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Abstract — Most data placement schemes of P2P systems 

are based on open systems where a node can access any data 
in the system once the node joins the system, which is not 
suitable for PVR-based file sharing, because PVR is a private 
device. This paper suggests a closed P2P model where a node 
is connected only with some specific nodes and data are 
shared only within those nodes. In this model, since shared 
files usually contain large multimedia data, the data 
placement scheme employed should maximize the space 
available to each node by increasing the degree of sharing 
and by reducing redundancy in data placement. In this paper, 
we prove that the problem to maximize the space is NP-hard 
and suggest several heuristic approaches that can be realized 
on a peer-to-peer architecture. Performance problems of the 
above algorithms are explored through simulation studies . 

Index Terms — Closed P2P, peer-to-peer, personal video 

recorder, storage extension problem 

I. INTRODUCTION 

The advent of digital TV enables us to handle multimedia 
data as with computers since a digital TV stores and manages 
media data in digital format. Because of this digital nature, TV 
viewers can easily store and copy media contents broadcasted 
on TV. PVR (personal video recorder) is a device that stores 
media data on persistent storage like hard disks, whereas a 
VCR does it on magnetic tapes. Due to random accessibility of 
hard disk, PVR can record multiple media streams, or record a 
stream and play back another stream concurrently. In addition, 
PVR has the functionalities of fast forward, fast rewind and 
pause of the on-air TV streams. Moreover, because broadcast 
multimedia data are recorded in digital format, they are easily 
copied and shared between PVRs that are connected through a 
network.  

The data sharing between PVRs is possible in several ways, 
but the easiest and natural method is using P2P (peer-to-peer) 
systems[1, 2, 9]. P2P systems have been proposed to overcome 
the limitation of client/server model where servers easily 
become bottleneck. P2P systems are different from previous 
network model where the roles of server and client are fixed. 
In P2P systems each user can furnish data as a server and each 
user can access other user’s data as a client. This symmetric 
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nature of a P2P system makes itself the best candidate for an 
architecture for data sharing between PVRs. 

 In traditional P2P systems [7], a node connects to one 
arbitrary node to join a system, and it collects the information 
about the system from the connected node. This information 
usually comprises names of connected nodes and locations of 
each file and access privilege matrix. We call this system as an 
open P2P system, since connection to the system and access to 
data in the system are open to anyone and the access to data is 
controlled only through the access control matrix. 

However, this type of P2P system is undesirable for PVR-
based file sharing because of the following reasons. The 
amount of data that can be stored in a PVR is dependent on the 
size of hard disks, and it is usually much larger than that of 
magnetic video tapes. But, considering the typical size of a 
movie which is several giga bytes, current storage technology 
allows each PVR to store only dozens of movies. As the 
capacity of storage increases, the size of the multimedia 
objects will grow too, since current multimedia data are 
usually compressed to be fit within limited storage size 
sacrificing the quality of media, and HDTV (high definition 
TV) will deliver much larger contents. Therefore the owner of 
a PVR will let it be shared by other PVRs only when she can 
access. Traditional open P2P systems like Gnutella are 
inappropriate for this purpose because the owner of the PVR 
equipment would not be happy if many anonymous people 
access her resources without offering her any benefit. 

A closed P2P system relies on an agreement between nodes 
for sharing files, and only the nodes that agree to share files 
can access the shared files. For example, in a messenger-style 
P2P model, a node should make an agreement with another 
node to communicate with the node, and it can communicate 
only with the nodes in agreement. Even if node A makes an 
agreement with node B, and node B makes an agreement with 
node C, node A cannot communicate with node C unless there 
is an agreement between node A and node C. By the closed 
P2P system, accessibility to shared data can be limited only 
within a group that has an agreement. 

In a closed P2P system with PVRs, a lack of data placement 
control may result in redundant file placement and reduced 
effective total storage, and such a space problem should not be 
ignored when the sizes of shared objects are large. Therefore, 
a policy to decide data placement among P2P nodes is 
necessary. Since the main motivation of file sharing for a PVR 
owner is to access larger media contents than can be 
accommodated on its own PVR, the data placement scheme for 
such P2P system should minimize redundancy in storing 
shared files. We define storage extension problem as a data 



S. Oh et al.:  Closed P2P System for PVR-Based File Sharing 901

placement problem in the closed P2P model. A solution to this 
problem will maximize the total sum of object sizes that are 
accessible from interested nodes. In this paper, we present a 
formal description of the problem and a few heuristic solutions 
to it. 

This paper is structured as follows: we start in Section 2 
with the definition of closed P2P model and storage extension 
problem. In Section 3, we present algorithms for the storage 
extension problem, and we evaluate the suggested algorithms 
by simulation in section 4. Section 5 discusses related work, 
and Section 6 concludes the paper.  

II. STORAGE EXTENSION PROBLEM IN CLOSED P2P 

A. Closed P2P model 
Napster, one of the open P2P systems, relies on a 

centralized server for directory service. A node should inquire 
of the centralized server about the locations of data. The 
wanted data may reside on several nodes, and the user can get 
the data from any node among the nodes because all storages 
of the system are open to any user in the system. In this case, 
many users may contact to the same node simultaneously, but 
it may not be a problem because Napster is targeted for 
sharing small size audio files. However, PVRs share large size 
video files, and thus it may raise a bottleneck problem when 
many anonymous users contacts to the same PVR at the same 
time. 

To prevent anonymous users from accessing a node, an 
agreement is needed. The agreement of closed P2P system is 
the permission to access the data of a node. Even if node A 
knows the position of other node B, if the node A has no 
agreement with node B, node A cannot access the data of node 
B. If node A wants to make an agreement with node B, node A 
should get content from node B. 

Storages can be shared between nodes that established an 
agreement, and a user can use the storage of the neighbor 
nodes (nodes that have the agreement with the node). If a node 
runs short of storage, it can store its data item in the storage of 
a neighbor node. In general P2P systems, such storage sharing 
is not desirable, because the storage sharing reduces the 
availability since any node can be shut down without prior 
notice. However, the storage sharing of closed P2P systems is 
suitable for PVR-based P2P systems, because PVRs hardly 
move and they are usually turned on all the times.  

The closed P2P model can be realized on any open P2P 
system. If a node wants to establish an agreement with a 
certain node, it may ask the lookup service of the open P2P 
system for the location, and an agreement can be established 
easily between the two nodes by exchanging a few messages. 
Once an agreement is made between them, two nodes can 
freely access the storage of each other. An agreement can be 
canceled by a node by sending a cancellation message.  

Figure 1 shows closed P2P model where each circle denotes 
a node and each link shows that connecting nodes have an 
agreement. If there is a link between node A and node B, node 

A can access the storage of node B as well as its own storage, 
and vice versa. As the link represents a logical connection, it is 
meaningful only between two connecting nodes. We define 
nodes and links in closed P2P model as follows.• Node: It 
means a peer in a P2P system. Each node has some amount of 
storage, and donates a part of it to share data with other nodes. 
It has a unique id, ni, and N is a set of nodes. 

N = {n1, n2, …, ni, …, nn} 
• Link: If two nodes have an agreement, there is a link 

between them. Storage between agreed nodes can be shared by 
both nodes. L is a set of links. 

L ⊆  N × N 
A closed P2P model can be represented as a graph.  
G = (V, E) where V = N and E = L 
• Virtual storage group (VSG): A node can use its own 

storage and the storage of all the linked nodes. Virtual storage 
group VSGi of a node ni is a group of nodes that share storage 
with the node ni, i.e., nodes that have links to the node ni . In 
Figure 1, VSG5 is {n4, n5, n7, n9}.  

VSGi = {ni} U { nj | (ni, nj)∈L} 
• VSG storage: It is the sum of all storage in a VSG.  

B. Storage extension problem 
Data placement is important in a closed P2P system because 

smart algorithms will enlarge the total storage of the system. In 
traditional open P2P systems [7, 10, 11, 12], the decision of 
data placement is made solely by each node independently, 
and such a lack of control may result in redundant file 
placement and reduced effective total storage. This kind of 
space problem should not be ignored when shared objects are 
large size video files. 

In a closed P2P system, some of favorite data may be stored 
in its VSG storage. However, since there is only limited space 
in the VSG storage, some data of interest may not be stored 
anywhere. Following terms need to be defined to describe the 
problems. 

We define  
• Data (D): A set of data. 
D = {d1, d2, …, di, …, dm} 
• Physical storage size (P): The size of data that can be 

stored in a node ni. 
• Favorite data (FD): We define FD as a set of pairs (ni, 

Fi), where Fi is a set of data that are of interest to the node ni.  
FD = {(n1, F1), (n2, F2), …, (ni, Fi), …, (nn, Fn)} where 

Fi ⊆ D 

 
Fig. 1. Virtual storage group 
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In our model of P2P storage system with PVR, each node 
has a set of data of interest. These kinds of favorite data can be 
easily specified by the present PVR system. In TiVo [14], a 
famous PVR system, a user can specify a favorite data, and 
besides favorite data can be predicted by TiVo. TiVo can 
analyze the pattern of user’s favorite data and regard the series 
of favorite object or the similar kinds of favorite object as 
favorite data. 

• Stored data (SD): SD is a set of pairs (ni, Si) where each Si 
represent a set of data that stored in the storage of node ni. 
Note that Si needs not be a subset of Fi; it is possible for a 
node to store uninterested data in its own storage, permitting 
the data to be accessed by the nodes in its virtual storage 
group. 

SD = {(n1, S1), (n2, S2), …, (ni, Si), …, (nn, Sn)} where 
Si ⊆ D and |Si|  P. 

• Stored data of virtual storage group (SVSGi): A set of 
data stored in VSGi. 

SVSGi = {d | d∈Si where ni∈VSGi and (ni, Si)∈SD} 

• Virtual storage size (VSS): A node can access the whole 
VSG storage, and it may contain some data of interest to other 
nodes since the storage is shared among the group. Only the 
space of the VSG storage that contains favorite data of a node 
is meaningful to the node. We call the size of meaningful 
space the virtual storage size (VSS). 

|| iii FSVSGVSS =  
• Total virtual storage size (TVSS): The total sum of VSS 

of all the nodes in a system. It is natural for any data placement 
algorithm to maximize this metric since the larger VSS means 
that more favorite data can be stored. 

TVSS = 
=

n

i
VSSi

1
 

Data placement schemes affect the total virtual storage size 
and the available storage of each node. Figure 2 illustrates 
several examples of data placement schemes, where each 
square box denotes a node; node number in the left, favorite 
data in top right, and stored data in bottom right. It is assumed 
that the sizes of all data are same and the physical storage sizes 

of all nodes are twice the size of data. Figure 2(a) shows the 
initial setting where no data has been placed on the storage. 
Figure 2(b) and (c) illustrate two different data placement 
schemes. Table 1 shows the virtual storage sizes of these two 
placement schemes. This example shows that the total virtual 
storage size depends on the effectiveness of the data placement 
scheme. In Figure 2(c), the total virtual storage size is 13, and 
all nodes can access all their favorite data. Though the 
physical storage size of n2 is 2, this data placement increases 
its virtual storage size to 4. It can be seen that the total virtual 
storage can be increased by forcing some node to store 
unwanted data. 

Problem 2.1. Storage extension problem: Consider a 
closed P2P model represented as a graph G with a node set N 
and a link set L.  

G = (V, E) where V = N and E = L ⊆  V ×V 
When G, D, P, and FD are given, the solution of storage 

extension problem is to find an SD that maximizes the total 
virtual storage size (TVSS). 

C. NP-hardness of storage extension problem 
In this subsection, we show the storage extension problem is 

an NP-hard problem. We can prove it using the minimum 
dominating set problem [5,6]. 

1) Minimum dominating set problem 
Consider a graph with a vertex set V and an edge set E such 

that: 
G = (V, E) where E ⊆  V × V 
A dominating set V´ for G is defined as follows. 
V´ ⊆  V such that for all u∈V – V´, there is a v∈V´ for 

which (u, v)∈E.  
A dominating set with the minimum number of vertices is 

called a minimum dominating set, and its cardinality is termed 
the domination number of G. It is well-known that this 
problem is NP-complete for general undirected graphs [5]. 

2) Proof of NP-hardness of the storage extension problem 
The minimum dominating set problem can be reduced to the 

storage extension problem in polynomial time as follows. 
For a given minimum dominating set problem, we can 

consider a corresponding storage extension problem as 
follows: 

G = (N, L) where N =V, L = E 
D = {d1, d2, …, di, …, dn, dn+1} 
Sizeof(di) = 1 
Fi = {di, dn+1} 
P = 1 
Assume that we have a solution for the storage extension 

problem. 
SD = {(n1, S1), (n2, S2), …, (ni, Si), …, (nn, Sn)} 
In the solution, we can define three distinct sets of vertices. 
N1 = a set of ni, where (ni, {dn+1})∈SD 
N2 = a set of ni, such that for all ni ∉ N1, there is nj∈N1 

where (ni, nj)∈E 
 N3 = N - N1 - N2 
Definition 2.1. Virtual Storage Contribution Factor (VSCF) 

Fig. 2. Examples of data placement 
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The virtual storage of ni is described as FiSVSGi . 
VSCFj denotes that the number of nodes that are interested in 
dj and are able to access the data from their own virtual storage 
group. 

VSCFj = | {ni | ni∈N, dj∈Fi, and dj∈SVSGi} | 
In Figure 2(b), VSCF4 is 3, because d4 is the favorite data of 

3 nodes (n1, n3, n4) and it can be accessed by the nodes, and 
VSCF8 is 0, because d8 is the favorite data of 3 nodes (n1, n2, 
n4) but no node can access d8. TVSS is decreased by VSCFj, if 
we remove the data dj from Si for all node i. In Figure 2(b), if 
d4 is removed from the stored data of all nodes, TVSS is 
decreased by 3. 

Lemma 2.1. In the solution of the storage extension 
problem, VSCFj is 1, for all dj such that (ni, {dj})∈SD, and 
ni∈N2 U N3. 

Proof.   Since n i∈N2 U N3, dj is one of {d1, d2, …, dn}. 
There are no two vertices that have the same dj by their 
favorite data. Hence, VSCFj cannot be greater than 1. VSCFj 
cannot be smaller than 1, either. Consider a solution of the 
storage extension problem. In the solution we assume there is a 
node ni where (ni, {dj})∈SD, ni∈N2 U N3, and VSCFj is 0. 
We also assume that ni has n links. It means that VSGi has n+1 
nodes and the nodes have n+2 favorite data (dk where 
nk∈VSGi, and dn+1). Because the total physical storage size of 
the neighbors of ni is n, we can find at least two favorite data 
which are not stored in ni or any neighbor of ni. If we store the 
data in ni, we can increase the total virtual storage size. Thus 
we can conclude that the given solution can not be a solution 
of storage extension problem, which means VSCFj can not be 0 
for some dj such that (ni, {dj})∈SD, and ni∈N2 U N3.     

Lemma 2.2. N1 U N3 is a dominating set 
Proof.   By definition, all ni∈N2 have an edge to nj∈N1. So 

N1 U N3 is a dominating set.      
Lemma 2.3. The total virtual storage size of the solution is 

|N| + |N2| 
Proof.   When a solution for the storage extension problem 

is given, we can make another solution, SD´. 
SD´ = {(n1, S1´), (n2, S2´), …, (ni, Si´), …, (nn, Sn´)}, where 

Si´ = Si, if ni∈N1UN2 
Si´ = {dn+1}, if ni∈N3 
SD´ is a new solution that has no element of N3 by replacing 

the stored data of N3 with dn+1. The replacement does not 
increase the total virtual storage size; otherwise the original 
solution SD can not be the solution of the storage extension 
problem. The replacement does not decrease the total virtual 
storage size, either. VSCFj is 1 by Lemma 2.1, and there is no 
edge from the vertices of N3 to vertices of N1. In SD´, because 
all N3 are removed, only N1 dominates all vertices. Hence the 
VSCFn+1 becomes |N|, and VSCFj is 1, where ni∈N2 and (ni, 
{dj})∈SD. Accordingly, the total virtual storage size is |N| + 
|N2|.    

Theorem 2.1. The solution of minimum dominating set is N1 
U N3.  

Proof.    According to Lemma 2.2, N1 U N3 is the 
dominating set, and according to Lemma 2.3, the total virtual 

storage size is |N| + |N2| = 2|N| - (|N1| + |N3|). The given solution 
has the maximum total virtual storage size; it means that it has 
the minimum value of |N1| + |N3|. So, N1 U N3 is a minimum 
dominating set.     

III. DATA PLACEMENT ALGORITHMS 

Since the storage extension problem is NP-hard, we need to 
devise effective heuristic algorithms. There are many factors 
that affect the real performance of each algorithm such as 
network bandwidth, node performance, changes in data 
preference, data size, and so on. To simplify the problem 
without loss of any applicability of the algorithm, we made the 
following assumptions. 

• Same storage size: All nodes have the same storage size. 
• Same data size: All data sizes are equal. Therefore, each 

node can store the same number of data. 
• Sufficient network bandwidth: There is no network 

bottleneck and a node can always perform services to other 
linked nodes. 

• Off-line algorithm: We assume that all nodes and their 
agreement and favorite data are known in advance. In this 
paper, we only consider the initial data placement assuming 
that there is no change in node configurations or data 
preference. 

The simplest algorithm that we can think of is the greedy 
one which considers only its own favorite data and tries to 
allocate them on its own storage. Because of the greediness, 
this one will fail to maximize the total virtual storage size. We 
call this one owner-based algorithm. Another class of 
algorithms considers the preferences of all the nodes in the 
VSG and tries to maximize the total virtual storage size. We 
call them group-based algorithms. Below, we describe one 
owner-based algorithm and four group-based algorithms; 
random, most-popular, most-popular with neighbor 
consideration, maximum popular value. 

• Owner-based random (OR) 
When the storage of a node is not sufficient to store all the 

favorite data of the node, data are randomly selected. It is the 
simplest algorithm that does not consider the virtual storage 
group. 

• Group-based random (GR) 
A node randomly selects data among the favorite data of the 

nodes in its VSG. Since this one relies on randomness without 
considering global optimization, we expect that its 
effectiveness would not be satisfactory. 

• Most-popular (MP) 
This algorithm selects data among the favorite data of all the 

nodes in its VSG according to the popularity of the data. 
Popular value (Vij) is the number of nodes that would be able 
to access data dj if the data is stored in node ni. Table 2 shows 
an example of all popular values of node n2, when the favorite 
data are given as in Figure 2(a). Data to be stored in node n2 

are selected according to these popular values to maximize the 
happiness of the nodes that are interested in the data. Figure 
2(d) shows the resulting data placement when we employ the 
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most-popular algorithm.  
• Most-popular with neighbor consideration (MPNC) 
The optimization considered in the previous algorithm is 

local in that each node tries to maximize the total sum of 
popular values of data stored in that node only without 
considering the data placed in other nodes. In Figure 2(d), data 
8 is stored in n1, n2, n4. However, it is enough for data 8 to be 
stored only in n2, because n1 and n4 have a link with n2. MPNC 
prevents such unnecessary duplication by not allowing linked 
nodes to have the same data. In other words, if two linked 
nodes have the same favorite data, the data are stored only in 
one of them. Naturally, the tie breaking rule chooses the node 
which has the higher popular value than the other node. This 
algorithm needs communications between neighboring nodes, 
but it does not require global information about all the nodes 
in VSG. 

• Maximum popular value first (MPVF) 
Even though the MPNC algorithm considers neighboring 

nodes, its optimization is still local as it does not consider data 
placed in nodes of more than one-hops away. As a result, it is 
sometimes possible that the effect of data placement decreases 
the virtual storage size of the nodes at long distance. To 
eliminate this effect, it is necessary to take into account all the 
nodes in designing data placement algorithms. For MPVF, we 
need a centralized server like Napster, and we assume that a 
centralized server collects all the needed information from 
every node, and decides which data should be placed in which 
node.   

The centralized server prepares a global popular value table 
that contains the popular values of all nodes and data, and then 
makes a decision on data placement according to this table. It 
repeats the selection of the maximum popular value as shown 
in Figure 3. Vij in the table denotes a popular value of data j for 
node ni. The selection of Vij by this algorithm means that data j 
would be stored in node i. In the first step, V24, the maximum 
popular value, is selected. The selection of V24 means that data 
4 are stored in node n2. Nodes linked to node n2 (node n1, n3, 
and n4 in this example) need not store data 4 any more, and 
thus, V14, V34, and V44 are set to 0. Next, we select V24 which is 
the maximum among unselected popular values, and set V18, 
V38, and V48 to 0. Because one node store only two data, node 
n2 can not store data any more. It means that the popular value 
of column 2 can not be selected any more, and all popular 
values of column 2 should be set to 0. This process is repeated 
until all nodes have no more room to store any data or there is 
no more data to store. 

 

IV. PERFORMANCE 

The goal of algorithms presented in section 3.1 is to 
maximize the total virtual storage size. We use simulation to 
evaluate the effectiveness of the suggested five algorithms. 
The parameters considered for this simulation studies are as 
follows. 

1.  n is the number of nodes.  
n = |N| 

2.  l is the average number of links for each node in the 
whole P2P system.  

l =
N
L

2  

Given n and l, the possibility that there is a link between two 

arbitrary nodes is 
1−n

l
. 

3.  d is the total number of data.  
d = |D| 

4.  f is the number of favorite data for each node.  
f = |Fi| 

Given d and f, the possibility that arbitrary data are the 

favorite data of an arbitrary node is 
d
f

. 

5.  P is the physical storage size of a node in terms of the 
number of data that can be stored. 

Figure 4 shows the total virtual storage size varying the 
number of nodes from 10 to 10,000 and fixing other 
parameters such that l = 3, d = 50, f = 15, and P = 5. The 
results are the average value of 10 simulations. In each 
simulation, all nodes set up new links and new data 
preferences. The TVSS are normalized according to OR. We 
can see that the number of nodes does not affect the 
performance of algorithms unless the number of nodes is very 
small. If the number of nodes is larger than 200, we can find 
the similar performance gaps among five algorithms. 

TABLE II 

ALL POPULAR VALUES OF NODE N2 IN FIGURE 2(A) 

Data number 1 2 3 4 5 6 7 8 

Popular value 
(V2j) 

1 1 1 3 2 1 1 3 

Benefit node n1 n3 n4 n2, n2, 
n2, 

n2, 
n3 

n2 n2 n2, n2, 
n2, 

Fig. 3. The process of MPVF in Figure 2(a) 
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Figure 5 shows the results of varying the physical storage 
size from 1 to 11 and fixing other parameters such that n = 
1,000, l = 3, d = 50, and f = 15. Though we explored almost all 
possible design space, we present only meaningful results here. 

The performance of OR, GR, and MP algorithms are 
similar. Though we expected that the MP algorithm would 
outperform others significantly, its blindness to the linked 
nodes entails somewhat amount of undesirable duplications of 
stored data, and this duplication downgrades the performance 
compared to other random algorithms.  

MPNC prevents two linked nodes to store the same data, 
and thus eliminates some duplication. However, even if two 
nodes have a link, it is sometimes desirable to have the same 
data due to the other nodes linked to them. MPNC does not 
consider this situation, and this limitation degrades the 
performance more as the physical size becomes larger. It is 
surprising that MPNC is sometimes inferior even to other 
simpler algorithms. 

The performance of MPVF is always the best. It was 
expected from the beginning since this algorithm considers 
global situation and the placement is done one by one 
reflecting the effect of the previous placement. In Figure 5, we 
can see that the increment of the total virtual storage size slows 
down in the range of the physical storage size of 9, and it 
means that almost all the nodes can access all the favorite data. 
The virtual storage size should be 15,000, if all nodes can 
access all favorite data of them. 

In Figure 6, we test different data access pattern, Zipf-like 
distribution [14], which is well-known as a pattern of web 
access. Zipf-like distribution states that popularity of the i'th 
most popular data is proportional to 1/i ,   1.0. We simulate 
the total virtual storage size varying the physical storage size, 
as we did in Figure 5. The simulation result is similar to Figure 
5, but the total virtual storage sizes are larger than those of 
Figure 5. The reason is because a few popular data are the 
favorite data of many nodes and the sharing of the data can 
easily increase the total virtual storage size. MPNC does not 

perform well with Zipf-like distribution, because MPNC 
discourages sharing of popular data. 

To acquire the global knowledge, MPVF incurs high 
communication overhead. The iterative nature of the algorithm 
increases the complexity. Moreover, MPVF needs the 
centralized server and it has a weakness of the scalability. If 
we can make MPVF decentralized, we can use the algorithm in 
the P2P system with a large number of PVRs. We can make 
the decentralized MPVF algorithm by regarding all the nodes 
as the server. In the algorithm, each node should execute 
MPVF independently and decide which data items would be 
stored in the node. For the decentralized algorithm, all the 
nodes should know all the favorite data of all the nodes at a 
time. The overhead of the algorithm is larger than original 
centralized MPVF. 

Instead of that, we can consider a decentralized MPVF 
which is loosely synchronized. In this algorithm, each node 
sends the lists of the favorite data to the neighbor nodes 
periodically. Though the lists should include all favorite data 
known to a node, the size of sending message may be small 
because the node sends only the difference from the former 
notification. Since the lists need not be sent out immediately 
whenever there is a change, they may be attached to other data 
packet to reduce communication overhead. 

In this decentralized MPVF, each node executes the MPVF 
algorithm independently to decide which data to be stored on 

Fig. 4. The normalized TVSS varying the number of nodes 

Fig. 6. The performance with Zipf-like distribution 

Fig. 5. The effect of varying the physical storage size 
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its own storage and predicts what will be stored in the 
neighbor nodes. The prediction may be wrong, because the 
notification of the favorite data is stale. A node can easily 
recognize this wrong situation by checking the stored data of 
neighbor nodes. For that, the list of the stored data should be 
sent with the lists of favorite data. However, the list need not 
include the stored data of other node, but it should include 
only the stored data of the node itself. If the stored data of 
neighbor nodes differ from the prediction of the stored data, 
the node should execute the algorithm with the new list of 
favorite data. The cost of this algorithm would be prohibitive 
if global information and data preferences change very often. 
Fortunately, in PVR, such changes are very rare. 

V. RELATED WORK 

P2P systems began with the unstructured P2P systems 
where a node can freely select and store its data, such as 
Napster [10], Gnutella [7], Freenet [11], and KaZaA [12]. 
Because there is no rule to store data, unstructured P2P 
systems need the lookup algorithms. Napster has the 
centralized server which manages the information of the nodes 
and the data in the system and the nodes query the server to 
find the location of data item. Though two nodes transfer the 
data directly, Napster still has the drawbacks of the 
client/server systems, because the centralized server should 
have the information of all nodes and data. Gnutella and 
Freenet use the distributed lookup where the centralized server 
is not needed. Flooding is used for lookup in Gnutella, and 
Freenet use the routing based on lexical closeness of keys. 
Because these lookups do not require the centralized server, 
they can overcome the drawbacks of the client/server model. 
However, the lookups of Gnutella and Freenet are not 
guaranteed to find an existing object and use much network 
bandwidth. The lookup of KaZaA is the hybrid of the 
centralized lookup and the distributed lookup. In KaZaA, there 
exist index servers (super nodes) like Napster, but the 
centralization can be reduced by distributing the indexes of the 
nodes to many super nodes.  

However, unstructured P2P systems do not completely 
overcome the limitation of scalability, and structured P2P 
systems are studied for solving the problem. Lookup is very 
fast in the structured P2P systems, because the data items are 
stored in the fixed nodes by the rule of the P2P system, but we 
need the efficient placement of nodes and data items for the 
efficient lookup. CAN maps the nodes in a d-dimensional 
Cartesian coordinated space [4]. Because each node maintains 
the routing table only for 2d nodes, the overhead of routing 
table is small; however, the length of routing path increases 
rapidly, as the number of nodes in the system becomes larger. 
Chord maps the nodes in a one-dimensional space with m-bits 
address and routes the message based on numerical difference 
of the destination address [3]. Tapestry [13] and Pastry [8] use 
the longest prefix/suffix address routing where the routing 
table is constructed by the routing levels and each routing level 
has the pointers of the neighbor nodes which match the 

prefix/suffix for that levels. Tapestry and Pastry also use the 
network locality for the efficient routing. One of the most 
important objects of the data placements of structured P2P 
systems is the fast lookup. However, the efficient data 
placement also guarantees to find the existing objects and 
sometimes make the systems fault tolerant. 

Data replication studies are somewhat similar to our study in 
point that efficient data placement improves the performance 
of the P2P system. However traditional P2P model is not 
suitable for the PVR-based P2P model. Because unstructured 
P2P systems do not control the data placement, the redundant 
file placement reduces the effective total storage. In structured 
P2P systems, a user can not decide the position of the data. 
Instead the data are stored in the fixed nodes by the rule of the 
P2P system, where the data items can be stored far from the 
user and they can be accessed by the anonymous nodes. 
Therefore, structured P2P systems are not suitable for PVR-
based P2P systems, either. 

In closed P2P model, a node can communicate and share its 
data only with some nodes that have an agreement. This model 
is very useful and already used in real environment, but no 
previous P2P systems are based on the model. In this model, 
we can study the storage extension problem which is not 
considered in the previous model, and we present a formal 
description of the problem and a few heuristic solutions to it. 

VI. CONCLUSION 

This paper suggested the PVR-based P2P model for private 
communications and sharing where a node links to a small 
number of nodes and communicates only with them. We found 
that a smart data replacement would increase the virtual 
storage size of nodes and that finding optimal solution is NP-
hard. We suggested and evaluated five heuristic algorithms for 
this problem. The simulation results show that the MPVF 
algorithm increases the total virtual storage size most because 
it considers interests of all the nodes in the P2P system. 

Further work includes expanding our model to adopt real 
world constraints. For example, various sizes of data can make 
the algorithm complex, and the limitation of network 
bandwidth can draw a distinction between data stored in its 
own disk and those stored in neighboring nodes. Real time 
requirements like VOD would make the model much more 
complex. 
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