
H. Jo et al.: FAB: Flash-Aware Buffer Management Policy for Portable Media Players

Contributed Paper
Manuscript received April 15, 2006 0098 3063/06/$20.00 © 2006 IEEE

485

FAB: Flash-Aware Buffer Management Policy for Portable
Media Players

Heeseung Jo, Jeong-Uk Kang, Seon-Yeong Park, Jin-Soo Kim, and Joonwon Lee

Abstract — This paper presents a novel buffer

management scheme for portable media players equipped with
flash memory. Though flash memory has various advantages
over magnetic disks such as small and lightweight form factor,
solid-state reliability, low power consumption, and shock
resistance, its physical characteristics imposes several
limitations. Most notably, it takes relatively long time to write
data in flash memory and the data cannot be overwritten
before being erased first. Since an erase operation is
performed as a unit of larger block, the employed strategy for
mapping logical blocks onto physical pages affects real
performance of flash memory. This article suggests a flash-
aware buffer management scheme that reduces the number of
erase operations by selecting a victim based on its page
utilization rather than based on the traditional LRU policy.
Our scheme effectively minimizes the number of write and
erase operations in flash memory, reducing the total execution
time by 17% compared to the LRU policy1.

Index Terms — flash memory, buffer, replacement

I. INTRODUCTION
Portable Media Player (PMP) is a device that stores or plays

multimedia contents. We use the term rather loosely in this
paper, encompassing a wide range of consumer electronics
devices which share the similar characteristics, such as MP3
players, portable DVD players, digital cameras, PDAs, and
even cellular phones. Generally, it consists of a processing unit,
main memory, and storage for storing media data with its
capacity ranging from several Mbytes to Gbytes. The medium
for this storage has been hard disks, but due to its fragility and
high power consumption they have been replaced with flash
memory.

Though flash memory is still more expensive than magnetic
disk yet, it has distinctive advantages such as small and
lightweight form factor, solid-state reliability, low power
consumption, and shock resistance [1]. These characteristics
are especially well suited to the requirements of mobile PMPs.
Therefore, many vendors adopt flash memory for the non-
volatile storage and this trend will remain for the foreseeable
future.

1 This research was supported by the MIC(Ministry of Information and
Communication), Korea, under the ITRC(Information Technology Research
Center) support program supervised by the IITA(Institute of Information
Technology Assessment) (IITA-2005-C1090-0502-0031)

Heeseung Jo, Jeong-Uk Kang, Seon-Yeong Park, Jin-Soo Kim, and
Joonwon Lee are with the Computer Science Division, Korea Advanced
Institute of Science and Technology, Daejeon, Korea (e-mail:
heesn@camars.kaist.ac.kr, ux@calab.kaist.ac.kr, parksy@camars.kaist.ac.kr,
jinsoo@kaist.ac.kr, and joon@cs.kaist.ac.kr).

Modern operating system (OS) supports a buffer mechanism
to enhance the performance that is otherwise limited by slow
operations of the secondary storage. Even for embedded OS
that does not support the buffer mechanism, a proprietary
buffering scheme is usually employed for the device. Because
it is relatively slow to read from the storage, OS copies the
data from storage to the buffer area and serves the next read
operations from the faster main memory.

The buffer mechanism is also helpful for PMPs. For
example, an MP3 player has a 32Mbytes DRAM buffer [2]
with several Gbytes of flash memory for the media storage. It
reads or writes several whole MP3 files to the buffer at a
stretch, because DRAM buffer accesses are much faster than
flash memory especially in write operation. In case that storage
medium is hard disk, it can also minimize the energy
consumption by turning off hard disk. For digital cameras,
buffering a picture in RAM prior to actual writing on flash
memory significantly reduces response time that is one of the
most important performance metric for digital cameras.

In this paper, we propose a novel Flash-Aware Buffer
(FAB) management scheme for PMPs. FAB suppose a PMP
which has a DRAM buffer and a NAND flash storage. Since
FAB is well aware of the characteristics of NAND flash
memory and the mechanism of flash controller, it assists the
flash controller to increase the performance of flash memory.
The basic idea of FAB is to select a victim carefully when
some of data in the DRAM buffer need to be evicted to the
NAND flash memory. Our FAB scheme effectively minimizes
the number of write and erase operations to the flash memory,
reducing the total execution time by 17% compared to the
traditional scheme which relies on the LRU buffer
management policy.

The rest of the paper is organized as follows. Section 2
presents the background and related work to understand FAB.
Section 3 describes the overview of FAB scheme and Section
4 presents the implementation details and the data structures of
FAB. Section 5 describes the experimental results. Finally we
conclude in section 6.

II. BACKGROUND AND RELATED WORK
This section introduces the hardware characteristics and the

internal mechanism of flash memory along with a software
layer that provides the block device interface of flash memory,
which motivate us to devise the proposed buffering scheme.

A. Flash Memory
Flash memory is divided into two types, i.e., NOR and

NAND. NOR flash memory supports the byte unit I/O and

IEEE Transactions on Consumer Electronics, Vol. 52, No. 2, MAY 2006 486

shows shorter read time and longer write time compared to
NAND flash memory [3]. It is mainly used as storage for
program codes since it can be accessed by a byte unit. For
such a trait, the BIOS of a computer system is usually stored
on NOR flash memory. On the other side, NAND flash
memory supports the page unit I/O with slower read time and
faster write time. NAND flash memory is mainly used for data
storage and it is regarded as a replacement of hard disk [4].

There are three basic operations in NAND flash memory:
read, write, and erase. The read operation fetches data from a
target page, while the write operation writes data to a target
page. The erase operation resets all values of a target block to
1. In flash memory, once a page is written, it should be erased
before it is written again, and this limitation is usually called
erase-before-write. The read and write operations are
performed by a page unit (512 Bytes or 2 Kbytes) and the
erase operation is performed by a block unit (16 Kbytes or 128
Kbytes). A block consists of a fixed number of pages and a
page holds a fixed number of sectors. Sector is the basic unit
that can be seen by OS or other software.

Although flash memory has various advantages over hard
disk, it also has some limitations as storage. Among them, the
followings are the important concerns in designing our
buffering scheme.
• No in-place-update: The previous data should be erased

first in order to overwrite another data in the same
physical area. The worse problem is that the erase
operation cannot be performed on the particular data
selectively, but on the whole block containing the
original data. Apparently, it is not efficient to perform
costly erase operation on every data write and more
sophisticated handling of write operation is required.

• Asymmetric operation latencies: For NAND flash
memory, read time is faster about 8 times than write time.
Because a write operation sometimes involves an erase
operation, it may entail non-deterministic long delay. For
this reason, it is important to reduce the number of write
operations.

• Uneven wear-out: Each block can be erased only for a
limited number of times, usually several hundreds of
thousands times. Once the number is reached, the block
cannot be used any more. Therefore it is necessary to
distribute erase operations evenly over the whole blocks.

B. Flash Translation Layer
Since most operating systems expect a block device

interface for the secondary storage even though flash memory
does not support it, a thin software layer called FTL (Flash
Translation Layer) is usually employed between OS and flash
memory. The main role of FTL is to emulate the functionality
of block device with flash memory, hiding the latency of erase
operation as much as possible. FTL achieves this by
redirecting each write request from OS to an empty location in
flash memory that has been erased in advance, and by
maintaining an internal mapping table to record the mapping

information from the logical sector number to the physical
location.

The mapping schemes of FTL are classified either into a
page-level mapping scheme [6] or into a block-level mapping
scheme [7]. Page-level mapping is a fine-grained translation
from a logical sector number to a physical sector number. For
this scheme, the size of the mapping table is relatively large,
and thus it needs large SRAM. Block-level mapping schemes
translate a logical sector number to a physical block number
and offset. Since the mapping table for this scheme is to find a
block number rather than a sector number, its size is smaller.
The offset helps to find the wanted page within a block. In
block-level mapping schemes, a set of consecutive sectors
usually stored in a single block. Once a new page cannot be
accommodated in the assigned block, the block is erased after
copying valid pages into a clean block.

Many FTL schemes are proposed to reduce the number of
block erase and valid page copying in block-level mapping.
Kim et al. suggest an FTL scheme that uses some fixed number
of blocks as logging blocks [5]. If there is a write request, this
scheme writes the data on a log block and maps the physical
location of the page to the page in the log block. In this way, it
logs the changes of the data until the log block becomes full.
When all the log blocks are used, then some log blocks are
merged into a new block to prepare clean log blocks. This
scheme may need a large number of log blocks since each
block needs the corresponding log block when one of its pages
is updated. When free log blocks are not sufficient, the merge
operation called garbage collection will happen too frequently.
Also, the utilization of the log block is low since even a single
page update of a block necessitates a whole log block.

The Fully Associative Sector Translation (FAST) FTL
scheme is suggested to overcome the limitations of the log
block scheme [8]. In the FAST scheme, the overwrite requests
of a block is spread on all of the log blocks. It means the
merge operation is delayed much longer and the total number
of erase operations becomes smaller than that of the previous
log block scheme.

Both of the log block scheme and the FAST scheme support
the switch merge. If a log block holds all pages of an old data
block, it switches the log block with the old data block. The
switch merge is an optimal case of garbage collection because
there is no overhead incurred for copying valid pages.

C. Related Work
Many efforts have been made to address the aforementioned

limitations of flash memory. Kawaguchi et al. [9] proposed a
translation layer for flash file systems based on an analysis of
cost-benefit for garbage collection. Chiang et al. [10]
investigated a Dynamic dAta Clustering (DAC) method to
cluster data during data update to reduce the number of block
erase. On the other hand, Wu et al. [11] proposed a large non-
volatile main memory storage system with write buffering in
battery-backed SDRAM to hide write latency. Lee et al. [12]
examined a NAND-type flash memory package with a smart
buffer cache to raise the hit ratio. Recently, Park et al. [13]

H. Jo et al.: FAB: Flash-Aware Buffer Management Policy for Portable Media Players 487

proposed a replacement algorithm called Clean First LRU
(CFLRU) to minimize the number of write requests from the
virtual memory system. Our work is primarily differs with
these previous work in that we focus on exploiting the buffer
management policy by considering the physical characteristics
of flash memory without any modification to FTL or
underlying hardware.

III. FLASH-AWARE BUFFER MANAGEMENT

A. System Overview
Fig. 1 shows the overall block diagram of a typical PMP

system. All requests issued from CPU pass through the DRAM
buffer which serves both read and write requests. If the
requested data is not in the buffer, it should be serviced by the
NAND flash storage. We assume that the NAND flash storage
has its own storage controller for running FTL. Since other
parts in the diagram are irrelevant to our discussion, their
details are elided for brevity.

Fig. 1. The overall block diagram of PMP system

B. Flash-Aware Buffer Management Policy
The buffer is fully occupied with cached media data pretty

soon after the boot time. To secure a buffer entry for a new
data, a victim entry should be selected to be evicted from the
buffer. The most common policy for selecting a victim is Least
Recently Used (LRU) [14]. LRU is based on the theory that if
a memory location is accessed recently, the location will be
accessed again in the near future. Though LRU shows
satisfactory performance for most memory systems, the
characteristics of NAND flash memory prohibits it from being
the best solution. For example, a typical file access pattern for
PMP consists of a long sequential access for media data and
several short accesses for metadata of the file. In this case,
LRU policy can not hold the data for short accesses in the
buffer because the long sequential access pushes them away
from the buffer.

Our FAB policy is designed to achieve the following
purposes. First, it should minimize the number of write and

erase operations in flash memory since they are most
prominent sources for the latencies. Second, the mechanism
should help the storage controller to utilize the switch merge
since it reduces the number of valid page copying during the
merge operation. The third one is to maximize overwrite of hot
pages since repetitive writes on hot pages cause a large
number of log blocks on the flash storage resulting in frequent
garbage collections. The last one is to minimize the search
time to find the requested data in the buffer.

If the buffer is full, FAB selects a block as a victim and then
flushes all of the pages that belong to the selected block. The
victim block is a block that has the maximum number of pages
in the buffer. FAB also employs a block-level LRU policy to
avoid the problem of page-level LRU policy described in the
previous example. At the same time, when a write of long
contiguous data fills up the buffer, FAB selects these pages as
victims to maximize the chance of switch merge in flash
memory. This also increases the number of buffer hit of hot
pages because the pages of short writes can be stayed longer in
the buffer.

If FAB receives a write request, it searches the buffer first.
On a hit, the data is overwritten in the buffer. Otherwise, a new
slot is allocated in the buffer and the requested sector is
written to the slot. Since all write requests are buffered, the
actual data write on flash memory is occurred only when a
block is replaced

FAB_Write (block, page, data)
{

if ((bufloc = Search_Buffer (block, page)) != null) {
Write_Page (bufloc, data);

}
else {

if (Buffer_Full ()) {
victim = Select_Victim_Block ();
Flush_Victim_Block (victim);

}
bufloc = Allocate_New_Page ();
Write_Page (bufloc, data);

}
Rearrange_Blocklist_For_LRU (block);

}

Fig. 2. Handling a write request in FAB

In the case that the buffer is full, a victim page to be

replaced should be selected, and the victim page is written
back to the flash storage if the page is dirty. As mentioned
before, our replacement scheme replaces a whole block rather
than an individual page. A victim block is the one who has
most pages in the buffer, and all the pages that belong to this
victim block are evicted from the buffer. When several blocks
tie, recency is considered as in the LRU policy. This policy
reduces the number of page copies in the flash storage when
blocks are merged. Since most PMP data are contiguous
multimedia, most flash memory blocks are either full of valid
pages or empty. However, in those blocks used by file

IEEE Transactions on Consumer Electronics, Vol. 52, No. 2, MAY 2006 488

metadata, it is very probable that only several pages are
updated frequently and some valid and invalid pages are mixed
together. By choosing a full block as a victim, our policy
favors metadata over media data, which is a very desirable
feature for multimedia buffering. Fig. 2 shows how the write
operation is handled in our scheme.

For a read request, FAB works similarly. If it is a hit in the
buffer, FAB immediately returns the data to CPU. If FAB
cannot find the sector in the buffer, it reads the data from flash
storage to the buffer and returns the data. When there is not
enough space for the requested data, FAB selects a victim
block and flushes pages that belong to the block into flash
storage. Fig. 3 shows an algorithm for this read operation.

FAB_Read (block, page, data)
{

if ((bufloc = Search_Buffer (block, page)) != null) {
Rearrange_Blocklist_For_LRU (block);
Read_Page (bufloc, data);

}
else {

if (Buffer_Full ()) {
victim = Select_Victim_Block ();
Flush_Victim_Block (victim);

}
bufloc = Allocate_New_Page ();
Read_From_Flash (bufloc, block, page);
Read_Page (bufloc, data);

}
Rearrange_Blocklist_For_LRU (block);

}

Fig. 3. Handling a read request in FAB

Our FAB policy has three major advantages as follows.
• Reduced write and erase operations: Repetitive writes on

the same page induce tremendous overhead for the flash
storage since each version of write may generate a separate
log block resulting in many sparse blocks necessitating
frequent garbage collections. Our buffering scheme
eliminates such a pathological case. Also, even though
pages that belong to the same block are updated
individually at different times, FAB allows flushing those
pages at once when the block is replaced. This increases
the chance of switch merge in flash storage, which
otherwise would not be possible.

• Response time: Like other caching schemes, our buffering
scheme reduces response times experienced by PMP users.
Even when it is a miss, writing multimedia data on the
buffer rather than on flash memory will reduce response
time significantly. A smart data structure explained below
also reduces the time taken for searching a page in the
buffer.

• Hot page filtering: Hot pages are those that are written
repetitively within a short time range. When such pages are
scattered, they generate enormous number of log blocks on
the flash storage. Clustering them onto a few blocks
reduces garbage collection cost, but it needs bookkeeping
to discern hot pages from cold pages. With our buffering

scheme, hot pages are serviced in the buffer, and thus they
do not impose any stress on the flash storage.

IV. THE IMPLEMENTATION DETAILS OF FAB

A. Data Structures for FAB
To realize the buffering scheme explained in the previous

section several data structures along with proper algorithms
need to be devised. In our implementation, they are
implemented with two issues in mind; time efficiency and
space efficiency. The former issue is mainly related to the
algorithm for searching the buffer while the later is about the
memory space needed for storing tables and linking pointers.

FAB frequently searches the buffer because all the storage
requests from CPU pass through the buffer. For each request,
FAB has to decide whether the requested sector is in the buffer
or not. To minimize the time to search the buffer, we contrived
a data structure as shown in Fig. 4. The block node list is a
linked list of blocks sorted by their recency. The page node list
is a list of pages that belong to the corresponding block.

Fig. 4. The main data structures of FAB. Horizontally, the block nodes
are linked as a linked list. Vertically, the page nodes are listed for each

block node.

A block node has a block number, a page counter, a pointer

for the next block node, and a pointer for its page node list.
The block number field identifies a unique block in flash
memory. The block node list pointer is for the horizontal
linked list where all the block nodes are sorted by recency that
is to be used for the block-level LRU policy. The page counter
denotes the number of pages allocated in this block, and it is
the primary metric to decide when selecting a victim. There is
a pointer for each block node to point to the list of page nodes
that belong to the block. Page node list has the page data
associated with the page number. The size of a block node is
16 Bytes and the block node list is the only additional memory
overhead of FAB. A data structure similar to the page node list
is also required for the traditional page-level LRU policy.

B. Search Operation
A request from CPU consists of a sector number and the

type of operation. The block that contains the wanted
page(sector) can be identified by dividing the sector number
by the block size. After the block number is identified, FAB
searches the corresponding block node in the block node list.

H. Jo et al.: FAB: Flash-Aware Buffer Management Policy for Portable Media Players 489

Although it is implemented with a sequential search algorithm
which has an O(n) complexity, the actual cost is not so high
since the number of block nodes that can be in the linked list is
small and limited by the buffer size. More complicated data
structures such as hash tables and balanced trees could be
adopted for faster search, but they make it difficult to
implement the LRU mechanism without building an additional
LRU list. Our experimental results in Section 5 confirm that
this simple linear search does not cause any noticeable
overhead.

If the wanted is not found in the block node list, FAB
immediately terminates the search since it is a miss in the
buffer. If the block is found, it continues to search the page
node list. The page node list is structured as a search tree for
efficient search operation. After finding the associated page
node, FAB rearranges the LRU list by moving the block node
to the head of the block node list.

C. Insert Operation
When the wanted page is not found in the buffer, a new

page is allocated and attached to the page list of the
corresponding block node. The page counter of this node is
incremented by one. If the block node does not exist, a new
block node should be added at the head of the block node list,
and its page counter is set to one.

If the miss comes from a read request, the wanted page is
retrieved from the flash storage and stored in the newly
allocated page in the buffer. If it is from a write request, the
data is written only in the new page, leaving the old page in the
flash storage untouched. Since further requests to the page will
be serviced in the buffer, the old copy of the page in the flash
storage does not cause any problem.

D. Replace Operation
When the buffer is full and cannot accommodate a new page

data, the buffer should evict a number of pages from the buffer.
If the evicted page is dirty, i.e., modified while being in the
buffer, it is written back to flash memory while unmodified
pages are claimed immediately. Being a block-level LRU
scheme, FAB selects a victim block, and flushes all the pages
that belong to the block. FAB selects a victim block by the
following rules in order.

1. The block which has the largest number of pages is
selected. If a block has all of pages in the buffer, FAB
will pick out the block first and it is an optimal selection.

2. If multiple blocks are selected by the above rule because
all of them have the same number of pages in the buffer,
then the block at the tail of the list is selected since it has
not been accessed for the longest time.

To find a victim block, FAB starts searching from the tail of
the block node list and if a block which is full of pages is
found, it becomes the victim. Considering the characteristics of
the files used for PMP devices, the block node list is supposed
to contain many such block nodes. Fig. 5 shows a victim block
selection algorithm.

#define BlockPerPageNum 64
Select_Victim_Block ()
{

VictimBlock = -1;
MaxPageNum = 0;
For each BlockNode from BlockNodeListTail to
BlockNodeListHead
{

if (BlockNode.PageCount == BlockPerPageNum)
return BlockNode.BlockNum;

if (BlockNode.PageCount > MaxPageNum)
{

MaxPageNum = BlockNode.PageCount;
VictimBlock = BlockNode.BlockNum;

}
}
return VictimBlock;

}

Fig. 5. Selecting a victim block in FAB

Our scheme replaces a whole block and most blocks are full

of valid pages. Therefore, when a block is written back to flash
memory, it just needs to switch the new block with old one if
any, eliminating the need for copying valid pages from the old
block. This switch merge is an optimal case because FTL can
switch the log block with the old data block [5].

V. EXPERIMENTAL RESULTS

A. Evaluation Methodology
We implemented our FAB policy on a simulator which

mainly consists of NAND flash storage and a DRAM buffer.
The simulator models known parameters related to current
technologies as exactly as possible. The traces are extracted
from disk access logs of real user activities on FAT32 file
system. The workload is chosen to reflect representative PMP
usage as shown in Table I.

TABLE I

TRACES USED FOR SIMULATION

Trace Description The size of
flash storage

The number of
sectors written

512 MB 868,154
1024 MB 1,803,561Pic

The traces of digital
camera. Picture files are
about 1Mbytes. 2048 MB 4,335,023

512 MB 1,146,234
1024 MB 1,935,572MP3

The traces of MP3 player.
MP3 files are about 4-
5Mbytes. 2048 MB 5,602,743

512 MB 1,067,905
1024 MB 2,296,341Mov

The traces of movie
player. Movie files are about
15-30Mbytes. 2048 MB 7,196,759

The main performance metrics are the number of write and

erase operations since they are the major factors limiting the
performance of flash memory-based system. The sizes of flash
memory experimented are 512 Mbytes, 1 Gbytes, and 2

IEEE Transactions on Consumer Electronics, Vol. 52, No. 2, MAY 2006 490

512M FLASH

0
10
20
30
40
50
60
70
80
90

100

pic mp3 mov
Traces

No
rm

ali
ze

d
Er

as
e

PLAIN
BUF_LRU
BUF_FAB

1024M FLASH

0
10
20
30
40
50
60
70
80
90

100

pic mp3 mov
Traces

No
rm

ali
ze

d
Er

as
e

2048M FLASH

0
10
20
30
40
50
60
70
80
90

100

pic mp3 mov
Traces

No
rm

ali
ze

d
Er

as
e

 (a) 512 Mbytes (c) 1024 Mbytes (d) 2048 Mbytes

512M FLASH

0
10
20
30
40
50
60
70
80
90

100

pic mp3 mov
Traces

No
rm

ali
ze

d
GC

 W
rit

e

1024M FLASH

0
10
20
30
40
50
60
70
80
90

100

pic mp3 mov
Traces

No
rm

ali
ze

d
GC

 W
rit

e
2048M FLASH

0
10
20
30
40
50
60
70
80
90

100

pic mp3 mov
Traces

No
rm

ali
ze

d
GC

 W
rit

e

 (b) 512 Mbytes (d) 1024 Mbytes (f) 2048 Mbytes

Fig. 6. The normalized number of write and erase operations of FAST, FAST+LRU buffer scheme, and FAST+FAB buffer scheme

Gbytes. The size of a sector is 512 Bytes and a page can hold
4 sectors. The number of pages that are accommodated in a
block is 64 and, therefore, the size of a block is 128 Kbytes.

We adopted FAST as an FTL scheme of flash memory
because its performance is known to be better than the log
block scheme [8]. Though it appears that FAST would perform
better for a larger number of log blocks, there exists a certain
number beyond that the performance decreases since the
overhead for managing log blocks increases and the benefit of
additional log block gets diluted. Our experiments show that
FAST performs best when the size of log blocks is 8 for our
simulation conditions.

The access times for DRAM and NAND flash memory are
summarized in Table II. These parameters are used to
calculate the total execution time and are set to be the same as
those used in the previous research for a fair comparison [8].

TABLE II

ACCESS TIMES OF DRAM AND NAND FLASH MEMORY

Operation Access time

DRAM Buffer access time (ns/512 Bytes) 2,560
NAND Flash read time (ns/512 Bytes) 36,000,
NAND Flash write time (ns/512 Bytes) 266,000
NAND Flash erase time (ns/128 Kbytes) 2,000,000

B. Performance Evaluation
Fig. 6 a), b) are the results with a 512 Mbytes flash storage.

There are 3 bars for each PMP type. The first bar (PLAIN) is for
the FAST scheme without the intermediate buffer. The second bar
(BUF_LRU) presents the FAST scheme with a buffer managed by
a page-level LRU policy. The last bar (BUF_FAB) is for our FAB
scheme. Fig. 6 a) shows normalized erase numbers for each
scheme and Fig. 6 b) presents normalized write numbers needed
for garbage collection. Because the total number of write count of
pure data is same for all schemes, we only counted the number of
write operations performed during garbage collection. Those
writes are generated during garbage collection to copy valid pages
to another clean block before the block is erased. The rest of
graphs in Fig. 6 show the results for other sizes of flash storage,
1024 Mbytes and 2048 Mbytes. We can see that varying the size
of the flash storage does not change the trend of overall
performance gap.

All the results in Fig. 6 show that a pure LRU (BUF_LRU bars)
scheme for the buffer management does not affect the performance
of flash memory. This result was expected considering how
multimedia files are accesses on PMPs. Most multimedia files are
accessed sequentially and they are rarely accessed again within a
short time interval. Buffering such a file is harmful rather than
being a help since such large files would evict small files from the
buffer even though most of them contain metadata that are

H. Jo et al.: FAB: Flash-Aware Buffer Management Policy for Portable Media Players 491

accessed repetitively.
FAB reduces the number of writes and erases by 29% and

19%, respectively, compared to the other schemes. This
performance gains can be explained by the fact that evicting
multimedia data first from the buffer helps retaining those
metadata that are frequently accessed.

Fig. 7 shows the execution time breakdown taken for MP3
player trace with a 1024 Mbytes flash storage. GCREAD
denotes the consumed flash read time during garbage
collection including the time to identify whether the data is
valid or invalid. GCWRITE presents the time taken to write
valid pages during garbage collection. ERASE means the time
to erase blocks and DATAWRITE is the time to write the
requested data in flash memory.

In the case of our FAB scheme (BUF_FAB), since the
number of garbage collection is smaller, the all the times for
GCREAD, GCWRITE, and ERASE are smaller than others.
While the overhead to search the buffer in BUF_FAB is
measured only less than 0.1% of the total time, the
corresponding overhead in BUF_LRU is about 33% of the
total time, because the latter needs to search for a page in the
longer page-level LRU list. Since the buffer access time
heavily depends on the actual implementation of LRU
algorithm, we have omitted the buffer access time in the results
in Fig. 7 for a fair comparison. However, the fact that a
significant amount of time is spent on searching the buffer in
BUF_LRU suggests that the data structure and mechanism of
FAB is simple, yet very efficient. Overall, BUF_FAB
improves the execution time by 17% compared to BUF_LRU
and PLAIN.

0
500

1000
1500
2000
2500
3000
3500

PLAIN BUF_LRU BUF_FAB
Scheme

Ti
m

e
(s

ec
)

GCREAD
GCWRITE
ERASE
DATAWRITE

Fig. 7. The execution time breakdown for MP3 player trace with a 1024

Mbytes flash storage.

Fig. 8 presents the normalized number of buffer hits. The

buffer hit means the case when the requested data is already in
the buffer and serviced immediately from the buffer. As the
file size manipulated by the application becomes larger from
PIC to MP3 and MOV, the gaps between FAB and pure LRU
get bigger and bigger. This result was expected and explained
before in this section.

1024M FLASH

0

20

40

60

80

100

pic mp3 mov
Traces

No
rm

ali
ze

d
bu

ffe
r h

it

BUF_LRU
BUF_FAB

Fig. 8. The normalized number of buffer hits.

C. The Effects of Buffer Size
The results presented in Fig. 9 show the effects of buffer

size. Because the DRAM buffer is an expensive resource for
PMPs in terms of cost and power, it is necessary to make
trade-off with performance. Fig. 9 shows the number of erase
operations performed for the given buffer size during the
simulation of digital camera trace. The buffer size is varied
from 1 Mbytes to 32 Mbytes.

As the number of sectors written increases according to the
flash storage size (cf. Table I), it is obvious that the larger
flash storage size induces the larger number of erase
operations. However, they all show a drop when the buffer size
becomes 8 Mbytes, and this trend is similar for other traces as
well. Actually, the optimal DRAM buffer size tends to be
related to the working set size and other characteristics of the
workload. However, we would like to note that, for evaluated
traces and environments, the use of DRAM buffer whose
capacity is less than 0.8% of the flash storage (e.g., 8 Mbytes
DRAM buffer for 1 Gbytes flash storage) is quite effective in
reducing the number of erase operations in flash memory.

0

20000

40000

60000

80000

100000

120000

1 2 4 8 16 32
DRAM Buffer Size (Mby tes)

Nu
m

. o
f E

ra
se

 o
pe

ra
tio

n

512M
1024M
2048M

Fig. 9. The number of erase operations varying the DRAM buffer size.

D. Memory Overhead
We also evaluated the memory space overhead required for

FAB. Table III shows the number of block nodes for various

IEEE Transactions on Consumer Electronics, Vol. 52, No. 2, MAY 2006 492

DRAM buffer sizes and the corresponding memory size during
the simulation of MP3 trace on 1 Gbytes flash storage. Since
the number of block nodes changes according to the execution
of the trace at run time, the number in Table III represents the
largest number of block nodes stored on memory. Recall that
the block node data structure which takes 16 Bytes of memory
is the only memory overhead of FAB.

We can see that for small buffer size, the buffer is
fragmented and occupied by many pages that belong to
different blocks. This is because the buffer size is not big
enough to hold all the blocks touched by the application.
However, once the buffer size becomes larger than 4 Mbytes,
the maximum number of block nodes is significantly reduced,
although it slightly fluctuates according to the buffer size. The
results for other traces were also similar. As shown in Table III,
the memory overhead is very trivial compared to the general
DRAM size used by PMPs.

TABLE III

MEMORY OVERHEAD FOR FAB (MP3 TRACE ON 1 GBYTES FLASH)

Buffer size
(Mbytes)

The largest number
of block nodes

Memory
overhead
(Bytes)

Memory
overhead

(%)
2 660 10,560 0.5%
4 116 1,856 0.04%
8 107 1,712 0.02%

16 158 2,528 0.015%

VI. CONCLUSION
Flash memory is rapidly replacing hard disks for most

consumer electronics devices. Most software and governing
algorithms, however, are still based on hard disks even though
flash memory exhibits quite different operational behaviors.
From this observation, we proposed a novel flash-aware buffer
management policy which selects a victim block to be replaced
from the buffer based on the ratio of valid pages in the block
rather than based on its recency. Though this idea was
proposed to reduce the number of page copies and erase
operations, it turns out to help small metadata files to outlive
long multimedia files in the buffer. Since metadata is usually
accessed repetitively while multimedia file is accessed once in
a while, our scheme also increases the hit ratio which is the
most important metric for a buffering scheme.

 Simulation studies show that our scheme reduces the
number of write operations on flash memory by 29 % and the
number of erase operations by 19 %. Boosted by these gains,
the execution time is also reduced by 17 % compared with a
general LRU buffer management policy.

We plan to implement FAB in the real platform and to
evaluate it with various workloads used in PMPs.

REFERENCES
[1] F. Douglis, R. Caceres, M. Kaashoek, P. Krishnan, K. Li, B. Marsh, and

J. Tauber, "Storage Alternatives for Mobile Computers," Proceedings of
the First Symposium on Operating Systems Design and Implementation
(OSDI-1), 1994, pp. 25-37.

[2] http://www.apple.com/ipodnano
[3] Intel Corporation, “3 Volt Synchronous Intel StrataFlash Memory,”

http://www.intel.com/
[4] M. Slocombe, “Samsung CEO: NAND Flash Will Replace Hard

Drives,” http://digital-lifestyles.info/display_page.asp?section=plat-
forms&id=2573, Sep. 2005.

[5] J. Kim, J. M. Kim, S. H. Hoh, S. L. Min, and Y. Cho, “A Space-
efficient Flash Translation Layer for CompactFlash Systems,” IEEE
Trans. Consumer Electron., vol. 48, no. 2, pp. 366-375, May 2002.

[6] CompactFlash Association, http://www.compactflash.org/.
[7] A. Ban, "Flash file system," United States Patent, no. 5,404,485, April

1995.
[8] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S.-W. Park, and H.-J.

Song, “FAST: An FTL Scheme with Fully Associative Sector
Translations,” UKC 2005, August 2005

[9] A. Kawaguchi, S. Nishioka, and H. Motoda, "A Flash-memory based
File System," Proceedings of the USENIX Winter Technical
Conference, 1995, pp. 155-164.

[10] M. L. Chiang, P. C. H. Lee, and R. C. Chang, “Using Data Clustering to
Improve Cleaning Performance for Flash Memory,” Software-Practice
and Experience, vol. 29, no. 3, pp. 267-290, 1999.

[11] M. Wu and W. Zwaenepoel, “eNVy: A Non-volatile, Main Memory
Storage System,” Proceedings of the Sixth International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS-6), 1994, pp. 86-97.

[12] J. H. Lee, G. H. Park, and S. D. Kim, “A New NAND-type Flash
Memory Package with Smart Buffer System for Spatial and Temporal
Localities,” Journal of Systems Architecture, Vol. 51, No. 2, pp. 111-
123, Feb. 2005.

[13] C. Park, J. Kang, S. Y. Park, and J. Kim, “Energy-Aware Demand
Paging on NAND Flash-based Embedded Storages,” Proceedings of the
2004 International Symposium on Low Power Electronics and Design
(ISLPED'04), 2004, pp. 338-343.

[14] A. Dan and D. Towsley, “An Approximate Analysis of the LRU and
FIFO Buffer Replacement Schemes,” Proceedings of the 1990 ACM
SIGMETRICS conference on Measurement and modeling of computer
systems, 1990, pp 143-152.

Heeseung Jo received the BS degree in computer
science from Sogang University, Korea, in 2000, and the
MS degree in computer science from Korea Advanced
Institute of Science and Technology (KAIST), Korea, in
2006. He worked as an engineer at the mobile platform
service team of KTF, Korea, from 2001 to 2004. He is a
PhD candidate of KAIST. His research interests include

Flash memory, file system, embedded system, fast boot, and low power.

Jeong-Uk Kang received his B.S., and M.S. degrees in
Computer Science Division, Dept. of EECS from Korea
Advanced Institute of Science and Technology (KAIST)
in 1998, and 2000, respectively. Currently, he is enrolled
in the PhD program in Computer Science Divison,
KAIST. His research interests include operating systems
and storage systems.

Seon-Yeong Park received the BS degree in computer
engineering from Chungnam National University, Korea,
in 1999, and the MS degree in computer science from
Korea Advanced Institute of Science and Technology
(KAIST), Korea, in 2001. She worked as a research
member at the computer and software lab of Electronics
and Telecommunications Research Institute (ETRI),

Korea, from 2001 to 2003. She is a PhD candidate of KAIST. Her research
interests include flash memory, file system, and cache management.

H. Jo et al.: FAB: Flash-Aware Buffer Management Policy for Portable Media Players 493

Jin-Soo Kim received his B.S., M.S., and Ph.D. degrees
in Computer Engineering from Seoul National University,
Korea, in 1991, 1993, and 1999, respectively. He was
with the IBM T. J. Watson Research Center as an
academic visitor from 1998 to 1999. He is currently an
assistant professor of the department of electrical
engineering and computer science at Korea Advanced

Institute of Science and Technology (KAIST). Before joining KAIST, he was
a senior member of research staff at Electronics and Telecommunications
Research Institute (ETRI) from 1999 to 2002. His research interests include
flash memory-based storage and operating systems.

Joonwon Lee received the B.S. degree from Seoul
National University, in 1983 and the M.S. and Ph.D.
degrees from the College of Computing, Georgia Institute
of Technology, in 1990 and 1991, respectively. From
1991 to 1992, he was with IBM T. J. Watson Research
Center where he was involved in developing scalable-
shared memory multiprocessors. He is currently a faculty

member at KAIST. His research interests include operating systems, computer
architectures, and low power embedded software.

