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Abstract — This paper presents a novel buffer 

management scheme for portable media players equipped with 
flash memory. Though flash memory has various advantages 
over magnetic disks such as small and lightweight form factor, 
solid-state reliability, low power consumption, and shock 
resistance, its physical characteristics imposes several 
limitations. Most notably, it takes relatively long time to write 
data in flash memory and the data cannot be overwritten 
before being erased first. Since an erase operation is 
performed as a unit of larger block, the employed strategy for 
mapping logical blocks onto physical pages affects real 
performance of flash memory. This article suggests a flash-
aware buffer management scheme that reduces the number of 
erase operations by selecting a victim based on its page 
utilization rather than based on the traditional LRU policy. 
Our scheme effectively minimizes the number of write and 
erase operations in flash memory, reducing the total execution 
time by 17% compared to the LRU policy1. 
 

Index Terms — flash memory, buffer, replacement  

I. INTRODUCTION 
Portable Media Player (PMP) is a device that stores or plays 

multimedia contents. We use the term rather loosely in this 
paper, encompassing a wide range of consumer electronics 
devices which share the similar characteristics, such as MP3 
players, portable DVD players, digital cameras, PDAs, and 
even cellular phones. Generally, it consists of a processing unit, 
main memory, and storage for storing media data with its 
capacity ranging from several Mbytes to Gbytes.  The medium 
for this storage has been hard disks, but due to its fragility and 
high power consumption they have been replaced with flash 
memory. 

Though flash memory is still more expensive than magnetic 
disk yet, it has distinctive advantages such as small and 
lightweight form factor, solid-state reliability, low power 
consumption, and shock resistance [1]. These characteristics 
are especially well suited to the requirements of mobile PMPs. 
Therefore, many vendors adopt flash memory for the non-
volatile storage and this trend will remain for the foreseeable 
future. 
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Modern operating system (OS) supports a buffer mechanism 
to enhance the performance that is otherwise limited by slow 
operations of the secondary storage. Even for embedded OS 
that does not support the buffer mechanism, a proprietary 
buffering scheme is usually employed for the device. Because 
it is relatively slow to read from the storage, OS copies the 
data from storage to the buffer area and serves the next read 
operations from the faster main memory. 

The buffer mechanism is also helpful for PMPs. For 
example, an MP3 player has a 32Mbytes DRAM buffer [2] 
with several Gbytes of flash memory for the media storage. It 
reads or writes several whole MP3 files to the buffer at a 
stretch, because DRAM buffer accesses are much faster than 
flash memory especially in write operation. In case that storage 
medium is hard disk, it can also minimize the energy 
consumption by turning off hard disk. For digital cameras, 
buffering a picture in RAM prior to actual writing on flash 
memory significantly reduces response time that is one of the 
most important performance metric for digital cameras.  

In this paper, we propose a novel Flash-Aware Buffer 
(FAB) management scheme for PMPs. FAB suppose a PMP 
which has a DRAM buffer and a NAND flash storage. Since 
FAB is well aware of the characteristics of NAND flash 
memory and the mechanism of flash controller, it assists the 
flash controller to increase the performance of flash memory. 
The basic idea of FAB is to select a victim carefully when 
some of data in the DRAM buffer need to be evicted to the 
NAND flash memory. Our FAB scheme effectively minimizes 
the number of write and erase operations to the flash memory, 
reducing the total execution time by 17% compared to the 
traditional scheme which relies on the LRU buffer 
management policy. 

The rest of the paper is organized as follows. Section 2 
presents the background and related work to understand FAB. 
Section 3 describes the overview of FAB scheme and Section 
4 presents the implementation details and the data structures of 
FAB. Section 5 describes the experimental results. Finally we 
conclude in section 6. 

II. BACKGROUND AND RELATED WORK 
This section introduces the hardware characteristics and the 

internal mechanism of flash memory along with a software 
layer that provides the block device interface of flash memory, 
which motivate us to devise the proposed buffering scheme.  

A. Flash Memory 
Flash memory is divided into two types, i.e., NOR and 

NAND. NOR flash memory supports the byte unit I/O and 
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shows shorter read time and longer write time compared to 
NAND flash memory [3]. It is mainly used as storage for 
program codes since it can be accessed by a byte unit. For 
such a trait, the BIOS of a computer system is usually stored 
on NOR flash memory. On the other side, NAND flash 
memory supports the page unit I/O with slower read time and 
faster write time. NAND flash memory is mainly used for data 
storage and it is regarded as a replacement of hard disk [4]. 

There are three basic operations in NAND flash memory: 
read, write, and erase. The read operation fetches data from a 
target page, while the write operation writes data to a target 
page. The erase operation resets all values of a target block to 
1. In flash memory, once a page is written, it should be erased 
before it is written again, and this limitation is usually called 
erase-before-write. The read and write operations are 
performed by a page unit (512 Bytes or 2 Kbytes) and the 
erase operation is performed by a block unit (16 Kbytes or 128 
Kbytes). A block consists of a fixed number of pages and a 
page holds a fixed number of sectors. Sector is the basic unit 
that can be seen by OS or other software.  

Although flash memory has various advantages over hard 
disk, it also has some limitations as storage. Among them, the 
followings are the important concerns in designing our 
buffering scheme. 
•  No in-place-update: The previous data should be erased 

first in order to overwrite another data in the same 
physical area. The worse problem is that the erase 
operation cannot be performed on the particular data 
selectively, but on the whole block containing the 
original data. Apparently, it is not efficient to perform 
costly erase operation on every data write and more 
sophisticated handling of write operation is required. 

•  Asymmetric operation latencies: For NAND flash 
memory, read time is faster about 8 times than write time. 
Because a write operation sometimes involves an erase 
operation, it may entail non-deterministic long delay. For 
this reason, it is important to reduce the number of write 
operations. 

•  Uneven wear-out: Each block can be erased only for a 
limited number of times, usually several hundreds of 
thousands times. Once the number is reached, the block 
cannot be used any more. Therefore it is necessary to 
distribute erase operations evenly over the whole blocks. 

B. Flash Translation Layer 
Since most operating systems expect a block device 

interface for the secondary storage even though flash memory 
does not support it, a thin software layer called FTL (Flash 
Translation Layer) is usually employed between OS and flash 
memory. The main role of FTL is to emulate the functionality 
of block device with flash memory, hiding the latency of erase 
operation as much as possible. FTL achieves this by 
redirecting each write request from OS to an empty location in 
flash memory that has been erased in advance, and by 
maintaining an internal mapping table to record the mapping 

information from the logical sector number to the physical 
location. 

The mapping schemes of FTL are classified either into a 
page-level mapping scheme [6] or into a block-level mapping 
scheme [7]. Page-level mapping is a fine-grained translation 
from a logical sector number to a physical sector number. For 
this scheme, the size of the mapping table is relatively large, 
and thus it needs large SRAM. Block-level mapping schemes 
translate a logical sector number to a physical block number 
and offset. Since the mapping table for this scheme is to find a 
block number rather than a sector number, its size is smaller. 
The offset helps to find the wanted page within a block. In 
block-level mapping schemes, a set of consecutive sectors 
usually stored in a single block. Once a new page cannot be 
accommodated in the assigned block, the block is erased after 
copying valid pages into a clean block. 

Many FTL schemes are proposed to reduce the number of 
block erase and valid page copying in block-level mapping. 
Kim et al. suggest an FTL scheme that uses some fixed number 
of blocks as logging blocks [5]. If there is a write request, this 
scheme writes the data on a log block and maps the physical 
location of the page to the page in the log block. In this way, it 
logs the changes of the data until the log block becomes full. 
When all the log blocks are used, then some log blocks are 
merged into a new block to prepare clean log blocks. This 
scheme may need a large number of log blocks since each 
block needs the corresponding log block when one of its pages 
is updated. When free log blocks are not sufficient, the merge 
operation called garbage collection will happen too frequently. 
Also, the utilization of the log block is low since even a single 
page update of a block necessitates a whole log block. 

The Fully Associative Sector Translation (FAST) FTL 
scheme is suggested to overcome the limitations of the log 
block scheme [8]. In the FAST scheme, the overwrite requests 
of a block is spread on all of the log blocks. It means the 
merge operation is delayed much longer and the total number 
of erase operations becomes smaller than that of the previous 
log block scheme.  

Both of the log block scheme and the FAST scheme support 
the switch merge. If a log block holds all pages of an old data 
block, it switches the log block with the old data block. The 
switch merge is an optimal case of garbage collection because 
there is no overhead incurred for copying valid pages. 

C. Related Work 
Many efforts have been made to address the aforementioned 

limitations of flash memory. Kawaguchi et al. [9] proposed a 
translation layer for flash file systems based on an analysis of 
cost-benefit for garbage collection. Chiang et al. [10] 
investigated a Dynamic dAta Clustering (DAC) method to 
cluster data during data update to reduce the number of block 
erase. On the other hand, Wu et al. [11] proposed a large non-
volatile main memory storage system with write buffering in 
battery-backed SDRAM to hide write latency. Lee et al. [12] 
examined a NAND-type flash memory package with a smart 
buffer cache to raise the hit ratio. Recently, Park et al. [13] 
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proposed a replacement algorithm called Clean First LRU 
(CFLRU) to minimize the number of write requests from the 
virtual memory system. Our work is primarily differs with 
these previous work in that we focus on exploiting the buffer 
management policy by considering the physical characteristics 
of flash memory without any modification to FTL or 
underlying hardware. 

III. FLASH-AWARE BUFFER MANAGEMENT 

A. System Overview 
Fig. 1 shows the overall block diagram of a typical PMP 

system. All requests issued from CPU pass through the DRAM 
buffer which serves both read and write requests. If the 
requested data is not in the buffer, it should be serviced by the 
NAND flash storage. We assume that the NAND flash storage 
has its own storage controller for running FTL. Since other 
parts in the diagram are irrelevant to our discussion, their 
details are elided for brevity.  

 

 
Fig. 1. The overall block diagram of PMP system 

 

B. Flash-Aware Buffer Management Policy 
The buffer is fully occupied with cached media data pretty 

soon after the boot time. To secure a buffer entry for a new 
data, a victim entry should be selected to be evicted from the 
buffer. The most common policy for selecting a victim is Least 
Recently Used (LRU) [14]. LRU is based on the theory that if 
a memory location is accessed recently, the location will be 
accessed again in the near future. Though LRU shows 
satisfactory performance for most memory systems, the 
characteristics of NAND flash memory prohibits it from being 
the best solution. For example, a typical file access pattern for 
PMP consists of a long sequential access for media data and 
several short accesses for metadata of the file. In this case, 
LRU policy can not hold the data for short accesses in the 
buffer because the long sequential access pushes them away 
from the buffer.  

Our FAB policy is designed to achieve the following 
purposes. First, it should minimize the number of write and 

erase operations in flash memory since they are most 
prominent sources for the latencies. Second, the mechanism 
should help the storage controller to utilize the switch merge 
since it reduces the number of valid page copying during the 
merge operation. The third one is to maximize overwrite of hot 
pages since repetitive writes on hot pages cause a large 
number of log blocks on the flash storage resulting in frequent 
garbage collections. The last one is to minimize the search 
time to find the requested data in the buffer.  

If the buffer is full, FAB selects a block as a victim and then 
flushes all of the pages that belong to the selected block. The 
victim block is a block that has the maximum number of pages 
in the buffer. FAB also employs a block-level LRU policy to 
avoid the problem of page-level LRU policy described in the 
previous example. At the same time, when a write of long 
contiguous data fills up the buffer, FAB selects these pages as 
victims to maximize the chance of switch merge in flash 
memory. This also increases the number of buffer hit of hot 
pages because the pages of short writes can be stayed longer in 
the buffer. 

If FAB receives a write request, it searches the buffer first. 
On a hit, the data is overwritten in the buffer. Otherwise, a new 
slot is allocated in the buffer and the requested sector is 
written to the slot. Since all write requests are buffered, the 
actual data write on flash memory is occurred only when a 
block is replaced  

 

FAB_Write (block, page, data) 
{ 

if ((bufloc = Search_Buffer (block, page)) != null) { 
Write_Page (bufloc, data); 

} 
else { 

if (Buffer_Full ()) { 
victim  = Select_Victim_Block (); 
Flush_Victim_Block (victim); 

} 
bufloc = Allocate_New_Page (); 
Write_Page (bufloc, data); 

} 
Rearrange_Blocklist_For_LRU (block); 
 

} 

Fig. 2. Handling a write request in FAB 
 
In the case that the buffer is full, a victim page to be 

replaced should be selected, and the victim page is written 
back to the flash storage if the page is dirty. As mentioned 
before, our replacement scheme replaces a whole block rather 
than an individual page. A victim block is the one who has 
most pages in the buffer, and all the pages that belong to this 
victim block are evicted from the buffer. When several blocks 
tie, recency is considered as in the LRU policy. This policy 
reduces the number of page copies in the flash storage when 
blocks are merged. Since most PMP data are contiguous 
multimedia, most flash memory blocks are either full of valid 
pages or empty. However, in those blocks used by file 
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metadata, it is very probable that only several pages are 
updated frequently and some valid and invalid pages are mixed 
together. By choosing a full block as a victim, our policy 
favors metadata over media data, which is a very desirable 
feature for multimedia buffering. Fig. 2 shows how the write 
operation is handled in our scheme. 

For a read request, FAB works similarly. If it is a hit in the 
buffer, FAB immediately returns the data to CPU. If FAB 
cannot find the sector in the buffer, it reads the data from flash 
storage to the buffer and returns the data. When there is not 
enough space for the requested data, FAB selects a victim 
block and flushes pages that belong to the block into flash 
storage. Fig. 3 shows an algorithm for this read operation.  

 

FAB_Read (block, page, data) 
{ 

if ((bufloc = Search_Buffer (block, page)) != null) { 
Rearrange_Blocklist_For_LRU (block); 
Read_Page (bufloc, data); 

} 
else { 

if (Buffer_Full ()) { 
victim  = Select_Victim_Block (); 
Flush_Victim_Block (victim); 

} 
bufloc = Allocate_New_Page (); 
Read_From_Flash (bufloc, block, page); 
Read_Page (bufloc, data); 

} 
Rearrange_Blocklist_For_LRU (block); 

} 

Fig. 3. Handling a read request in FAB 
 
Our FAB policy has three major advantages as follows. 
•  Reduced write and erase operations: Repetitive writes on 

the same page induce tremendous overhead for the flash 
storage since each version of write may generate a separate 
log block resulting in many sparse blocks necessitating 
frequent garbage collections. Our buffering scheme 
eliminates such a pathological case. Also, even though 
pages that belong to the same block are updated 
individually at different times, FAB allows flushing those 
pages at once when the block is replaced. This increases 
the chance of switch merge in flash storage, which 
otherwise would not be possible. 

•  Response time: Like other caching schemes, our buffering 
scheme reduces response times experienced by PMP users. 
Even when it is a miss, writing multimedia data on the 
buffer rather than on flash memory will reduce response 
time significantly. A smart data structure explained below 
also reduces the time taken for searching a page in the 
buffer. 

•  Hot page filtering: Hot pages are those that are written 
repetitively within a short time range. When such pages are 
scattered, they generate enormous number of log blocks on 
the flash storage. Clustering them onto a few blocks 
reduces garbage collection cost, but it needs bookkeeping 
to discern hot pages from cold pages. With our buffering 

scheme, hot pages are serviced in the buffer, and thus they 
do not impose any stress on the flash storage. 

IV. THE IMPLEMENTATION DETAILS OF FAB 

A. Data Structures for FAB 
To realize the buffering scheme explained in the previous 

section several data structures along with proper algorithms 
need to be devised. In our implementation, they are 
implemented with two issues in mind; time efficiency and 
space efficiency. The former issue is mainly related to the 
algorithm for searching the buffer while the later is about the 
memory space needed for storing tables and linking pointers. 

FAB frequently searches the buffer because all the storage 
requests from CPU pass through the buffer. For each request, 
FAB has to decide whether the requested sector is in the buffer 
or not. To minimize the time to search the buffer, we contrived 
a data structure as shown in Fig. 4. The block node list is a 
linked list of blocks sorted by their recency. The page node list 
is a list of pages that belong to the corresponding block. 

 

 
Fig. 4. The main data structures of FAB. Horizontally, the block nodes 
are linked as a linked list. Vertically, the page nodes are listed for each 

block node. 
 
A block node has a block number, a page counter, a pointer 

for the next block node, and a pointer for its page node list. 
The block number field identifies a unique block in flash 
memory. The block node list pointer is for the horizontal 
linked list where all the block nodes are sorted by recency that 
is to be used for the block-level LRU policy. The page counter 
denotes the number of pages allocated in this block, and it is 
the primary metric to decide when selecting a victim. There is 
a pointer for each block node to point to the list of page nodes 
that belong to the block. Page node list has the page data 
associated with the page number. The size of a block node is 
16 Bytes and the block node list is the only additional memory 
overhead of FAB. A data structure similar to the page node list 
is also required for the traditional page-level LRU policy. 

B. Search Operation 
A request from CPU consists of a sector number and the 

type of operation. The block that contains the wanted 
page(sector) can be identified by dividing the sector number 
by the block size. After the block number is identified, FAB 
searches the corresponding block node in the block node list. 
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Although it is implemented with a sequential search algorithm 
which has an O(n) complexity, the actual cost is not so high 
since the number of block nodes that can be in the linked list is 
small and limited by the buffer size. More complicated data 
structures such as hash tables and balanced trees could be 
adopted for faster search, but they make it difficult to 
implement the LRU mechanism without building an additional 
LRU list. Our experimental results in Section 5 confirm that 
this simple linear search does not cause any noticeable 
overhead. 

If the wanted is not found in the block node list, FAB 
immediately terminates the search since it is a miss in the 
buffer. If the block is found, it continues to search the page 
node list. The page node list is structured as a search tree for 
efficient search operation. After finding the associated page 
node, FAB rearranges the LRU list by moving the block node 
to the head of the block node list. 

C. Insert Operation 
When the wanted page is not found in the buffer, a new 

page is allocated and attached to the page list of the 
corresponding block node. The page counter of this node is 
incremented by one. If the block node does not exist, a new 
block node should be added at the head of the block node list, 
and its page counter is set to one. 

If the miss comes from a read request, the wanted page is 
retrieved from the flash storage and stored in the newly 
allocated page in the buffer. If it is from a write request, the 
data is written only in the new page, leaving the old page in the 
flash storage untouched. Since further requests to the page will 
be serviced in the buffer, the old copy of the page in the flash 
storage does not cause any problem. 

D. Replace Operation  
When the buffer is full and cannot accommodate a new page 

data, the buffer should evict a number of pages from the buffer. 
If the evicted page is dirty, i.e., modified while being in the 
buffer, it is written back to flash memory while unmodified 
pages are claimed immediately. Being a block-level LRU 
scheme, FAB selects a victim block, and flushes all the pages 
that belong to the block. FAB selects a victim block by the 
following rules in order. 

1. The block which has the largest number of pages is 
selected. If a block has all of pages in the buffer, FAB 
will pick out the block first and it is an optimal selection. 

2. If multiple blocks are selected by the above rule because 
all of them have the same number of pages in the buffer, 
then the block at the tail of the list is selected since it has 
not been accessed for the longest time. 

To find a victim block, FAB starts searching from the tail of 
the block node list and if a block which is full of pages is 
found, it becomes the victim. Considering the characteristics of 
the files used for PMP devices, the block node list is supposed 
to contain many such block nodes. Fig. 5 shows a victim block 
selection algorithm. 

 
 

#define BlockPerPageNum 64 
Select_Victim_Block () 
{ 

VictimBlock = -1; 
MaxPageNum = 0; 
For each BlockNode from BlockNodeListTail to 
BlockNodeListHead 
{ 

if (BlockNode.PageCount == BlockPerPageNum) 
return BlockNode.BlockNum; 

if (BlockNode.PageCount > MaxPageNum) 
{ 

MaxPageNum = BlockNode.PageCount; 
VictimBlock = BlockNode.BlockNum; 

} 
} 
return VictimBlock; 

} 

Fig. 5. Selecting a victim block in FAB 
 
Our scheme replaces a whole block and most blocks are full 

of valid pages. Therefore, when a block is written back to flash 
memory, it just needs to switch the new block with old one if 
any, eliminating the need for copying valid pages from the old 
block. This switch merge is an optimal case because FTL can 
switch the log block with the old data block [5].  

V. EXPERIMENTAL RESULTS 

A. Evaluation Methodology 
We implemented our FAB policy on a simulator which 

mainly consists of NAND flash storage and a DRAM buffer. 
The simulator models known parameters related to current 
technologies as exactly as possible. The traces are extracted 
from disk access logs of real user activities on FAT32 file 
system. The workload is chosen to reflect representative PMP 
usage as shown in Table I. 

 
TABLE I 

TRACES USED FOR SIMULATION 

Trace Description The size of 
flash storage 

The number of 
sectors written 

512 MB 868,154
1024 MB 1,803,561Pic 

The traces of digital 
camera. Picture files are 
about 1Mbytes. 2048 MB 4,335,023

512 MB 1,146,234
1024 MB 1,935,572MP3 

The traces of MP3 player. 
MP3 files are about 4-
5Mbytes. 2048 MB 5,602,743

512 MB 1,067,905
1024 MB 2,296,341Mov 

The traces of movie 
player. Movie files are about 
15-30Mbytes. 2048 MB 7,196,759

 
The main performance metrics are the number of write and 

erase operations since they are the major factors limiting the 
performance of flash memory-based system. The sizes of flash 
memory experimented are 512 Mbytes, 1 Gbytes, and 2 
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               (b) 512 Mbytes                                                            (d) 1024 Mbytes                                                          (f) 2048 Mbytes 

Fig. 6. The normalized number of write and erase operations of FAST, FAST+LRU buffer scheme, and FAST+FAB buffer scheme 
 

Gbytes. The size of a sector is 512 Bytes and a page can hold 
4 sectors. The number of pages that are accommodated in a 
block is 64 and, therefore, the size of a block is 128 Kbytes.  

We adopted FAST as an FTL scheme of flash memory 
because its performance is known to be better than the log 
block scheme [8]. Though it appears that FAST would perform 
better for a larger number of log blocks, there exists a certain 
number beyond that the performance decreases since the 
overhead for managing log blocks increases and the benefit of 
additional log block gets diluted. Our experiments show that 
FAST performs best when the size of log blocks is 8 for our 
simulation conditions.  

The access times for DRAM and NAND flash memory are 
summarized in Table II. These parameters are used to 
calculate the total execution time and are set to be the same as 
those used in the previous research for a fair comparison [8]. 

 
TABLE II 

ACCESS TIMES OF DRAM AND NAND FLASH MEMORY 

Operation Access time 

DRAM Buffer access time (ns/512 Bytes) 2,560
NAND Flash read time (ns/512 Bytes) 36,000,
NAND Flash write time (ns/512 Bytes) 266,000
NAND Flash erase time (ns/128 Kbytes) 2,000,000

 

B. Performance Evaluation 
Fig. 6 a), b) are the results with a 512 Mbytes flash storage. 

There are 3 bars for each PMP type. The first bar (PLAIN) is for 
the FAST scheme without the intermediate buffer. The second bar 
(BUF_LRU) presents the FAST scheme with a buffer managed by 
a page-level LRU policy. The last bar (BUF_FAB) is for our FAB 
scheme. Fig. 6 a) shows normalized erase numbers for each 
scheme and Fig. 6 b) presents normalized write numbers needed 
for garbage collection. Because the total number of write count of 
pure data is same for all schemes, we only counted the number of 
write operations performed during garbage collection. Those 
writes are generated during garbage collection to copy valid pages 
to another clean block before the block is erased. The rest of 
graphs in Fig. 6 show the results for other sizes of flash storage, 
1024 Mbytes and 2048 Mbytes. We can see that varying the size 
of the flash storage does not change the trend of overall 
performance gap. 

All the results in Fig. 6 show that a pure LRU (BUF_LRU bars) 
scheme for the buffer management does not affect the performance 
of flash memory. This result was expected considering how 
multimedia files are accesses on PMPs. Most multimedia files are 
accessed sequentially and they are rarely accessed again within a 
short time interval. Buffering such a file is harmful rather than 
being a help since such large files would evict small files from the 
buffer even though most of them contain metadata that are 



H. Jo et al.:  FAB: Flash-Aware Buffer Management Policy for Portable Media Players 491

accessed repetitively. 
FAB reduces the number of writes and erases by 29% and 

19%, respectively, compared to the other schemes. This 
performance gains can be explained by the fact that evicting 
multimedia data first from the buffer helps retaining those 
metadata that are frequently accessed.  

Fig. 7 shows the execution time breakdown taken for MP3 
player trace with a 1024 Mbytes flash storage. GCREAD 
denotes the consumed flash read time during garbage 
collection including the time to identify whether the data is 
valid or invalid. GCWRITE presents the time taken to write 
valid pages during garbage collection. ERASE means the time 
to erase blocks and DATAWRITE is the time to write the 
requested data in flash memory.  

In the case of our FAB scheme (BUF_FAB), since the 
number of garbage collection is smaller, the all the times for 
GCREAD, GCWRITE, and ERASE are smaller than others. 
While the overhead to search the buffer in BUF_FAB is 
measured only less than 0.1% of the total time, the 
corresponding overhead in BUF_LRU is about 33% of the 
total time, because the latter needs to search for a page in the 
longer page-level LRU list. Since the buffer access time 
heavily depends on the actual implementation of LRU 
algorithm, we have omitted the buffer access time in the results 
in Fig. 7 for a fair comparison. However, the fact that a 
significant amount of time is spent on searching the buffer in 
BUF_LRU suggests that the data structure and mechanism of 
FAB is simple, yet very efficient. Overall, BUF_FAB 
improves the execution time by 17% compared to BUF_LRU 
and PLAIN. 
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Fig. 7. The execution time breakdown for MP3 player trace with a 1024 

Mbytes flash storage.  
 
Fig. 8 presents the normalized number of buffer hits. The 

buffer hit means the case when the requested data is already in 
the buffer and serviced immediately from the buffer. As the 
file size manipulated by the application becomes larger from 
PIC to MP3 and MOV, the gaps between FAB and pure LRU 
get bigger and bigger. This result was expected and explained 
before in this section. 
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Fig. 8. The normalized number of buffer hits. 

 

C. The Effects of Buffer Size 
The results presented in Fig. 9 show the effects of buffer 

size. Because the DRAM buffer is an expensive resource for 
PMPs in terms of cost and power, it is necessary to make 
trade-off with performance. Fig. 9 shows the number of erase 
operations performed for the given buffer size during the 
simulation of digital camera trace. The buffer size is varied 
from 1 Mbytes to 32 Mbytes.  

As the number of sectors written increases according to the 
flash storage size (cf. Table I), it is obvious that the larger 
flash storage size induces the larger number of erase 
operations. However, they all show a drop when the buffer size 
becomes 8 Mbytes, and this trend is similar for other traces as 
well. Actually, the optimal DRAM buffer size tends to be 
related to the working set size and other characteristics of the 
workload. However, we would like to note that, for evaluated 
traces and environments, the use of DRAM buffer whose 
capacity is less than 0.8% of the flash storage (e.g., 8 Mbytes 
DRAM buffer for 1 Gbytes flash storage) is quite effective in 
reducing the number of erase operations in flash memory. 
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Fig. 9. The number of erase operations varying the DRAM buffer size.  

 

D. Memory Overhead 
We also evaluated the memory space overhead required for  

FAB. Table III shows the number of block nodes for various 
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DRAM buffer sizes and the corresponding memory size during 
the simulation of MP3 trace on 1 Gbytes flash storage. Since 
the number of block nodes changes according to the execution 
of the trace at run time, the number in Table III represents the 
largest number of block nodes stored on memory. Recall that 
the block node data structure which takes 16 Bytes of memory 
is the only memory overhead of FAB.  

We can see that for small buffer size, the buffer is 
fragmented and occupied by many pages that belong to 
different blocks. This is because the buffer size is not big 
enough to hold all the blocks touched by the application. 
However, once the buffer size becomes larger than 4 Mbytes, 
the maximum number of block nodes is significantly reduced, 
although it slightly fluctuates according to the buffer size. The 
results for other traces were also similar. As shown in Table III, 
the memory overhead is very trivial compared to the general 
DRAM size used by PMPs.  

 
TABLE III 

MEMORY OVERHEAD FOR FAB (MP3 TRACE ON 1 GBYTES FLASH) 

Buffer size 
(Mbytes) 

The largest number 
of block nodes 

Memory 
overhead 
(Bytes) 

Memory 
overhead 

(%) 
2 660 10,560 0.5% 
4 116 1,856 0.04% 
8 107 1,712 0.02% 

16 158 2,528 0.015% 

 

VI. CONCLUSION 
Flash memory is rapidly replacing hard disks for most 

consumer electronics devices. Most software and governing 
algorithms, however, are still based on hard disks even though 
flash memory exhibits quite different operational behaviors. 
From this observation, we proposed a novel flash-aware buffer 
management policy which selects a victim block to be replaced 
from the buffer based on the ratio of valid pages in the block 
rather than based on its recency. Though this idea was 
proposed to reduce the number of page copies and erase 
operations, it turns out to help small metadata files to outlive 
long multimedia files in the buffer. Since metadata is usually 
accessed repetitively while multimedia file is accessed once in 
a while, our scheme also increases the hit ratio which is the 
most important metric for a buffering scheme.  

 Simulation studies show that our scheme reduces the 
number of write operations on flash memory by 29 % and the 
number of erase operations by 19 %. Boosted by these gains, 
the execution time is also reduced by 17 % compared with a 
general LRU buffer management policy.  

We plan to implement FAB in the real platform and to 
evaluate it with various workloads used in PMPs. 
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