed for SLC NAND flash memory. 

The Superblock FTL stores the page mapping information of a 
superblock into the unused spare area. However, MLC NAND 
flash memory devotes more space for stronger ECCs due to its 
high error rate, making the spare area size usable by FTL 
become smaller. Second, the Superblock FTL is too complex 
to implement in resource-constrained devices, as a log block is 
shared by several physical blocks in the same superblock. 

TinyFTL has the same benefit as the Superblock FTL by 
allowing pages to be freely located in the physical block. 
However, in order to adapt the Superblock FTL to resource-
constrained DOMs based on MLC NAND flash memory, 
TinyFTL has simplified the Superblock FTL by restricting the 
superblock size to one logical block and assigning only one 
log block for each block. Furthermore, unlike the Superblock 
FTL, TinyFTL aggressively uses most of the RAM space to 
cache address translation information, significantly reducing 
the required memory size. 

 

...

Page mapping 
table

...

...

Logical 
blocks

Data blocks

Log blocks

Block mapping 
table

 
Fig. 3.  The overall structure of TinyFTL.  

 

B. Mapping structure 
Although TinyFTL is a block-mapped FTL, it has the page 

mapping table for each logical block. Thus, the amount of 
mapping information is much larger than that of traditional 
block-mapped FTLs. As in the Superblock FTL, this mapping 
information needs to be squeezed into the spare area so as not 
to incur any additional flash operations. Since the size of the 
usable spare area in MLC NAND is far smaller than that in 
SLC NAND, the block mapping table and the page mapping 
table should be structured in a more compact format.  

TinyFTL splits the block mapping table into block directory 
and block table, as it is too large to be kept in memory. This is 
the main difference between TinyFTL and other block-mapped 
FTLs such as the Logblock FTL and the Superblock FTL. A set 
of block mapping entries for a block table, and the location of 
each block table is pointed to by the block directory entry. 
When NAND flash memory is mounted, TinyFTL scans a 
reserved area called map blocks and restores the block directory 
in memory.  The size of the top-level block directory is usually 
very small and can be kept in memory all the time. The block 
directory is flushed to NAND flash memory at the end of the 
garbage collection process, as garbage collection changes the 
information of the block directory. 

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 26, 2008 at 01:40 from IEEE Xplore.  Restrictions apply.



IEEE Transactions on Consumer Electronics, Vol. 54, No. 4, NOVEMBER 2008 

 

1780 

Similarly, the page mapping table is also organized in two 
levels. Page table entries contain the address translation 
information for each logical page, and the page directory 
points to the location of the corresponding page table. Page 
directories and page tables are stored in the spare area. Fig. 4 
depicts the overall mapping structure between the logical page 
number and the physical page number. 

8 bits 8 bits 3 bits 4 bits

Entry 1

Entry 2

.

.

.

Block directory

Block table

Page directory

Page table

Logical page number

Entry 1

Entry 2

.

.

.

Entry 1

Entry 2

.

.

.

Entry 1

Entry 2

.

.

.

1 bit 7 bits

Page index

(b) Page directory entry

Block
index

(c) Page table entry

1 bit 7 bits

Page indexBlock
index

Block 
directory 

index

Block 
table 
index

Page 
directory 

index

Page 
table 
index

(a) Mapping structure

 
Fig. 4.  The overall mapping structure and the formats of page directory 
entry and page table entry. 
 

C. Memory management 
For efficient management, TinyFTL divides the entire 

RAM space into four different areas: block directory cache, 
block table cache, page mapping cache, and metadata area. 

The latest contents of the block directory are maintained in 
the block directory cache.  The block directory resides in the 
RAM always because its size is very small and it is frequently 
accessed to find the location of the block table in the next level. 

The block table cache holds a set of recently-accessed block 
tables. As there is no enough RAM space to store all the block 
tables, TinyFTL just caches a small number of block tables in 
memory. The block directory index is used as a cache tag to 
identify whether the corresponding block table resides in the 
block table cache. If there is no available entry in the block 
table cache, the victim is selected using the LRU (Least-
Recently-Used) replacement policy. 

The page mapping cache is used to cache the page mapping 
information for the given block. A pair of page directory entry and 
page table entry is a caching unit. TinyFTL uses the physical block 
number and the physical page number as a cache tag. The page 
mapping cache is also managed by the LRU policy. 

In the metadata area, TinyFTL maintains the list of log blocks 
and reserved free blocks. As described in Section V.A, log 
blocks are used to buffer incoming write requests temporarily. 
The reserved free blocks are used for recovery. By using pre-
assigned blocks to update the mapping information, we can 
simplify the recovery process when the system faces a sudden 
power outage. These metadata must reside in memory so as not 
to generate any unnecessary flash memory operation during 
garbage collection. 

D. Other TinyFTL features 
NAND flash memory chips have some bad blocks as shipped 

from the factory, and additional blocks may go bad over time if the 
erase count reaches a certain threshold. When a bad block is 
produced at run time, TinyFTL replaces the block with a reserved 
unused block. The list of bad blocks is stored with the block 
directory to save the flash memory space. 

TinyFTL also provides a recovery mechanism when the 
mapping information is vanished by sudden power failure. Recall 
that the contents of block directory and block tables are stored at 
the end of garbage collection. The page directory and page tables 
are also stored simultaneously in the spare area of the page being 
updated. Although the latest information of the block directory and 
cached block tables are lost, we can recover all the information by 
checking reserved free blocks. 

E. TinyFTL configuration 
In this paper, we assume the MLC type of 16 GB NAND flash 

memory where each page consists of 2 KB data area and 64 bytes 
spare area, and each block has 128 pages. We assign 256 entries to 
the block directory and 256 entries to each block table as shown in 
Fig. 4(a). The page mapping information for a block is divided into 
8 different page tables; a page directory has 8 entries and each page 
table consists of 16 entries. 

In order to store the list of log blocks with the block directory in 
one page, we utilize the maximum 393 log blocks. The list of log 
blocks is linked in the LRU order. We have the total 1,536 non-
data blocks by reserving 24 blocks for every 1,024 blocks. Among 
them, 393 blocks are used as log blocks and 256 blocks are 
reserved to store the block directory. The remaining 877 blocks are 
used for bad block management. 

Table I summarizes the total memory usage of TinyFTL. As 
shown in Table I, the total memory required by TinyFTL is only 
12,195 bytes under the aforementioned configuration. 

 
TABLE I 

THE AMOUNT OF MEMORY REQUIRED BY TINYFTL 

Information Size 
(bytes) Description 

Block directory cache 768 256 entries 
Block table cache 6,171 8 tables with liked list pointers 

Page mapping cache 3,970 128 entries with linked list pointers 
Log block list 

Reserved free blocks 
1,280 

6 
393 blocks with linked list pointers 

3 blocks 
Total 12,195  

 

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 26, 2008 at 01:40 from IEEE Xplore.  Restrictions apply.



Y.-S. Lee et al.: Memory Management Scheme for Cost-Effective Disk-On-Modules in Consumer Electronics Devices 1781

VI. EVALUATION 

A. Experimental Environment 
We have implemented a trace-driven simulator for TinyFTL. 

To compare the performance with previous work, we have 
also simulated the original Logblock FTL, the Logblock FTL 
with zone-switching (labeled as Logblock-zoned), and the 
Superblock FTL. The simulator counts the number of 
additional read, write, and erase operations needed to process 
incoming update requests. It also measures the number of 
additional flash memory operations to maintain the mapping 
information for Logblock-zoned and TinyFTL. Note that the 
original Logblock FTL and the Superblock FTL do not incur 
any additional flash operations to manage the mapping 
information as these FTLs store the whole mapping 
information in memory. These counts are translated into the 
total processing time of FTL using the timing parameters 
shown in Table II [7]. For all the simulated FTLs, the number 
of log blocks is set to 393 blocks.   

 
TABLE II 

TIMING PARAMETERS OF MLC NAND FLASH MEMORY 

Operation Access time (μ s) 

Data read (2KB data area) 112.8 
Spare read (64 B spare area) 61.6 

Write (2 KB + 64 B one page) 852.8 
Erase (256 KB one block) 1,500.0 

 
Table III summarizes the real workload traces used for the 

evaluation. These traces are extracted from a Windows-based 
desktop computer by using DiskMon [8]. PIC, MP3, and 
MOV model the typical usage scenario for DOMs or flash 
memory cards used for digital still cameras, MP3 players, and 
PMPs. These traces are obtained from 8 GB FAT32 file 
system. Other traces, GENERAL and WEB, represent the 
scenario of PDAs, smart phones, and laptops. GENERAL and 
WEB traces are obtained from 16 GB NTFS file system. The 
number of write requests and a brief description of each trace 
are shown in Table III. 
 

TABLE III 
WORKLOAD TRACES USED  

Trace # of r/w 
requests Description 

PIC 474,385 Copy and delete picture files repeatedly. 
Average file size is 1.9 MB. 

MP3 512,762 Copy and delete MP3 files repeatedly. 
Average file size is 4.4 MB. 

MOV 435,872 Copy and delete movie files repeatedly. 
Average file size is 681 MB. 

GENERAL 1,019,078 General PC usage for 5 days. 
WEB 124,762 Web surfing activity for 1 day. 

 
B. Memory Footprint 
We first measure the memory requirement of each FTL and 

the results are shown in Table IV. For 16 GB MLC NAND 

flash memory whose block size is 256 KB (128 pages), there 
are 65,536 blocks. Each block mapping entry requires 2 bytes 
to represent the corresponding physical block number. 
Therefore, the Logblock FTL requires 128 KB to maintain the 
block mapping table in memory. In addition to that, the 
Logblock FTL keeps track of page-level mapping information 
for log blocks, requiring another 150,912 bytes for 393 log 
blocks. 

In the Superblock FTL, each block mapping entry 
consumes 3 bytes; 2 bytes for the physical block number of 
page directory plus 1 byte for the offset of page directory in 
the block. Thus, the size of the block mapping table in the 
Superblock FTL is 192 KB, slightly larger than that in the 
Logblock FTL. Moreover, the Superblock FTL requires 
another 1,568 bytes to cache the recently-accessed page 
mapping information under the default cache configuration 
(16 cache entries).  

On the other hand, TinyFTL requires only about 12 KB 
RAM size (cf. Table I) since it does not have to maintain the 
whole block mapping information in memory. We also present 
the memory footprint of the Logblock FTL with zone-
switching (Logblock-zoned) for comparison. Although many 
different configurations for the zone size are possible in 
Logblock-zone, we set the zone size to 6,144 blocks so that 
the block mapping information of each zone occupies almost 
the same memory size as in TinyFTL. 

 
TABLE IV 

THE MEMORY REQUIREMENT OF FTLS 

FTL Memory Requirement (bytes) 

Logblock 281,984 
Logblock-zoned 12,288 

Superblock 198,176 
TinyFTL 12,195 

  

C. Overall Performance 
Fig. 5 compares the overall performance of FTLs. The 

metric we use is the normalized processing time. The 
processing time represents the total elapsed time to replay 
read/write requests for a given trace. In addition to the actual 
time to read and write requested pages, the processing time 
includes the overhead for garbage collection as well as the 
time for managing the mapping information. In Fig. 5, the 
processing time is normalized with respect to the time taken 
by the Logblock FTL. 

In general, Logblock-zoned has more overhead than the 
original Logblock FTL because Logblock-zoned needs to 
perform zone switching whenever a new zone is accessed. The 
zone switching involves flushing and reloading of zone 
mapping information. Under the configuration presented in 
Section V.E, the size of zone mapping information is 12 KB. 
Therefore, each zone switching involves at least 6 page write 
operations (for flushing) and 6 page read operations (for 
reloading). Due to this zone switching overhead, the 

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 26, 2008 at 01:40 from IEEE Xplore.  Restrictions apply.



IEEE Transactions on Consumer Electronics, Vol. 54, No. 4, NOVEMBER 2008 

 

1782 

processing time of Logblock-zoned is increased by 10.7% and 
4.9% for GENERAL and WEB traces respectively, compared 
to the Logblock FTL. Note that Logblock-zoned has only 
marginal overhead for PIC, MP3, and MOV traces. This is 
due to the high locality in zone accesses resulted from 
sequential writes of large files. In fact, the MOV trace copies 
and deletes movie files whose average size is 681 MB (cf. 
Table III). In this extreme case, there is virtually no 
performance difference between FTLs. 

Except for the MOV trace, TinyFTL improves the total 
processing time of the Logblock FTL by 6.2% (MP3) - 16.6% 
(WEB). Compared to Logblock-zoned which is configured to 
use the same amount of memory, TinyFTL reduces the 
processing time by up to 20.5%.  

From Fig. 5, we can observe that the Superblock FTL 
performs best among all the FTLs evaluated. However, the 
Superblock FTL requires about 200 KB to run. In case of PIC, 
MP3, and MOV traces, TinyFTL shows comparable 
performance to the Superblock FTL using only 6.2% of memory. 

 

0

0.2

0.4

0.6

0.8

1

1.2

PIC MP3 MOV GENERAL WEB

No
rm

al
ize

d 
pr

oc
es

sin
g 

tim
e

Traces

Logblock Logblock-zoned TinyFTL Superblock

 
Fig. 5.  A performance comparison of FTLs. Logblock indicates the 
original Logblock FTL, while Logblock-zoned extends the Logblock FTL 
with zone-switching (zone size = 6,144 blocks). Superblock represents the 
Superblock FTL and TinyFTL is our proposed FTL. 

 

D. The Effect of Block Table Cache Size 
In TinyFTL, the block table cache is used to accelerate 

accesses to block table entries. We have varied the block table 
cache size from 1 to 64 caching units to investigate its impact 
on the cache miss ratio. As described in Section V.C, each 
caching unit caches the entire contents of a block table and 
occupies 768 bytes. The simulation results are illustrated in 
Fig. 6.  

We can see that FAT32 file system traces (PIC, MP3, and 
MOV) exhibit notably small cache miss ratios. As described 
in the previous subsection, this is because the working set 

sizes of those traces are small enough to fit in the block table 
cache. On the contrary, cache miss ratios of NTFS file system 
traces (GENERAL and WEB) are relatively high, reaching up 
to 5%, and they are continuously benefited from the increased 
block table cache size. The storage access patterns of 
GENERAL and WEB traces have many small-sized requests 
and they tend to touch much wider area at the same time. 
Hence, the working sets cannot be accommodated in the block 
table cache. 

The default block table cache size we use in Fig. 5 is 8 
units. Fig. 6 indicates that as we increase the block table 
cache size further, we can expect much more improvement 
in the processing time especially for GENERAL and WEB 
traces. 

 

0

1

2

3

4

5

6

1 2 4 8 16 32 64

Ca
ch

e 
m

iss
 ra

tio
 (%

)

Size of block table cache (unit)

PIC

MP3

MOV

GENERAL

WEB

 
Fig. 6.  Changes in the cache miss ratio when we vary the block table 
cache size from 1 to 64 units. Each unit holds the contents of a block table 
and occupies 768 bytes. 
 

E. The Effect of Page Table Cache Size 
We have also investigated the impact of the page table 

cache size on the overall performance. Similar to Fig. 6, we 
have measured the cache miss ratio when we vary the page 
table cache size from 8 to 512 units. Each page table cache 
unit consumes 24 bytes consisting of a page directory entry 
and a page table entry. The default page table cache size we 
use in Fig. 5 is 128 units. 

As in the block table cache, FAT32 file system traces (PIC, 
MP3, and MOV) have lower cache miss ratios than NTFS file 
system traces (GENERAL and WEB). However, the overall 
cache miss ratio is higher than that of block table cache, even 
for PIC, MP3, and MOV traces. This is because the LRU 
replacement policy works poorly under large sequential access 
patterns. While a block table cache entry can cover the area of 
64 MB, a single page table cache entry can cover only the area 
of 32 KB. Thus, when a large area is sequentially updated, 
most of cache entries will be evicted to accommodate newly 
referenced entries. GENERAL and WEB traces have many 

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 26, 2008 at 01:40 from IEEE Xplore.  Restrictions apply.



Y.-S. Lee et al.: Memory Management Scheme for Cost-Effective Disk-On-Modules in Consumer Electronics Devices 1783

small-sized random requests, but the number of large-sized 
requests is not negligible as well, both of which contribute to 
poor locality in the page table cache. 

 

0

2

4

6

8

10

12

14

8 16 32 64 128 256 512

Ca
ch

e 
m

iss
 ra

tio
 (%

)

Size of page table cache (unit)

PIC MP3 MOV GENERAL WEB

 
Fig. 7.  Changes in the cache miss ratio when we vary the page table cache 
size from 8 to 512 units. Each unit represents single page mapping 
information consisting of a page directory entry and a page table entry, 
and occupies 24 bytes. 
 

VII. CONCLUSION 
This paper presents the design and implementation of 

TinyFTL for resource-constrained Disk-On-Modules 
(DOMs). Against other block-mapped FTLs, TinyFTL can 
work with a very small amount of memory due to an 
efficient memory management scheme, being a perfect 
solution for DOMs used in mass-market consumer 
electronics devices. 

The basic idea behind TinyFTL is to load only the 
necessary mapping information on demand instead of 
storing the whole mapping information in memory all the 
times. Special cares have been taken to avoid performance 
degradation. First, TinyFTL allows pages in a logical block 
to be located anywhere in the associated physical block or, 
if any, in the log block for flexible storage management. 
Second, TinyFTL divides the mapping information into 
multiple levels, and stores them in the spare area of NAND 
flash memory so as not to incur any additional flash 
memory operations. Finally, most of the memory is used as 
a cache for recently-accessed mapping information, whose 
size can be adjustable depending on the workload 
characteristics and hardware configurations. 

Our evaluation with the real workload traces 
demonstrates that TinyFTL shows the performance 
comparable to or better than the existing block-mapped 
FTLs using only 12 KB of memory for 16 GB NAND flash 
memory. This amount of memory corresponds to 4.3-6.2% 
of the memory footprint required by traditional block-
mapped FTLs. 

Our future work includes the further optimization of 
TinyFTL by improving the cache management policy for 
page table cache. We also plan to extend TinyFTL to other 
flash storage devices constructed with different architecture 
and/or different type of NAND flash memory, as flash 
memory technology is evolving fast. 

REFERENCES 
[1] Disk on module, http://en.wikipedia.org/Disk_on_module 
[2] M.-L. Chiang, P. C. H. Lee, and R.-C. Chang, “Using data clustering to 

improve cleaning performance for flash memory,” Software Practice 
and Experience, vol. 29, no. 3, pp.267-290, 1999. 

[3] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho, “A space-efficient 
flash translation layer for CompactFlash systems,” IEEE Trans. Consum. 
Electron., vol. 48, no. 2, pp. 366-375, May 2002. 

[4] J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee, “A superblock-based flash 
translation layer for NAND flash memory,” in Proc. of the 6th ACM & 
IEEE International conference on Embedded software (EMSOFT ’06), 
2006. 

[5] A. Riska and E. Riedel, “Disk drive level workload characterization,” in 
Proc. of  USENIX Annual Technical Conference, 2006 

[6] C.-H. Wu, T.-W. Kuo, and C.-L. Yang, “A space-efficient caching 
mechanism for flash-memory address translation,” in Ninth IEEE 
International Symposium on Object and Component-Oriented Real-Time 
Distributed Computing (ISORC ‘06), 2006 

[7] Samsung Elec. 2G x 8 Bit NAND Flash Memory(K9GAG08UXM), Dec. 
2006 

[8] DiskMon, http://technet.microsoft.com/en-us/sysinternals/ 
bb896646.aspx. 

 
Young-Sik Lee received the B.S. degree in Computer 
Science from Korea Advanced Institute of Science and 
Technology (KAIST) in 2006. He is currently working 
toward his Ph.D. degree in Computer Science at KAIST. 
His research interests include flash memory, embedded 
systems, file systems, and operating systems. 
 

 
Dawoon Jung (S’07) received his B.S. and M.S. degrees 
in Computer Science from Korea Advanced Institute of 
Science and Technology (KAIST) in 2002 and 2004, 
respectively. Currently, he is pursuing his Ph.D. degree in 
Computer Science at the same school. His research 
interests include operating systems and storage systems. 
 

 
Jin-Soo Kim (M’89) received his B.S., M.S., and Ph.D. 
degrees in Computer Engineering from Seoul National 
University, Korea, in 1991, 1993, and 1999, respectively. 
He is currently an associate professor in Sungkyunkwan 
University. Before joining Sungkyunkwan University, he 
was an associate professor in Korea Advanced Institute of 
Science and Technology (KAIST) from 2002 to 2008. He 

was also with the Electronics and Telecommunications Research Institute 
(ETRI) from 1999 to 2002 as a senior member of research staff, and with the 
IBM T. J. Watson Research Center as an academic visitor from 1998 to 1999. 
His research interests include embedded systems, storage systems, and 
operating systems. 
 

 Seungryoul Maeng received the B.S. degree in 
Electronics Engineering from Seoul National University, 
Korea, in 1977, and the M.S. and Ph.D. degrees in 
Computer Science from KAIST in 1979 and 1984, 
respectively. Since 1984 he has been a faculty member at 
KAIST. From 1988 to 1989, he was with the University 
of Pennsylvania as a visiting scholar. His research 

interests include computer architecture, cluster computing, and embedded 
systems. 
 

 

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 26, 2008 at 01:40 from IEEE Xplore.  Restrictions apply.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Academy
    /AgencyFB-Bold
    /AgencyFB-Reg
    /Alba
    /AlbaMatter
    /AlbaSuper
    /Algerian
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /BabyKruffy
    /BaskOldFace
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Castellar
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chick
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Croobie
    /CurlzMT
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /Fat
    /FelixTitlingMT
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Freshbot
    /Frosty
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GlooGun
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /Jenkinsv20
    /Jenkinsv20Thik
    /Jokerman-Regular
    /Jokewood
    /JuiceITC-Regular
    /Karat
    /Kartika
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /Poornut
    /PoorRichard-Regular
    /Porkys
    /PorkysHeavy
    /Pristina-Regular
    /PussycatSassy
    /PussycatSnickers
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /ShowcardGothic-Reg
    /Shruti
    /SnapITC-Regular
    /Square721BT-Roman
    /Stencil
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Vrinda
    /Webdings
    /WeltronUrban
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


