
IEEE Transactions on Consumer Electronics, Vol. 51, No. 3, AUGUST 2005

Contributed Paper
Manuscript received July 15, 2005 0098 3063/05/$20.00 © 2005 IEEE

900

Closed P2P System for PVR-Based File Sharing

Seungtaek Oh, Jin-Soo Kim, Ki-Sok Kong, and Joonwon Lee

Abstract — Most data placement schemes of P2P systems

are based on open systems where a node can access any data
in the system once the node joins the system, which is not
suitable for PVR-based file sharing, because PVR is a private
device. This paper suggests a closed P2P model where a node
is connected only with some specific nodes and data are
shared only within those nodes. In this model, since shared
files usually contain large multimedia data, the data
placement scheme employed should maximize the space
available to each node by increasing the degree of sharing
and by reducing redundancy in data placement. In this paper,
we prove that the problem to maximize the space is NP-hard
and suggest several heuristic approaches that can be realized
on a peer-to-peer architecture. Performance problems of the
above algorithms are explored through simulation studies .

Index Terms — Closed P2P, peer-to-peer, personal video

recorder, storage extension problem

I. INTRODUCTION

The advent of digital TV enables us to handle multimedia
data as with computers since a digital TV stores and manages
media data in digital format. Because of this digital nature, TV
viewers can easily store and copy media contents broadcasted
on TV. PVR (personal video recorder) is a device that stores
media data on persistent storage like hard disks, whereas a
VCR does it on magnetic tapes. Due to random accessibility of
hard disk, PVR can record multiple media streams, or record a
stream and play back another stream concurrently. In addition,
PVR has the functionalities of fast forward, fast rewind and
pause of the on-air TV streams. Moreover, because broadcast
multimedia data are recorded in digital format, they are easily
copied and shared between PVRs that are connected through a
network.

The data sharing between PVRs is possible in several ways,
but the easiest and natural method is using P2P (peer-to-peer)
systems[1, 2, 9]. P2P systems have been proposed to overcome
the limitation of client/server model where servers easily
become bottleneck. P2P systems are different from previous
network model where the roles of server and client are fixed.
In P2P systems each user can furnish data as a server and each
user can access other user’s data as a client. This symmetric

Seungtaek Oh is with Mobile Platform Lab. at Software Center, Samsung
Electronics, Seoul, Korea. (e-mail: st74.oh@samsung.com)

Ki-sok Kong is with the Department of Computer Engineering at Korea
Polytechnic University, Shihung-City, Korea. (e-mail: kskong@kpu.ac.kr)

Jin-Soo Kim, and Joonwon Lee are with the Department of EECS, Korea
Advanced Institute Science and Technology, Daejeon, Korea. (e-mail:
jinsoo@cs.kaist.ac.kr, joon@cs.kaist.ac.kr)

nature of a P2P system makes itself the best candidate for an
architecture for data sharing between PVRs.

 In traditional P2P systems [7], a node connects to one
arbitrary node to join a system, and it collects the information
about the system from the connected node. This information
usually comprises names of connected nodes and locations of
each file and access privilege matrix. We call this system as an
open P2P system, since connection to the system and access to
data in the system are open to anyone and the access to data is
controlled only through the access control matrix.

However, this type of P2P system is undesirable for PVR-
based file sharing because of the following reasons. The
amount of data that can be stored in a PVR is dependent on the
size of hard disks, and it is usually much larger than that of
magnetic video tapes. But, considering the typical size of a
movie which is several giga bytes, current storage technology
allows each PVR to store only dozens of movies. As the
capacity of storage increases, the size of the multimedia
objects will grow too, since current multimedia data are
usually compressed to be fit within limited storage size
sacrificing the quality of media, and HDTV (high definition
TV) will deliver much larger contents. Therefore the owner of
a PVR will let it be shared by other PVRs only when she can
access. Traditional open P2P systems like Gnutella are
inappropriate for this purpose because the owner of the PVR
equipment would not be happy if many anonymous people
access her resources without offering her any benefit.

A closed P2P system relies on an agreement between nodes
for sharing files, and only the nodes that agree to share files
can access the shared files. For example, in a messenger-style
P2P model, a node should make an agreement with another
node to communicate with the node, and it can communicate
only with the nodes in agreement. Even if node A makes an
agreement with node B, and node B makes an agreement with
node C, node A cannot communicate with node C unless there
is an agreement between node A and node C. By the closed
P2P system, accessibility to shared data can be limited only
within a group that has an agreement.

In a closed P2P system with PVRs, a lack of data placement
control may result in redundant file placement and reduced
effective total storage, and such a space problem should not be
ignored when the sizes of shared objects are large. Therefore,
a policy to decide data placement among P2P nodes is
necessary. Since the main motivation of file sharing for a PVR
owner is to access larger media contents than can be
accommodated on its own PVR, the data placement scheme for
such P2P system should minimize redundancy in storing
shared files. We define storage extension problem as a data

S. Oh et al.: Closed P2P System for PVR-Based File Sharing 901

placement problem in the closed P2P model. A solution to this
problem will maximize the total sum of object sizes that are
accessible from interested nodes. In this paper, we present a
formal description of the problem and a few heuristic solutions
to it.

This paper is structured as follows: we start in Section 2
with the definition of closed P2P model and storage extension
problem. In Section 3, we present algorithms for the storage
extension problem, and we evaluate the suggested algorithms
by simulation in section 4. Section 5 discusses related work,
and Section 6 concludes the paper.

II. STORAGE EXTENSION PROBLEM IN CLOSED P2P

A. Closed P2P model
Napster, one of the open P2P systems, relies on a

centralized server for directory service. A node should inquire
of the centralized server about the locations of data. The
wanted data may reside on several nodes, and the user can get
the data from any node among the nodes because all storages
of the system are open to any user in the system. In this case,
many users may contact to the same node simultaneously, but
it may not be a problem because Napster is targeted for
sharing small size audio files. However, PVRs share large size
video files, and thus it may raise a bottleneck problem when
many anonymous users contacts to the same PVR at the same
time.

To prevent anonymous users from accessing a node, an
agreement is needed. The agreement of closed P2P system is
the permission to access the data of a node. Even if node A
knows the position of other node B, if the node A has no
agreement with node B, node A cannot access the data of node
B. If node A wants to make an agreement with node B, node A
should get content from node B.

Storages can be shared between nodes that established an
agreement, and a user can use the storage of the neighbor
nodes (nodes that have the agreement with the node). If a node
runs short of storage, it can store its data item in the storage of
a neighbor node. In general P2P systems, such storage sharing
is not desirable, because the storage sharing reduces the
availability since any node can be shut down without prior
notice. However, the storage sharing of closed P2P systems is
suitable for PVR-based P2P systems, because PVRs hardly
move and they are usually turned on all the times.

The closed P2P model can be realized on any open P2P
system. If a node wants to establish an agreement with a
certain node, it may ask the lookup service of the open P2P
system for the location, and an agreement can be established
easily between the two nodes by exchanging a few messages.
Once an agreement is made between them, two nodes can
freely access the storage of each other. An agreement can be
canceled by a node by sending a cancellation message.

Figure 1 shows closed P2P model where each circle denotes
a node and each link shows that connecting nodes have an
agreement. If there is a link between node A and node B, node

A can access the storage of node B as well as its own storage,
and vice versa. As the link represents a logical connection, it is
meaningful only between two connecting nodes. We define
nodes and links in closed P2P model as follows.• Node: It
means a peer in a P2P system. Each node has some amount of
storage, and donates a part of it to share data with other nodes.
It has a unique id, ni, and N is a set of nodes.

N = {n1, n2, …, ni, …, nn}
• Link: If two nodes have an agreement, there is a link

between them. Storage between agreed nodes can be shared by
both nodes. L is a set of links.

L ⊆ N × N
A closed P2P model can be represented as a graph.
G = (V, E) where V = N and E = L
• Virtual storage group (VSG): A node can use its own

storage and the storage of all the linked nodes. Virtual storage
group VSGi of a node ni is a group of nodes that share storage
with the node ni, i.e., nodes that have links to the node ni . In
Figure 1, VSG5 is {n4, n5, n7, n9}.

VSGi = {ni} U { nj | (ni, nj)∈L}
• VSG storage: It is the sum of all storage in a VSG.

B. Storage extension problem
Data placement is important in a closed P2P system because

smart algorithms will enlarge the total storage of the system. In
traditional open P2P systems [7, 10, 11, 12], the decision of
data placement is made solely by each node independently,
and such a lack of control may result in redundant file
placement and reduced effective total storage. This kind of
space problem should not be ignored when shared objects are
large size video files.

In a closed P2P system, some of favorite data may be stored
in its VSG storage. However, since there is only limited space
in the VSG storage, some data of interest may not be stored
anywhere. Following terms need to be defined to describe the
problems.

We define
• Data (D): A set of data.
D = {d1, d2, …, di, …, dm}
• Physical storage size (P): The size of data that can be

stored in a node ni.
• Favorite data (FD): We define FD as a set of pairs (ni,

Fi), where Fi is a set of data that are of interest to the node ni.
FD = {(n1, F1), (n2, F2), …, (ni, Fi), …, (nn, Fn)} where

Fi ⊆ D

Fig. 1. Virtual storage group

IEEE Transactions on Consumer Electronics, Vol. 51, No. 3, AUGUST 2005 902

In our model of P2P storage system with PVR, each node
has a set of data of interest. These kinds of favorite data can be
easily specified by the present PVR system. In TiVo [14], a
famous PVR system, a user can specify a favorite data, and
besides favorite data can be predicted by TiVo. TiVo can
analyze the pattern of user’s favorite data and regard the series
of favorite object or the similar kinds of favorite object as
favorite data.

• Stored data (SD): SD is a set of pairs (ni, Si) where each Si
represent a set of data that stored in the storage of node ni.
Note that Si needs not be a subset of Fi; it is possible for a
node to store uninterested data in its own storage, permitting
the data to be accessed by the nodes in its virtual storage
group.

SD = {(n1, S1), (n2, S2), …, (ni, Si), …, (nn, Sn)} where
Si ⊆ D and |Si| P.

• Stored data of virtual storage group (SVSGi): A set of
data stored in VSGi.

SVSGi = {d | d∈Si where ni∈VSGi and (ni, Si)∈SD}

• Virtual storage size (VSS): A node can access the whole
VSG storage, and it may contain some data of interest to other
nodes since the storage is shared among the group. Only the
space of the VSG storage that contains favorite data of a node
is meaningful to the node. We call the size of meaningful
space the virtual storage size (VSS).

|| iii FSVSGVSS =
• Total virtual storage size (TVSS): The total sum of VSS

of all the nodes in a system. It is natural for any data placement
algorithm to maximize this metric since the larger VSS means
that more favorite data can be stored.

TVSS =
=

n

i
VSSi

1

Data placement schemes affect the total virtual storage size
and the available storage of each node. Figure 2 illustrates
several examples of data placement schemes, where each
square box denotes a node; node number in the left, favorite
data in top right, and stored data in bottom right. It is assumed
that the sizes of all data are same and the physical storage sizes

of all nodes are twice the size of data. Figure 2(a) shows the
initial setting where no data has been placed on the storage.
Figure 2(b) and (c) illustrate two different data placement
schemes. Table 1 shows the virtual storage sizes of these two
placement schemes. This example shows that the total virtual
storage size depends on the effectiveness of the data placement
scheme. In Figure 2(c), the total virtual storage size is 13, and
all nodes can access all their favorite data. Though the
physical storage size of n2 is 2, this data placement increases
its virtual storage size to 4. It can be seen that the total virtual
storage can be increased by forcing some node to store
unwanted data.

Problem 2.1. Storage extension problem: Consider a
closed P2P model represented as a graph G with a node set N
and a link set L.

G = (V, E) where V = N and E = L ⊆ V ×V
When G, D, P, and FD are given, the solution of storage

extension problem is to find an SD that maximizes the total
virtual storage size (TVSS).

C. NP-hardness of storage extension problem
In this subsection, we show the storage extension problem is

an NP-hard problem. We can prove it using the minimum
dominating set problem [5,6].

1) Minimum dominating set problem
Consider a graph with a vertex set V and an edge set E such

that:
G = (V, E) where E ⊆ V × V
A dominating set V´ for G is defined as follows.
V´ ⊆ V such that for all u∈V – V´, there is a v∈V´ for

which (u, v)∈E.
A dominating set with the minimum number of vertices is

called a minimum dominating set, and its cardinality is termed
the domination number of G. It is well-known that this
problem is NP-complete for general undirected graphs [5].

2) Proof of NP-hardness of the storage extension problem
The minimum dominating set problem can be reduced to the

storage extension problem in polynomial time as follows.
For a given minimum dominating set problem, we can

consider a corresponding storage extension problem as
follows:

G = (N, L) where N =V, L = E
D = {d1, d2, …, di, …, dn, dn+1}
Sizeof(di) = 1
Fi = {di, dn+1}
P = 1
Assume that we have a solution for the storage extension

problem.
SD = {(n1, S1), (n2, S2), …, (ni, Si), …, (nn, Sn)}
In the solution, we can define three distinct sets of vertices.
N1 = a set of ni, where (ni, {dn+1})∈SD
N2 = a set of ni, such that for all ni ∉ N1, there is nj∈N1

where (ni, nj)∈E
 N3 = N - N1 - N2
Definition 2.1. Virtual Storage Contribution Factor (VSCF)

Fig. 2. Examples of data placement

S. Oh et al.: Closed P2P System for PVR-Based File Sharing 903

The virtual storage of ni is described as FiSVSGi .
VSCFj denotes that the number of nodes that are interested in
dj and are able to access the data from their own virtual storage
group.

VSCFj = | {ni | ni∈N, dj∈Fi, and dj∈SVSGi} |
In Figure 2(b), VSCF4 is 3, because d4 is the favorite data of

3 nodes (n1, n3, n4) and it can be accessed by the nodes, and
VSCF8 is 0, because d8 is the favorite data of 3 nodes (n1, n2,
n4) but no node can access d8. TVSS is decreased by VSCFj, if
we remove the data dj from Si for all node i. In Figure 2(b), if
d4 is removed from the stored data of all nodes, TVSS is
decreased by 3.

Lemma 2.1. In the solution of the storage extension
problem, VSCFj is 1, for all dj such that (ni, {dj})∈SD, and
ni∈N2 U N3.

Proof. Since n i∈N2 U N3, dj is one of {d1, d2, …, dn}.
There are no two vertices that have the same dj by their
favorite data. Hence, VSCFj cannot be greater than 1. VSCFj
cannot be smaller than 1, either. Consider a solution of the
storage extension problem. In the solution we assume there is a
node ni where (ni, {dj})∈SD, ni∈N2 U N3, and VSCFj is 0.
We also assume that ni has n links. It means that VSGi has n+1
nodes and the nodes have n+2 favorite data (dk where
nk∈VSGi, and dn+1). Because the total physical storage size of
the neighbors of ni is n, we can find at least two favorite data
which are not stored in ni or any neighbor of ni. If we store the
data in ni, we can increase the total virtual storage size. Thus
we can conclude that the given solution can not be a solution
of storage extension problem, which means VSCFj can not be 0
for some dj such that (ni, {dj})∈SD, and ni∈N2 U N3.

Lemma 2.2. N1 U N3 is a dominating set
Proof. By definition, all ni∈N2 have an edge to nj∈N1. So

N1 U N3 is a dominating set.
Lemma 2.3. The total virtual storage size of the solution is

|N| + |N2|
Proof. When a solution for the storage extension problem

is given, we can make another solution, SD´.
SD´ = {(n1, S1´), (n2, S2´), …, (ni, Si´), …, (nn, Sn´)}, where

Si´ = Si, if ni∈N1UN2
Si´ = {dn+1}, if ni∈N3
SD´ is a new solution that has no element of N3 by replacing

the stored data of N3 with dn+1. The replacement does not
increase the total virtual storage size; otherwise the original
solution SD can not be the solution of the storage extension
problem. The replacement does not decrease the total virtual
storage size, either. VSCFj is 1 by Lemma 2.1, and there is no
edge from the vertices of N3 to vertices of N1. In SD´, because
all N3 are removed, only N1 dominates all vertices. Hence the
VSCFn+1 becomes |N|, and VSCFj is 1, where ni∈N2 and (ni,
{dj})∈SD. Accordingly, the total virtual storage size is |N| +
|N2|.

Theorem 2.1. The solution of minimum dominating set is N1
U N3.

Proof. According to Lemma 2.2, N1 U N3 is the
dominating set, and according to Lemma 2.3, the total virtual

storage size is |N| + |N2| = 2|N| - (|N1| + |N3|). The given solution
has the maximum total virtual storage size; it means that it has
the minimum value of |N1| + |N3|. So, N1 U N3 is a minimum
dominating set.

III. DATA PLACEMENT ALGORITHMS

Since the storage extension problem is NP-hard, we need to
devise effective heuristic algorithms. There are many factors
that affect the real performance of each algorithm such as
network bandwidth, node performance, changes in data
preference, data size, and so on. To simplify the problem
without loss of any applicability of the algorithm, we made the
following assumptions.

• Same storage size: All nodes have the same storage size.
• Same data size: All data sizes are equal. Therefore, each

node can store the same number of data.
• Sufficient network bandwidth: There is no network

bottleneck and a node can always perform services to other
linked nodes.

• Off-line algorithm: We assume that all nodes and their
agreement and favorite data are known in advance. In this
paper, we only consider the initial data placement assuming
that there is no change in node configurations or data
preference.

The simplest algorithm that we can think of is the greedy
one which considers only its own favorite data and tries to
allocate them on its own storage. Because of the greediness,
this one will fail to maximize the total virtual storage size. We
call this one owner-based algorithm. Another class of
algorithms considers the preferences of all the nodes in the
VSG and tries to maximize the total virtual storage size. We
call them group-based algorithms. Below, we describe one
owner-based algorithm and four group-based algorithms;
random, most-popular, most-popular with neighbor
consideration, maximum popular value.

• Owner-based random (OR)
When the storage of a node is not sufficient to store all the

favorite data of the node, data are randomly selected. It is the
simplest algorithm that does not consider the virtual storage
group.

• Group-based random (GR)
A node randomly selects data among the favorite data of the

nodes in its VSG. Since this one relies on randomness without
considering global optimization, we expect that its
effectiveness would not be satisfactory.

• Most-popular (MP)
This algorithm selects data among the favorite data of all the

nodes in its VSG according to the popularity of the data.
Popular value (Vij) is the number of nodes that would be able
to access data dj if the data is stored in node ni. Table 2 shows
an example of all popular values of node n2, when the favorite
data are given as in Figure 2(a). Data to be stored in node n2

are selected according to these popular values to maximize the
happiness of the nodes that are interested in the data. Figure
2(d) shows the resulting data placement when we employ the

IEEE Transactions on Consumer Electronics, Vol. 51, No. 3, AUGUST 2005 904

most-popular algorithm.
• Most-popular with neighbor consideration (MPNC)
The optimization considered in the previous algorithm is

local in that each node tries to maximize the total sum of
popular values of data stored in that node only without
considering the data placed in other nodes. In Figure 2(d), data
8 is stored in n1, n2, n4. However, it is enough for data 8 to be
stored only in n2, because n1 and n4 have a link with n2. MPNC
prevents such unnecessary duplication by not allowing linked
nodes to have the same data. In other words, if two linked
nodes have the same favorite data, the data are stored only in
one of them. Naturally, the tie breaking rule chooses the node
which has the higher popular value than the other node. This
algorithm needs communications between neighboring nodes,
but it does not require global information about all the nodes
in VSG.

• Maximum popular value first (MPVF)
Even though the MPNC algorithm considers neighboring

nodes, its optimization is still local as it does not consider data
placed in nodes of more than one-hops away. As a result, it is
sometimes possible that the effect of data placement decreases
the virtual storage size of the nodes at long distance. To
eliminate this effect, it is necessary to take into account all the
nodes in designing data placement algorithms. For MPVF, we
need a centralized server like Napster, and we assume that a
centralized server collects all the needed information from
every node, and decides which data should be placed in which
node.

The centralized server prepares a global popular value table
that contains the popular values of all nodes and data, and then
makes a decision on data placement according to this table. It
repeats the selection of the maximum popular value as shown
in Figure 3. Vij in the table denotes a popular value of data j for
node ni. The selection of Vij by this algorithm means that data j
would be stored in node i. In the first step, V24, the maximum
popular value, is selected. The selection of V24 means that data
4 are stored in node n2. Nodes linked to node n2 (node n1, n3,
and n4 in this example) need not store data 4 any more, and
thus, V14, V34, and V44 are set to 0. Next, we select V24 which is
the maximum among unselected popular values, and set V18,
V38, and V48 to 0. Because one node store only two data, node
n2 can not store data any more. It means that the popular value
of column 2 can not be selected any more, and all popular
values of column 2 should be set to 0. This process is repeated
until all nodes have no more room to store any data or there is
no more data to store.

IV. PERFORMANCE

The goal of algorithms presented in section 3.1 is to
maximize the total virtual storage size. We use simulation to
evaluate the effectiveness of the suggested five algorithms.
The parameters considered for this simulation studies are as
follows.

1. n is the number of nodes.
n = |N|

2. l is the average number of links for each node in the
whole P2P system.

l =
N
L

2

Given n and l, the possibility that there is a link between two

arbitrary nodes is
1−n

l
.

3. d is the total number of data.
d = |D|

4. f is the number of favorite data for each node.
f = |Fi|

Given d and f, the possibility that arbitrary data are the

favorite data of an arbitrary node is
d
f

.

5. P is the physical storage size of a node in terms of the
number of data that can be stored.

Figure 4 shows the total virtual storage size varying the
number of nodes from 10 to 10,000 and fixing other
parameters such that l = 3, d = 50, f = 15, and P = 5. The
results are the average value of 10 simulations. In each
simulation, all nodes set up new links and new data
preferences. The TVSS are normalized according to OR. We
can see that the number of nodes does not affect the
performance of algorithms unless the number of nodes is very
small. If the number of nodes is larger than 200, we can find
the similar performance gaps among five algorithms.

TABLE II

ALL POPULAR VALUES OF NODE N2 IN FIGURE 2(A)

Data number 1 2 3 4 5 6 7 8

Popular value
(V2j)

1 1 1 3 2 1 1 3

Benefit node n1 n3 n4 n2, n2,
n2,

n2,
n3

n2 n2 n2, n2,
n2,

Fig. 3. The process of MPVF in Figure 2(a)

S. Oh et al.: Closed P2P System for PVR-Based File Sharing 905

Figure 5 shows the results of varying the physical storage
size from 1 to 11 and fixing other parameters such that n =
1,000, l = 3, d = 50, and f = 15. Though we explored almost all
possible design space, we present only meaningful results here.

The performance of OR, GR, and MP algorithms are
similar. Though we expected that the MP algorithm would
outperform others significantly, its blindness to the linked
nodes entails somewhat amount of undesirable duplications of
stored data, and this duplication downgrades the performance
compared to other random algorithms.

MPNC prevents two linked nodes to store the same data,
and thus eliminates some duplication. However, even if two
nodes have a link, it is sometimes desirable to have the same
data due to the other nodes linked to them. MPNC does not
consider this situation, and this limitation degrades the
performance more as the physical size becomes larger. It is
surprising that MPNC is sometimes inferior even to other
simpler algorithms.

The performance of MPVF is always the best. It was
expected from the beginning since this algorithm considers
global situation and the placement is done one by one
reflecting the effect of the previous placement. In Figure 5, we
can see that the increment of the total virtual storage size slows
down in the range of the physical storage size of 9, and it
means that almost all the nodes can access all the favorite data.
The virtual storage size should be 15,000, if all nodes can
access all favorite data of them.

In Figure 6, we test different data access pattern, Zipf-like
distribution [14], which is well-known as a pattern of web
access. Zipf-like distribution states that popularity of the i'th
most popular data is proportional to 1/i , 1.0. We simulate
the total virtual storage size varying the physical storage size,
as we did in Figure 5. The simulation result is similar to Figure
5, but the total virtual storage sizes are larger than those of
Figure 5. The reason is because a few popular data are the
favorite data of many nodes and the sharing of the data can
easily increase the total virtual storage size. MPNC does not

perform well with Zipf-like distribution, because MPNC
discourages sharing of popular data.

To acquire the global knowledge, MPVF incurs high
communication overhead. The iterative nature of the algorithm
increases the complexity. Moreover, MPVF needs the
centralized server and it has a weakness of the scalability. If
we can make MPVF decentralized, we can use the algorithm in
the P2P system with a large number of PVRs. We can make
the decentralized MPVF algorithm by regarding all the nodes
as the server. In the algorithm, each node should execute
MPVF independently and decide which data items would be
stored in the node. For the decentralized algorithm, all the
nodes should know all the favorite data of all the nodes at a
time. The overhead of the algorithm is larger than original
centralized MPVF.

Instead of that, we can consider a decentralized MPVF
which is loosely synchronized. In this algorithm, each node
sends the lists of the favorite data to the neighbor nodes
periodically. Though the lists should include all favorite data
known to a node, the size of sending message may be small
because the node sends only the difference from the former
notification. Since the lists need not be sent out immediately
whenever there is a change, they may be attached to other data
packet to reduce communication overhead.

In this decentralized MPVF, each node executes the MPVF
algorithm independently to decide which data to be stored on

Fig. 4. The normalized TVSS varying the number of nodes

Fig. 6. The performance with Zipf-like distribution

Fig. 5. The effect of varying the physical storage size

IEEE Transactions on Consumer Electronics, Vol. 51, No. 3, AUGUST 2005 906

its own storage and predicts what will be stored in the
neighbor nodes. The prediction may be wrong, because the
notification of the favorite data is stale. A node can easily
recognize this wrong situation by checking the stored data of
neighbor nodes. For that, the list of the stored data should be
sent with the lists of favorite data. However, the list need not
include the stored data of other node, but it should include
only the stored data of the node itself. If the stored data of
neighbor nodes differ from the prediction of the stored data,
the node should execute the algorithm with the new list of
favorite data. The cost of this algorithm would be prohibitive
if global information and data preferences change very often.
Fortunately, in PVR, such changes are very rare.

V. RELATED WORK

P2P systems began with the unstructured P2P systems
where a node can freely select and store its data, such as
Napster [10], Gnutella [7], Freenet [11], and KaZaA [12].
Because there is no rule to store data, unstructured P2P
systems need the lookup algorithms. Napster has the
centralized server which manages the information of the nodes
and the data in the system and the nodes query the server to
find the location of data item. Though two nodes transfer the
data directly, Napster still has the drawbacks of the
client/server systems, because the centralized server should
have the information of all nodes and data. Gnutella and
Freenet use the distributed lookup where the centralized server
is not needed. Flooding is used for lookup in Gnutella, and
Freenet use the routing based on lexical closeness of keys.
Because these lookups do not require the centralized server,
they can overcome the drawbacks of the client/server model.
However, the lookups of Gnutella and Freenet are not
guaranteed to find an existing object and use much network
bandwidth. The lookup of KaZaA is the hybrid of the
centralized lookup and the distributed lookup. In KaZaA, there
exist index servers (super nodes) like Napster, but the
centralization can be reduced by distributing the indexes of the
nodes to many super nodes.

However, unstructured P2P systems do not completely
overcome the limitation of scalability, and structured P2P
systems are studied for solving the problem. Lookup is very
fast in the structured P2P systems, because the data items are
stored in the fixed nodes by the rule of the P2P system, but we
need the efficient placement of nodes and data items for the
efficient lookup. CAN maps the nodes in a d-dimensional
Cartesian coordinated space [4]. Because each node maintains
the routing table only for 2d nodes, the overhead of routing
table is small; however, the length of routing path increases
rapidly, as the number of nodes in the system becomes larger.
Chord maps the nodes in a one-dimensional space with m-bits
address and routes the message based on numerical difference
of the destination address [3]. Tapestry [13] and Pastry [8] use
the longest prefix/suffix address routing where the routing
table is constructed by the routing levels and each routing level
has the pointers of the neighbor nodes which match the

prefix/suffix for that levels. Tapestry and Pastry also use the
network locality for the efficient routing. One of the most
important objects of the data placements of structured P2P
systems is the fast lookup. However, the efficient data
placement also guarantees to find the existing objects and
sometimes make the systems fault tolerant.

Data replication studies are somewhat similar to our study in
point that efficient data placement improves the performance
of the P2P system. However traditional P2P model is not
suitable for the PVR-based P2P model. Because unstructured
P2P systems do not control the data placement, the redundant
file placement reduces the effective total storage. In structured
P2P systems, a user can not decide the position of the data.
Instead the data are stored in the fixed nodes by the rule of the
P2P system, where the data items can be stored far from the
user and they can be accessed by the anonymous nodes.
Therefore, structured P2P systems are not suitable for PVR-
based P2P systems, either.

In closed P2P model, a node can communicate and share its
data only with some nodes that have an agreement. This model
is very useful and already used in real environment, but no
previous P2P systems are based on the model. In this model,
we can study the storage extension problem which is not
considered in the previous model, and we present a formal
description of the problem and a few heuristic solutions to it.

VI. CONCLUSION

This paper suggested the PVR-based P2P model for private
communications and sharing where a node links to a small
number of nodes and communicates only with them. We found
that a smart data replacement would increase the virtual
storage size of nodes and that finding optimal solution is NP-
hard. We suggested and evaluated five heuristic algorithms for
this problem. The simulation results show that the MPVF
algorithm increases the total virtual storage size most because
it considers interests of all the nodes in the P2P system.

Further work includes expanding our model to adopt real
world constraints. For example, various sizes of data can make
the algorithm complex, and the limitation of network
bandwidth can draw a distinction between data stored in its
own disk and those stored in neighboring nodes. Real time
requirements like VOD would make the model much more
complex.

REFERENCES

[1] A. Oram, “Peer-to-Peer: Harnessing the Power of Disruptive
Technologies”, O’Reilly, 2001.

[2] A. J. Ganesh, A. M. Kermarrec, and L. Massoulie, “Peer-to-peer
membership management for gossip-based protocols”, IEEE
Transactions on Computers, vol. 52, no. 2, pp. 139-149, Feb. 2003.

[3] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F.
Dabek, and H. Balakrishnan, “Chord: A Scalable Peer-to-Peer Lookup
Protocol for Internet Applications”, IEEE/ACM Transactions on
networking, vol. 11, no. 1, pp. 17-32, Feb. 2003.

[4] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
Scalable Content-Addressable Network”, In Proceedings of ACM
SIGCOMM 2001, Aug. 2001.

S. Oh et al.: Closed P2P System for PVR-Based File Sharing 907

[5] M.R. Garey and D.S. Johnson, “Computers and Intractability: A Guide
to the Theory of NP-completeness”, Freeman, San Francisco, 1979.

[6] D. S. Johnson, “Approximation algorithms for combinatorial problems”,
J. Comput. System Sci. pp. 256-278, 1974.

[7] Gnutella, http://gnutella.wego.com/.
[8] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object

Location and Routing for Large-scale Peer-to-peer Systems”, In
Meddleware, pp. 329-350, 2001.

[9] M. J. Freedman and R. Morris, “Tarzan: a Peer-to-peer anonymizing
network layer”, In ACM-CCS, pp. 193-206, 2002.

[10] Napster, http://www.napster.com/, 2001.
[11] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A

distributed anonymous information storage and retrieval system”, In
Workshop on Design Issues in Anonymity and Unobservability, pp.
311-320, Jul. 2000.

[12] KaZaA, http://www.kazaa.org/, 2002.
[13] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D.

Kubiatowicz, “Tapestry: A Resilient Global-scale Overlay for Service
Deployment”, IEEE Journal on Selected Areas in Communications, vol.
22, no. 1, pp. 44-53, Jan. 2004

[14] TiVo, http://www.tivo.com/.
[15] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching

and Zipf-like distributions: Evidence and implications,” In Proceedings
of INFOCOM, Apr. 1999

Seungtaek Oh was born in Seoul, Korea in 1974. He
received his B.S. and M.S. degrees in Computer Science
from Korea Advanced Institute of Science and
Technology (KAIST) in 1997 and 1999. He is working
toward his Ph.D. degree at Korea Advanced Institute of
Science and Technology. He is currently with Mobile
Platform Lab. at Software Center, Samsung Electronics,

Seoul.

Jin-Soo Kim is currently an assistant professor of the
department of electrical engineering and computer
science at Korea Advanced Institute of Science and
Technology (KAIST). Before joining KAIST, he was a
senior member of research staff at Electronics and
Telecommunications Research Institute (ETRI) from
1999 to 2002. He was with the IBM T. J. Watson
Research Center as an academic visitor from 1998 to

1999. He received his B.S., M.S., and Ph.D. degrees in Computer
Engineering from Seoul National University in 1991, 1993, and 1999,
respectively. His research interests include peer-to-peer and grid computing,
embedded systems, and operating systems.

Ki-sok Kong is an associate professor in the Department
of Computer Engineering at Korea Polytechnic
University, Shihung-City, Korea. He received the B.E.
degree in control and instrumentation engineering and
the M.E. degree in computer engineering from Seoul
National University, Seoul, Korea, in 1984 and 1986,
respectively. He earned his Ph.D. degree in computer
science from the Korea Advanced Institute of Science
and Technology (KAIST). From 1986 to 1989, he was

with the Computer Division of Samsung Electronics Co., Ltd., Korea, and
from 1989 to 1992, he was with TriGem Computer, Inc., Korea, and from
1992 to 1994, he was with EOS Technologies, Inc., Korea. From 1999 to
2000, he was with Electronics and Telecommunication Research Institute
(ETRI), Korea and from 2000 to 2001, he was with IMDB, Inc., Korea. His
research interests include operating systems, embedded system software and
ubiquitous computing.

Joonwon Lee is a Professor in the Division of Computer
Science of the Department of Electrical Engineering &
Computer Science at Korea Advanced Institute of
Science and Technology (KAIST). He earned his B.S.
degree in Statistics and Computer Science at Seoul
National University and M.S. and Ph.D. degrees in
Computer Science at the College of Computing, Georgia

Tech. At IBM, He worked in a multiprocessor design team. His research
interests are Operating Systems, Computer Architecture, and Parallel
Processing.

