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A very promising approach for using NAND flash memory as a storage medium is a flash file system. In
order to design a higher-performance flash file system, two issues should be considered carefully. One issue
is the design of an efficient index structure that contains the locations of both files and data in the flash
memory. For large-capacity storage, the index structure must be stored in the flash memory to realize low
memory consumption; however, this may degrade the system performance. The other issue is the design of
a novel garbage collection (GC) scheme that reclaims obsolete pages. This scheme can induce considerable
additional read and write operations while identifying and migrating valid pages. In this article, we present
a novel flash file system that has the following features: (i) a lightweight index structure that introduces the
hybrid indexing scheme and intra-inode index logging, and (ii) an efficient GC scheme that adopts a dirty list
with an on-demand GC approach as well as fine-grained data separation and erase-unit data allocation. We
implemented FlashLight in a Linux OS with kernel version 2.6.21 on an embedded device. The experimental
results obtained using several benchmark programs confirm that FlashLight improves the performance by
up to 27.4% over UBIFS by alleviating index management and GC overheads by up to 33.8%.
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1. INTRODUCTION

Embedded systems such as MP3 players, cellular phones, personal digital assistants
(PDAs), digital still cameras (DSCs), and portable media players (PMPs) constitute a
major fraction of the digital systems market. NAND flash memory is widely used as
a storage medium in embedded systems because of its advantageous features such as
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Fig. 1. Two major approaches for NAND flash-based storages.

small and lightweight form factor, solid-state reliability, and low power consumption
[Douglis et al. 1994]. It has recently found even greater use due to its increased storage
capacity as embedded systems require a large amount of secondary storage space with
the ever-increasing requirement of capacity for storing multimedia contents.

NAND flash memory has several characteristics that differ from magnetic disks,
which have been one of the most commonly used secondary storage devices. For exam-
ple, it does not allow in-place updates, implying that previous data cannot be overwrit-
ten at the same location without being erased first. In addition, the erase unit, which
we call the flash erase block (FEB), is relatively larger than the unit of read and write
operations called page. Because of such differences, NAND flash memory cannot be
directly applied to existing disk-based file systems.

To overcome these limitations, two major approaches have been proposed, as
illustrated in Figure 1. One approach is to provide the Flash Translation Layer (FTL)
between the existing file systems and flash memory [Choi et al. 2009; Kim et al.
2002]. The main purpose of FTL is to emulate the functionality of a block device
with flash memory by hiding the erase-before-write characteristic as much as possible.
Once FTL is available on top of the flash memory, any disk-based file system can be
used. However, because FTL operates at the block device level, it is inaccessible to
file system-level information like the liveness of data [Sivathanu et al. 2004], and this
may limit the storage performance.

The other approach is to use flash file systems specially designed for flash mem-
ory. Over the past few years, several flash file systems have been studied and devel-
oped [Aleph One Ltd. 2003; Gal and Toledo 2005; Hunter 2008; Lim and Park 2006;
Woodhouse 2001].

In order to design a flash file system with better performance, two issues should be
considered carefully, as emphasized in previous literatures [Bityutskiy 2005; Chang
et al. 2004]. One issue is to design an index structure that locates files and data stored
in the flash memory. In early flash file systems such as JFFS2 [Woodhouse 2001] and
YAFFS2 [Aleph One Ltd. 2003], the entire index structure was managed in the main
memory. In large-capacity storage, however, many files occupying a large volume of
space can be created and written in practice [Agrawal et al. 2007], making them suffer
from high memory consumption. UBIFS [Hunter 2008], a recently proposed flash file
system, solves this problem by fetching only the required indices on demand from the
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flash memory; however, its performance is inferior to the in-memory approach used in
JFFS2 and YAFFS2. In this article, we aim to design an on-flash index structure that
performs better than UBIFS and comparable to JFFS2 and YAFFS2.

The other issue is to efficiently reclaim a number of scattered and invalidated pages
produced by out-of-place updates. The process of reclaiming obsolete pages is called
Garbage Collection (GC) [Lim and Park 2006], and it involves the following three steps.

(1) A proper victim FEB is selected among nonempty FEBs.
(2) In the victim FEB, valid pages are identified and copied to a new free FEB.
(3) The victim FEB is then erased.

The second step is called valid page migration, which produces most of the addi-
tional read and write operations during GC [Chang et al. 2004]. To reduce the valid
page migration overhead, the GC scheme must identify valid pages instantly and re-
duce the number of valid pages that need to be copied. Previous flash file systems have
made some efforts to mitigate the GC overhead; however, they have mainly focused on
how to find victims and migrate valid pages, not on how to do the job faster and with
less overheads. Both YAFFS2 and UBIFS may require a long time to identify valid
pages because they need to read obsolete pages as well. Therefore, we aim to focus on
enhancing the GC performance in the file system design level.

In this article, we present FlashLight, a novel lightweight flash file system that
achieves high performance with the following features: (i) a lightweight index struc-
ture that uses a hybrid indexing scheme and intra-inode index logging to reduce the
number of indirect indices that cause recursive index updates, and (ii) an efficient
GC scheme that not only identifies valid pages instantly but also adopts a fine-grained
data separation and erase-unit data allocation to reduce the number of valid pages that
need to be copied. We implemented FlashLight on the NOKIA N810 platform [Nokia
2008] running the Linux kernel version 2.6.21. We evaluated FlashLight with three
flash file systems, JFFS2, YAFFS2, and UBIFS, which are widely used in embedded
systems.

Our contributions in this article can be summarized as follows.

(1) Index Structure. The previous flash file systems focused on how to translate inode
numbers and data offsets into the physical locations of inodes and data in the
flash memory. As a general solution, they adopt globally managed index structures
such as in-memory chains and B+tree. This approach addresses the wandering
tree problem1, but makes the file system to traverse the index structure whenever
looking up the inodes or data. Instead, we propose a locally managed scheme. We
focus on how to efficiently use the user-created directory tree showing the directory
locality, instead of adding another complex data structures (e.g., B+tree). In our
approach, inodes are obtained directly from their parent inode that has the child
indices while mitigating the wandering tree problem.

(2) Garbage Collection. Generally, GC policies are classified into two approaches: pas-
sive and aggressive. In the passive approach, which is adopted in JFFS2 and
YAFFS2, all the data are written to the flash memory without any consideration
of the data type, and GCs are performed with victims having the smallest migra-
tion overhead. This policy may limit the storage performance because hot and cold
data are mixed together2. On the other hand, in the aggressive approach adopted
in UBIFS and FlashLight, the data structures used in the file system are separated
to different FEBs according to their hotness. UBIFS broadly separates metadata,

1This problem is introduced in Section 3.1.
2The effect of separating hot and cold data is discussed in Section 3.2.
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Table I. Two Types of NAND Technology

Single-Level Cell Multi-Level Cell

Page Size (Bytes) 2,048 4,096
# of pages in an FEB 64 128
Spare Area Size (Bytes) 64 128
Read latency (µs) 77.8 165.6
Write latency (µs) 252.8 905.8
Erase latency (ms) 1.5 1.5

data, and index areas, while FlashLight divides the metadata area also into four
independent areas such as DirInode, hash map, FileInode, and extent map3.

The rest of this article is organized as follows. We present the background and
related work in Section 2. Section 3 describes our motivations and Section 4 describes
the design and implementation of the proposed flash file system. Section 5 presents
the performance evaluation results. Finally, we conclude the article in Section 6.

2. BACKGROUND AND RELATED WORK

2.1 Background

A NAND flash memory chip consists of a set of blocks called FEBs (flash erase blocks),
and each FEB contains a number of pages. A page is a unit of read and write oper-
ations, and an FEB is a unit of erase operation. Additionally, each page has spare
area that is typically used to store error correction code (ECC) and other bookkeeping
information.

There exist two types of NAND flash memory: Single-Level Cell (SLC) [Samsung
Electronics] and Multi-Level Cell (MLC) [Samsung Electronics]. Table I lists the
general specifications of the representative NAND chips. Note that the read/write
latency shown in Table I includes the data transfer time between host and NAND
flash memory.

A few bytes (typically 12∼16 bytes) of the spare area are assigned to ECC in SLC
NAND chips. For MLC NAND chips, almost entire spare area needs to be allocated to
ECC due to the high bit error rate (BER) of memory cells. In both types of chips, the
number of write/erase cycles is strictly limited to 10,000∼1,000,000 times. This ne-
cessitates a wear-leveling process that aims at distributing the incoming writes evenly
across the flash memory for a longer lifetime.

Recently, OneNAND flash memory was introduced to support both code and storage
regions in a single chip [Samsung Electronics]. This fusion memory consists of SLC
flash memory, buffer RAMs, ECC hardware, and other control logics. All the data
as well as the code image are stored in the SLC f lash memory, and the code area is
typically 1,024 bytes long supporting eXecute-In-Place (XIP). In order to improve the
performance of I/O operations, two page-sized buffer RAMs are interleaved one after
the other. Because of these characteristics, OneNAND is widely used in embedded
systems.

3During the Filebench test described in Section 5, FileInode pages were more frequently updated by approx-
imately ten times than DirInode pages, and FlashLight reduced the number of migrated valid pages from
2,108 to 0 during GCs by dividing the metadata area.
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2.2 Existing Flash File Systems

2.2.1 JFFS2 (Journaling Flash File System, v2). JFFS2 is a log-structured flash file sys-
tem designed for small-scale embedded systems [Woodhouse 2001]. Originally, it was
developed for NOR flash memory, but later extended to NAND flash memory.

In JFFS2, a node, which occupies a variable number of pages, is written sequen-
tially to a free FEB. Nodes are typically categorized into three types: (1) INODE, (2)
DIRENT, and (3) CLEANMARKER. Each INODE node contains the metadata of a di-
rectory or a file. A directory has one INODE node and several DIRENT nodes that
contain directory entries. A file has a number of INODE nodes each of which contains
a range of file data. When an FEB is erased successfully, JFFS2 writes a CLEAN-
MARKER node to the FEB so that it can later be reused safely.

In the main memory, JFFS2 maintains a chained list for all the nodes including
obsolete nodes. Each in-memory node consists of a physical address, node length, and
pointers to the next in-memory nodes that belong to the same file. The memory foot-
print increases in proportion to the number of nodes, and this is a severe problem in
large-capacity storage.

For managing FEBs, JFFS2 adopts additional in-memory linked lists: (i) the clean
list of FEBs having only valid nodes, (ii) the dirty list of FEBs that contain at least
one obsolete node, and (iii) the free list of FEBs that contain only CLEANMARKER
nodes. From the dirty list, JFFS2 selects a victim FEB for GC, and checks for cross-
references between in-memory nodes related to the victim FEB to identify and move
the valid nodes. Note that, to handle wear-leveling and power-off recovery, JFFS2 also
adopts erasable list, bad list, and so on.

Another problem of JFFS2 is a long mount delay. During the mount time, JFFS2
scans the entire flash memory to build the index structure in the main memory; this
step takes from several to tens of seconds depending on the number of nodes.

2.2.2 YAFFS2 (Yet Another Flash File System, v2). YAFFS2 is another log-structured flash
file system that was designed for NAND flash memory [Aleph One Ltd. 2003]. Similar
to JFFS2, a chunk consisting of a set of pages and their spare ares is written sequen-
tially to a free FEB in YAFFS2. The spare area in each chunk contains (i) the file ID
that denotes the file inode number, (ii) the chunk ID that indicates the offset of the file
data, and (iii) the sequence number that is incremented when a new FEB is allocated
to find the up-to-date valid data after system reboot.

In the main memory, YAFFS2 stores the entire directory tree comprising a number
of objects each of which represents a directory or a file. An object holds the physical
location of its chunk in the flash memory, and it points to the parent and sibling ob-
jects. If an object is a directory, it also points to child objects. If an object is a file, a
tree structure called Tnode is formed to provide the mapping from a file offset to the
physical address of its chunk in the flash memory. In order to build these in-memory
structures, YAFFS2 also suffers from large memory consumption similar to JFFS2.

For GC, YAFFS2 selects a suitable victim FEB, and identifies valid chunks by read-
ing their spare areas. To reduce the mount delay, YAFFS2 adopts checkpoint, a well-
known technique for fast system boot by reading a small amount of information.

2.2.3 UBIFS. UBIFS is designed for large-capacity storage by addressing the mem-
ory consumption problem in JFFS2 and YAFFS2 [Hunter 2008]. The key feature of
UBIFS is to organize the index structure in the flash memory, whereas JFFS2 and
YAFFS2 maintain it in the main memory.

In the flash memory, UBIFS adopts the node structure used in JFFS2 and a B+tree
to manage the node indices. For the B+tree, two additional node types, MASTER and
INDEX, are introduced in addition to those (INODE, DIRENT, and CLEANMARKER)
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Table II. A Comparison of Flash File Systems

JFFS2 YAFFS2 UBIFS FlashLight

Storage Capacity Small Small Large Large
Memory Footprint Large Large Small Small
Mount Time Long Short Short Short

In-Memory Structure Chained list Dir-tree TNC Inode cache
On-Flash Structure — — B+tree Hybrid structure

Valid Page Identification In-memory On-flash On-flash In-memory
Data Separation Granularity Coarse-grained Coarse-grained Fine-grained More fine-grained

used in JFFS2. The MASTER node points to the root of the tree, and the leaves of
the tree contain valid data. The internal elements of the tree are INDEX nodes that
contain only pointers to their children.

When a leaf node is added or replaced, all the nodes from the parent INDEX node
to the MASTER node must also be replaced. Updating all the ancestor INDEX nodes
every time a new leaf node is written is very inefficient because almost the same IN-
DEX nodes are written repeatedly. To reduce the frequency of updates, UBIFS defines
a journal; it first writes a predefined number of leaf nodes to the journal instead of
immediately inserting them into the B+tree. When the journal is considered full, the
tree is reorganized with the leaf nodes in the journal.

For managing free FEBs, UBIFS adopts LEB Properties Tree (LPT). When the jour-
nal runs out of space, UBIFS searches for the LPT and takes a free FEB. When there
are insufficient free FEBs, a GC process is triggered as follows.

(1) A suitable victim FEB is selected from the dirty list, which has the same structure
as in JFFS2.

(2) All the nodes in the victim, including obsolete nodes, are read to check their
validities.

(3) The valid nodes are moved to a free journal area, and the victim is erased.

To reduce the number of valid nodes that need to be moved, UBIFS separates the meta-
data, data, and index nodes to different FEBs, which has been proven to be efficient in
the previous study [Lim and Park 2006].

In the main memory, UBIFS adopts tree node cache (TNC) to make tree operations
more efficient by caching some INDEX nodes. To reduce the mount delay, UBIFS also
adopts checkpoint, in a manner similar to YAFFS2.

3. MOTIVATION

3.1 Index Structure

To cope with the erase-before-write characteristic, many flash file systems employ a
strategy in which the new data are written into an empty space, and the original data
are invalidated. Due to this out-of-place update scheme, the physical location of data
changes whenever it is overwritten, and accordingly, an index structure is required to
store and keep track of the latest locations of the data.

As summarized in Table II, JFFS2 and YAFFS2 retain the complete index structure
in the main memory. If there is insufficient memory, the mount fails. To reduce the
memory footprint, UBIFS fetches only the required indices on demand from the flash
memory, as most disk-based file systems do. The fetched indices are cached in the main
memory for a while to accelerate subsequent accesses to the same indices, and they
are eventually discarded later if the available memory becomes low. This on-demand
scheme, however, results in a long latency for storing and retrieving indices during file
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Fig. 2. Two issues in designing a flash file system: (a) the wandering tree problem and (b) the mixed hot
and cold data problem.

system operations, and accordingly, it is essential to design an efficient on-flash index
structure.

To design an efficient on-flash index structure, the wandering tree problem must
be handled carefully [Bityutskiy 2005]. As illustrated in Figure 2(a), if a certain file
in a directory tree is updated, the modified file is written in a newly allocated page.
Because the pointer of the leaf file is now changed, the direct parent directory also
needs to be updated. This necessitates another update in the grandparent directory,
and eventually, updates are propagated to the root directory. Such recursive index
updates should be minimized in order to avoid many costly write operations.

UBIFS adopts a B+tree for the on-flash index structure and a journal to mitigate the
index management overhead. Nevertheless, while creating and deleting many small
files, the index management overhead still ranges from 6.68% to 14.54% over the total
elapsed time for Postmark and Filebench workloads (cf. Section 5). This overhead was
mainly caused by managing the B+tree that stores all the metadata and data indices
together.

3.2 Garbage Collection

Another important issue in designing a flash file system is the GC scheme. During
GCs, additional read and write operations are induced by valid page migration that
includes identifying and copying valid pages to other free FEBs. If a long time is
required to perform valid page migration, the performance may degrade significantly
[Chang et al. 2004].

To identify valid pages, the metadata can be stored in line with the file data on the
flash memory; this is called a node in JFFS2 and UBIFS, and a chunk in YAFFS2. The
metadata usually stores such information as the type of the data and the file it belongs
to. By reading this metadata, the garbage collector can determine what pages need to
be copied and what can be discarded. The downside of this approach is, however,
that obsolete nodes are required to be read as well, thus degrading the performance.
Alternatively, a new data structure can be adopted to reduce the overhead.

To reduce the number of valid pages that need to be copied, the garbage collector
must avoid selecting a victim FEB with many hot pages; a hot page is one that includes
data with a high probability of being updated and invalidated in the near future. As
illustrated in Figure 2(b), if hot and cold data are mixed in an FEB, the cold data have
a high chance of remaining valid at the next GC time, and thus, it repeatedly causes
a considerable migration overhead. Therefore, it is necessary to store data in different
FEBs according to their hotness. If the data are separated immaturely, it results in
considerable degradation of the system performance [Chang et al. 2004].

As summarized in Table II, UBIFS also reads obsolete pages to check their invali-
dation, and separates metadata, data, and index nodes to reduce the number of valid
pages that need to be copied. Our evaluation with Postmark and Filebench workloads
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Table III. Summary of Major Log Areas on Flash Memory

Name Contents # of FEBs Section

Checkpoint File system information, a dirty FEB list for GCs, and
locations of root-inode and other areas.

0, 1, & Fixed 4.4

Bitmap A bitmap that represents the freeness of all the FEBs. Fixed 4.4

DirInode map A part of the mapping table that translates a directory
inode number to its physical address in the flash memory.

Fixed 4.2.1

DirInode Attributes, file name, directory entries, and locations of the
hash map.

Many 4.2.2

Hash map A part of the hash table organized by directory entries
migrated from DirInodes.

Many 4.2.2

FileInode Attributes, file name, extent entries of file data, and
locations of the extent map.

Many 4.2.3

Extent map A set of extent entries migrated from FileInodes. Many 4.2.3

MainData File data indicated by extent entries. Many 4.2.3

Fig. 3. Overall architecture of FlashLight.

showed that the overall GC overhead ranges from 11.93% to 27.8% over the total
elapsed time (cf. Section 5), and it was mainly caused by reading obsolete pages and
separating hot and cold data immaturely.

4. DESIGN AND IMPLEMENTATION OF FLASHLIGHT

4.1 Overall File System Layout

We design a novel lightweight flash file system called FlashLight based on a log-
structured file system (LFS) [Rosenblum and Ousterhout 1992]. Unlike LFS that has
one large log area, FlashLight maintains eight major log areas in the flash memory
to maximize the effect of separating hot and cold data. Each log area occupies several
FEBs and FlashLight allocates one empty FEB at a time to each log area if necessary.

Table III summarizes the name and the contents of each log area, along with the
number of FEBs it requires. Note that “Many”, and “Fixed” indicate multiple FEBs,
and a fixed number of FEBs, respectively.

As illustrated in Figure 3, the inode occupies one page with the metadata such as
its file name, inode number, file size, atime, dtime, and so on. This is possible since
the page size of NAND flash memory is relatively larger than the amount of metadata
[Lim and Park 2006]. This inode page is called DirInode or FileInode depending on
whether the file type is a directory or a file. In addition, to handle a large number of
directory entries, FlashLight creates a hash map page on demand. For large-sized file
data, another page called extent map is written.
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For example, when looking up a file whose pathname is “/dir/file,” FlashLight per-
forms the following procedures as illustrated in Figure 3.

(1) It obtains the root-inode by reading the page indicated by the pointer in the check-
point data.

(2) In the root-inode page, it searches for a directory entry called “dir” and obtains its
indirect pointer.

(3) It translates the indirect pointer to a physical location in the flash memory through
a mapping table called DirInode map.

(4) It obtains the DirInode named “dir” by reading the page indicated by the translated
location.

(5) In the DirInode, it finds the directory entry called “file,” and finally, it obtains
FileInode by reading the page indicated by the direct pointer in the directory entry.
The data of “file” can be further accessed using a file data index, extent entry, in
FileInode.

4.2 Lightweight Index Structure

Because an inode page such as DirInode or FileInode is relatively larger than the
metadata size, we propose intra-inode index logging in which the remaining space in
the inode page is used for logging indices locally. Specifically, directory entries that be-
long to the the same directory are logged in the parent directory’s DirInode. Likewise,
the information to locate its file data is kept in FileInodes. By storing both an inode
and its index entries in a single page, the index lookup operation can be completed by
reading one page. Similarly, when a file is created or deleted, this scheme requires
only one write operation by updating the parent inode and the corresponding direc-
tory entry together. Furthermore, when an inode is updated by data write requests,
it requires only one additional write operation by inserting an entry for the data and
modifying the file attribute at the same time.

The following sections elaborate upon novel mechanisms for the lightweight index
structure that addresses the wandering tree problem and manages the intra-inode log
entries efficiently in DirInode and FileInode.

4.2.1 Inode Indexing Mechanism. Two inode indexing schemes are used in most flash
file systems. One is indirect indexing scheme that uses a mapping table to acquire
the physical location of an inode; this scheme is used in JFFS2 and YAFFS2 with
in-memory structures as well as in UBIFS with a B+tree.

The other is a direct indexing scheme where the pointer indicates the physical page
location of an inode directly. CramFS [Linux Distributor 2002], which is widely used
in embedded systems as a root file system, adopts this scheme. Although the indirect
indexing scheme includes the mapping table access overhead, it can easily update
the physical location of an inode without any change in the parent directory entry.
On the other hand, while the direct indexing scheme exhibits low access latency, the
parent directory entry should also be updated whenever the location of the child inode
changes, and thus, the wandering tree problem arises.

As illustrated in Figure 4(a), UBIFS adopts only indirect indexing scheme where
all the physical locations of metadata and data are obtained by traversing the B+tree
all the time. On the other hand, as depicted in Figure 4(b), FlashLight introduces
the hybrid indexing scheme to address the wandering tree problem while reducing
the mapping table size and enhancing the file access latency. Due to the frequent
updates of inodes and the wandering tree problem, FlashLight adopts the indirect
indexing scheme when pointing to DirInode. For FileInode, FlashLight employs the
direct indexing scheme by substituting the inode number in the directory entry with
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Fig. 4. Examples of the inode indexing mechanism: (a) the indirect indexing scheme in UBIFS and (b) the
hybrid indexing scheme in FlashLight.

Fig. 5. Directory structure; dotted and solid lines indicate indirect and direct pointers, respectively.

the physical location of the inode. This scheme makes it possible not only to access all
the child inodes directly, but also to reduce the size of the mapping table required for
the indirect indexing scheme. In addition, since the physical location of a file can be
used as its inode number, the file system does not have to maintain a pool of artificial
inode numbers.

The mapping table for indirect index pointers is called DirInode map, which is or-
ganized as a linear array. It is designed for the total size not to exceed the size of
one FEB. In SLC NAND chips, one 128KB-sized FEB can provide up to 32K entries.
Because the number of directories in a default Linux installation is less than 20K, we
believe that the size of one FEB is sufficient for storing the entire DirInode map in the
embedded environment.

4.2.2 Directory Structure. As Figure 5 shows, DirInode consists of (i) directory at-
tributes (44 bytes) that contain the basic information about the directory, such as
atime, dtime, uid, gid, parent inode pointer, etc., (ii) the file name (256 bytes) that
represents the name of the directory, (iii) the log pointer (4 bytes) that points to the
last position of the directory entry log, (iv) a directory entry log area, and (v) a set of
4-byte pointers that point to 15 hash maps by default.

The directory entry log area is filled with directory entries each of which represents
a child directory or a child file. Each directory entry consists of a file ID (2 bytes),
a state (1 bytes), and a pointer (4 bytes). Unlike traditional file systems, a directory
entry of FlashLight does not contain the full name of a file. Instead, the file name is
stored in the inode page and the directory entry holds only the hashed value (file ID)
of the file name. Using this file ID, child inodes that belong to the directory can be
distinguished from each other. This small-sized identifier enables FlashLight to store
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a large number of directory entries in one page and to look up them quickly. The state
field is used to define the state of the log entry. The pointer field is assigned by the
hybrid indexing scheme and indicates the location of DirInode or FileInode. If the page
size is 2KB, the log area can contain approximately 240 directory entries each of which
occupies 7 bytes. It means that, if users create less than 240 files in a directory, one
DirInode page is enough to cover all the entries in the log area and its metadata.

In order to handle overflowed entries, FlashLight organizes a hash table. Although
the B+tree works reasonably well under circumstances that numerous files are created
and deleted dynamically [Litwin 1980], it may show an extra update cost, especially
in flash memory, to maintain indirect index pages during split and merge operations.
Instead, the hash mechanism performs an average lookup operation in O(1), and it
has a low update cost. FlashLight favors the simpler hash table structure because it
is unnecessary to maintain a complex structure like the B+tree for a modest number
of files in a directory [Agrawal et al. 2007].

The hash table is composed of a set of pages, and each page is called a hash map.
The hash map, in turn, consists of an array of 4-byte pointers. Each hash map covers
a fixed range of buckets explicitly, and to utilize the space efficiently, it is allocated
on demand only when it contains more than one entry. If the size of a page is 2KB,
each hash map can store 512 pointers. Because the total number of hash maps is
15 by default, the hash table can have up to 7,680 buckets in total. The buckets are
contained separately in 15 hash maps; the first hash map contains #0 to #511, the
second one contains #512 ∼ #1,023, and so on up to #7,679.

In terms of the space overhead, the B+tree used in UBIFS requires the tree space in
proportion to the number of nodes. Since a node in UBIFS occupies 24 bytes for header
information, UBIFS may suffer from the high space overhead. On the other hand,
FlashLight occupies extra pages for the hash maps depending on the number of files
in a directory and the distribution of the file IDs. If a directory runs out of the log area
with a relatively small number of files having sparse file IDs, several underutilized
hash maps are required. However, all the hash maps may not be required, because the
directory log area contains a number of file IDs instead. Since the estimation of this
space overhead can vary case by case, we compare the space overheads quantitatively
in the evaluation results instead.

When a directory operation is issued, a new directory entry is appended to the di-
rectory entry log or an existing one in the log is updated. Whenever a log entry is
appended or updated, its DirInode page is written to the flash memory. However, to
alleviate frequent flash writes, FlashLight caches several DirInode pages in memory
as described in Section 4.5. For a new entry, the file ID is calculated by

f ile ID = Hash( file name) % (total # of buckets). (1)

The state field is set to one of NEW, UPDATE, and DELETE, depending on the
current state of the file as shown in Figure 6(a). When a create request arrives, Flash-
Light simply appends a log entry with the NEW state. Further requests for this entry
are simply processed in the log without any state change. However, once the entry is
migrated to a hash map, update and delete requests are processed by appending log
entries with the UPDATE and DELETE states, respectively. Subsequent updates on
the log entries are absorbed in the log, and when these entries are migrated to the
hash map, the corresponding hash map is finally updated.

Before migrating an entry, FlashLight checks the dedicated hash map whose num-
ber is determined by

hash map number = f ile ID / (# of pointers in a hash map). (2)
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Fig. 6. (a) State transition of a directory entry log in DirInode and (b) the number of collisions in a real
file set.

Fig. 7. File structure; only direct pointers are used.

If the hash map has already been allocated, FlashLight reads the page; otherwise, it
allocates a page for the new hash map. The pointer in the victim entry is then copied
to the bucket whose number is determined by

bucket number = f ile ID % (# of pointers in a hash map). (3)

After the hash map is written to the hash map area, its physical location is recorded
in the DirInode. To alleviate migrating entries frequently, all the entries that pertain
to the hash map are migrated simultaneously when migrating a victim entry.

The hash collision may occur when two different file names are hashed to the same
file ID. If such a collision happens, FlashLight simply keeps the collided entry in the
log area without migrating it to the hash map. To estimate the probability of the hash
collision in practice, we collected approximately 5,000 files made by users and 15,070
files from the default root file system in the NOKIA N810 device, and analyzed their
file names. As shown in Figure 6(b), the hash collision occurred about once in every 50
files in a user directory. Since the intra-inode log can contain about 240 entries in a
2KB page, FlashLight can endure up to 240 collisions in a directory. When looking up
one of the collided files in a directory, FlashLight reads the corresponding inode page
until the file name matches.

4.2.3 File Structure. Figure 7 shows the structure of FileInode that is very similar
to DirInode. FileInode also consists of file attributes (44 bytes), the file name (256
bytes), the log pointer (4 bytes), an extent entry log area, and locations of extent maps.
The roles of file attributes, the file name, and the log pointer are similar to those in
DirInode.
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The extent entry log area is filled with extent entries that are similar to nodes in
JFFS2 and UBIFS. An extent entry consists of a file offset (4 bytes), a location (4
bytes), and a length (4 bytes). The file offset indicates the data position in the file,
and the location is its page offset in the flash memory. The length is the number of
consecutive pages the data reside. When the page size is 2KB, the log area can contain
up to 145 extent entries each of which occupies 12 bytes. In the worst case scenario
where an extent entry represents 128KB of data, one FileInode page can support the
file size up to 18MB. This means that a picture image generated by high-resolution
digital cameras can be totally covered by only one FileInode page even under the worst
case scenario.

In order to support large files, FlashLight introduces an extent map that consists of
the parent directory pointer (4 bytes), its file name (256 bytes), and extent entries each
having a size of 12 bytes. When the page size is 2KB, the number of extent entries in
an extent map is 149. If the FileInode is filled with only extent map pointers without
any log entries, it can hold 435 extent maps. In addition, if one extent has a 128KB-
sized FEB, one file can cover approximately 7.9GB of data. Note that, unlike the fixed
number of hash maps in DirInode, the number of extent maps dynamically changes
depending on the file size.

When a new write request arrives, FlashLight writes the data to the MainData
area, and then, it checks whether or not the request is followed by any existing extent.
If the new data is connected to the existing data with respect to the file offset and the
location, FlashLight simply extends the length of the existing extent entry; otherwise,
a new extent entry is inserted into the log in FileInode. If an update request arrives,
a new extent entry is also inserted to the log, and the obsolete pages are recorded and
recycled by the GC mechanism.

When the extent entry log area runs out of space, some of entries in there should
be migrated to the extent maps. When migrating the entries, the victim entries are
selected according to their file offsets. The main policy is that each extent map has
a certain range of file offsets. Once the range is determined to cover as many log en-
tries as possible, other extent maps should contain another range of data. Through
this policy, FlashLight can access the data by reading up to one extent map page
additionally.

4.3 Efficient Garbage Collection Scheme

During GCs, the valid page migration overhead is a crucial performance factor. To
reduce the overhead, it is necessary to achieve two goals: (i) identifying valid pages
instantly, and (ii) minimizing the number of valid pages.

To identify valid pages instantly, FlashLight manages, in the checkpoint data, a list
of dirty FEBs having at least one obsolete page. Each entry in the list holds its FEB
number as well as a set of bits that represent the validities of all the pages in the FEB.
This structure allows FlashLight to avoid unnecessary scanning of each page in the
victim FEB. Since the fixed size of the checkpoint data limits the number of entries
that appear on the list, FlashLight triggers GCs whenever the number of dirty FEBs
exceeds a threshold. For example, when the page size is 2KB, the checkpoint data
contains up to 161 dirty FEB entries. Currently, FlashLight uses a policy that GC is
invoked whenever the number of dirty FEBs exceeds 140 and it reclaims 9 dirty FEBs
at a time. These parameters are determined by evaluating our file system with several
intensive tests. When a number of dirty FEBs are reclaimed, the system may freeze for
a while, which is unacceptable in the real-time environment. To address this problem,
FlashLight supports that applications can trigger GCs deliberately through a certain
file system API (e.g., fstat).
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To minimize the number of valid pages to move, we need to separate hot and cold
data effectively. For this purpose, FlashLight separates the data into eight major log
areas as mentioned in Section 4.1. This fine-grained data separation is an effective ap-
proach because each area has different hotness. For example, DirInode and FileInode
are more frequently updated than the file data in the MainData area. Furthermore,
FileInode is hotter than DirInode because the number of file changes caused by data
writes is considerably larger than the number of directory changes.

In addition, we propose the concept of erase-unit data allocation in which each file
has multiple FEBs, instead of pages, for its data. If an FEB is shared with several
files’ data, the file system may suffer from moving many valid pages, because hot and
cold data can be mixed together. To mitigate the internal fragmentation that may be
caused by allocating the space in a unit of FEB to a file, we propose two-level FEB
lists: (i) a remnant list, and (ii) a compaction list. A remnant list holds FEBs that
contain the remnants of files. Whenever a file is closed, FlashLight checks and inserts
a new remnant FEB into this list. When FlashLight is almost full of data, it selects
victim remnant FEBs in the Least Recently Used (LRU) order, and all the valid pages
in the victims are moved to free FEBs tightly; this is called a compaction process. The
compacted FEBs are finally recorded in the compaction list. In the compaction list,
until all the pages in an FEB are invalidated, the FEB is kept in there without further
actions. However, if FlashLight suffers from severe space pressure, more compaction
processes are performed for the FEBs in the compaction list.

In reality, however, this fragmentation problem rarely occurs. We collected a num-
ber of files in use from several real users and analyzed the file patterns. Three file
types, namely, movie, MP3, and picture, were collected, and the percentages over the
total data size were 51.2%, 30.5%, and 18.3%, respectively. To fit the file set to our
evaluation environment, we scaled down the total size by reducing the number of
files proportionally, and then, we replayed many file transactions to vary the total
file system utilization. The results showed that the peak total size of all the remnants
occupied approximately 0.001% over the total data size, and the compaction process
was triggered only when the total file system utilization was over 96.4%. Therefore, if
FlashLight reserves a small amount of space for remnants, the fragmentation problem
would be negligible.

4.4 Checkpoint and Bitmap Structures

Checkpoint is a well-known method for fast system boot by reading the minimum in-
formation when rebuilding the file system. When implementing this method, it is
necessary to consider tracking and retrieving the checkpointed data efficiently. Flash-
Light adopts a two-level indirect tree that consumes four FEBs including FEB #0, FEB
#1, and two other floating FEBs. FEBs #0 and #1 are root-level indirect FEBs that are
used one at a time, and the others are second-level indirect and leaf FEBs, respectively.
Periodically, the checkpoint data is sequentially written to the leaf FEB.

To allocate free FEBs efficiently, we propose a novel bitmap structure where each bit
represents the freeness of the corresponding FEB. The i-th bit is set to zero after the
i-th FEB is allocated to the major log areas, and the bit is set to one after the i-th FEB
is erased. Whenever the bitmap information is changed, a new bitmap page is written
to the bitmap log area. For the recovery routine, previously used FEBs should not be
recycled until the file system is checkpointed newly. Initially, FlashLight reserves six
FEBs by default4 for the bitmap area to avoid frequent checkpoint operation due to the
change in the bitmap information.

4The number of FEBs for the bitmap log can be set differently according to the file system size; six is our
default number for 256MB of data capacity.
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Table IV. System Environment for Experiments

System Specification OneNAND

Platform: NOKIA N810 Part Number: KFG4G16Q2M
CPU: TI OMAP 2420 Block Size: 128KB
Memory: DDR RAM 128MB Page Size: (2,048 + 64) Bytes
Flash Memory : OneNAND Read Bandwidth: 108MB/s
OS: Linux 2.6.21 Write Bandwidth: 9.3MB/s
MTD: onenand.c Erase Bandwidth: 64MB/s

4.5 In-Memory Data Structures

FlashLight keeps the following data structures in the main memory.

— The checkpoint data. The checkpoint data occupies a page, which is cached in the
FlashLight’s superblock information. Among the cached checkpoint data, the list
of dirty FEBs is essential for selecting victims and identifying valid pages quickly
during the GC process.

— A bitmap page. One bitmap page resides in the main memory all the time for Flash-
Light to allocate a free FEB instantly. This can cover up to 2GB or up to 160GB of
storage capacity using 2KB or 4KB page, respectively.

— A DirInode map page. The DirInode map occupies at most one FEB. One page from
the DirInode map is cached to retrieve frequently used mapping entries, which can
cover 512 entries.

— DirInode pages. FlashLight caches two DirInode pages by default. Frequent updates
on directory entries in a DirInode page can lead to a situation where FlashLight
writes the DirInode page to the flash memory repeatedly. This cache can absorb
those flash writes effectively.

— FileInode pages. FlashLight caches two FileInode pages by default. This cache alle-
viates repeated flash writes of the same FileInode page due to frequent updates of
data entries.

To summarize, the total amount of the main memory consumed by FlashLight is 14KB
more or less when the page size is 2KB. For comparison, JFFS2 and YAFFS2 consume
the memory in proportion to the number of files, and UBIFS consumes over 300KB
including the space for buffering data.

5. PERFORMANCE EVALUATION

5.1 Evaluation Environment

In this section, we evaluate the performance of FlashLight. We implemented Flash-
Light on the Linux kernel version 2.6.21, and used NOKIA N810 as the experimental
platform. The NOKIA N810 is an Internet tablet appliance, which allows the user to
browse the Internet and communicate using Wi-Fi networks or with a mobile phone
via Bluetooth [Nokia 2008]. In addition to the Internet activities, the N810 supports
abundant multimedia services such as movie players, MP3 players, and camera func-
tionalities. It is an embedded Linux system with a 400Mhz TI OMAP 2420 processor,
128MB DDR RAM, and 256MB OneNAND [Samsung Electronics] chip. The system
parameters used in our experiments are summarized in Table IV.

We compared FlashLight with JFFS2, YAFFS2, and UBIFS. To ensure fair compar-
isons, we erased the entire flash space before initiating each experiment for UBIFS to
avoid wear-leveling processes. In addition, we set the “no compression mode” for file
data in JFFS2 and UBIFS. Because the OneNAND driver is not fully compatible with
YAFFS2, we set in-band tags as a mount option to make YAFFS2 operate without the
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Fig. 8. Results of the SysBench benchmark: (a) normalized sequential write bandwidth and (b) elapsed
time breakdown.

use of spare areas. In FlashLight, the SHA1 algorithm is used for the hash function
[FIPS 180-1 1995].

Under this environment, we used three benchmark programs: SysBench [Kopytov
2004], Postmark [Katcher 1997], and Filebench [McDougall et al. 2006]. For compar-
ison purposes, we tried to normalize the throughput of all the tested file systems as
much as possible, and the absolute value was displayed over the graph as well.

SysBench was designed for evaluating a variety of components in a system running
a database under intensive load. Although this benchmark supports several configu-
rations for evaluating a system, we used the file I/O performance configuration, which
supports sequential and random read/write traces. In general files created by users,
such as images, MP3, and movies, most operations are requested sequentially [Evans
and Kuenning 2002]. Moreover, since the read operation does not cause unnecessary
read/write operations, we selected a sequential write trace to evaluate the basic per-
formance of our file system.

Postmark is one of the most popular benchmarks, which models intensive Internet
electronic mail server operations. It measures the overall transaction rate in opera-
tions/sec (ops/s) while creating and deleting numerous files in a number of subdirecto-
ries.

Filebench is a framework emulating file system workloads for evaluating system
performance quickly and easily with various script files. In this benchmark, we made
three workloads: CreateFiles, CopyFiles, and Create/DeleteFiles. The CreateFiles and
CopyFiles workloads are micro-benchmarks for evaluating the basic file system perfor-
mance, and the Create/DeleteFiles workload is a macro-benchmark based on a modi-
fied file server script for the user environment. Unlike the Postmark benchmark, the
structure of a directory tree and the size of the file data are generated by means of a
gamma distribution.

5.2 SysBench

In this experiment, one file is created, and then 190MB of data are sequentially written
to the file by a single thread. Figure 8 shows the write bandwidth and the breakdown
of the total elapsed time. The x-axis represents the unit of each write request. The
total number of read, write, and erase operations conducted during the test are sum-
marized in Table V. In this table, the number in parentheses denotes the erase count
that is not reflected in the throughput, because UBIFS and JFFS2 erase FEBs during
the test whereas FlashLight and YAFFS2 erase them in advance when the test file
is deleted before the test. The 1,500 erase operations have a negligible effect on the
total throughput in which they can theoretically degrade the performance by approxi-
mately 0.08MB/s. To assure this gap, we made another version of FlashLight, namely,
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Table V. The Total Number of Flash I/Os in the SysBench Benchmark

Type
2KB 4KB ∼ 64KB

FlashLight UBIFS YAFFS2 JFFS2 FlashLight UBIFS YAFFS2 JFFS2

Read 1 31 36,468 224,859 1 31 1 49,365
Write 98,805 104,782 110,112 199,748 98,805 104,794 98,047 99,455
Erase 24(1,520) 1,550 0(1,720) 3,146 24(1,520) 1,550 1(1,720) 1,542

“FlashLight (EAA: Erase At Allocation)”, which erases the obsolete FEBs during the
test instead of doing so in advance. As shown in Figure 8(a), the results confirm that
the performance of FlashLight (EAA) is only marginally degraded over the original
FlashLight.

As shown in Table V, if the request size is a multiple of 4KB, the number of I/Os
in each file system is the same, because Linux VFS (Virtual File System) issues
read/write operations to the file system in the unit of 4KB. In FlashLight and UBIFS,
the 2KB result is similar to the case of 4KB. This is because FlashLight processes a
data request in the minimum unit of 2KB without any additional write, and UBIFS
converts 2KB of data into 4KB of data through the buffer cache. In YAFFS2 and
JFFS2, however, the 2KB result shows more I/Os compared to the 4KB result. In
YAFFS2, in-band tag operations incur a number of additional read operations. JFFS2
has even triggered some GCs, because it wrote an additional amount of data due to
the node header whose size is larger than that of YAFFS2 as well as synchronous
metadata updates at every data write. Therefore, the free FEBs were consumed more
quickly, and eventually, GCs were invoked in JFFS2. In UBIFS, the additional writes
were mainly caused by writing node headers (22.8%), managing FEBs (22.3%), and
inserting the indices of file data into the B+tree (9.4%). By contrast, FlashLight has
no header structure, and extent entries were efficiently appended in the intra-inode
log area of the FileInode. Additional writes were only caused by writing bitmap pages
followed by allocating free FEBs.

Considering only the number of I/Os, particularly in YAFFS2 and JFFS2, we can
confirm that the bandwidth increases as the request size is enlarged from 2KB to 4KB
in Figure 8(a). However, UBIFS exhibits higher bandwidth in the 2KB request size
rather than the 4KB case. To analyze this, we measured each elapsed time by user,
system, and write completion as shown in Figure 8(b). In the 4KB case, UBIFS has
a relatively larger portion of the user and system time than YAFFS2 and FlashLight.
This is because UBIFS only uses a buffer cache for file data. By the buffer cache, the
user time is increased, since other applications could be performed between the write
requests made by the benchmark program. In addition, the system time also increases
because kernel instructions were performed to manage the buffer cache. Nevertheless,
the total elapsed time could be reduced with less waiting time, since the processor
could interleave the execution of kernel and user instructions with the write requests.
Note that, if a small number of large-sized write requests are issued, UBIFS exhibits
low performance due to the lack of the interleaving effect.

As shown in Figure 8(a), the performance of all the file systems, except UBIFS, is
improved slightly as the request size increases. This tendency is caused by the na-
ture of OneNAND, which has a high burst write bandwidth through 4KB-sized buffer
RAMs. We collected the time intervals between consecutive write requests in Flash-
Light and YAFFS2 when the request size is 64KB. These two file systems are chosen
because they significantly differ in the bandwidth in spite of the similar number of
I/Os. The result is shown in Figure 9 in which the y-axis represents the cumulative
distribution function (CDF) for the number of write operations. This figure demon-
strates that FlashLight generates a larger number of burst write operations under
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Fig. 9. Normalized CDF of number of writes according to the write intervals.

Fig. 10. Results of the Postmark benchmark: (a) normalized transaction rate according to the request size
and (b) elapsed time breakdown when the request size is 2KB.

1 ms intervals (96.5%) than YAFFS2 (89.1%). This gap arises from the delay in in-
memory operations such as copying memory-to-memory regions and handling indices
in a complicated manner in YAFFS2.

Therefore, if the request size is small, the buffer cache in UBIFS helps increase
the bandwidth; otherwise, the performance is affected by the nature of the OneNAND
chip, rather than the buffer cache. Nevertheless, FlashLight exhibits a noticeable
performance improvement across all the request sizes by mainly reducing the number
of I/Os. In terms of the space overhead, UBIFS occupies about 4.7MB of flash memory
space to store the index nodes of B+tree, while FlashLight stores a FileInode page
(2KB) that contains file data indices, and a root-inode page (2KB) that contains the
file’s index. Note that, due to the sequentially written 190MB of data, the extent map
is unnecessary.

5.3 Postmark

In this test, we set up a single subdirectory, and no read/append operations are per-
formed during file system transactions. In the first CREATE phase, 1,300 files are
created with 128KB of data in the root directory. In the second MIXED phase, 30,000
mixed operations consisting of create and delete operations are performed randomly;
each create operation includes 128KB of data writes. Finally, in the DELETE phase, all
the remaining files are deleted.

Figure 10 exhibits the performance results varying the request size of data writes.
The performance is normalized to the result of UBIFS with the request size of 2KB.
Since many create/delete operations are randomly performed, index management
and GC costs will dominate the overall performance. To investigate the performance
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Table VI. The Total Number of Flash I/Os in the Postmark
Benchmark (the 2KB request size)

Type YAFFS2 JFFS2 UBIFS FlashLight

Read 3,091,274 12,444,884 452,129 68,464
Write 2,304,888 1,262,354 1,117,270 1,035,964
Erase 35,392 19,144 16,829 15,816

Table VII. Configurations of the Filebench Benchmark

Type Test Name # of Files Directory Width File Size I/O Size

Micro
CreateFiles 100 100 128KB 4KB
CopyFiles 500 20 128KB 4KB

Macro Create/DeleteFiles 2,000 20 128KB 64KB

impact of these costs, we breakdown the elapsed time of running the Postmark
benchmark as shown in Figure 10(b), and we summarize the total number of I/Os in
Table VI as well.

Figure 10 confirms that the transaction rate of each file system is closely related to
the index management and GC costs. YAFFS2 has a larger GC overhead than JFFS2
because YAFFS2 requires a number of write operations to handle the Tnode for data
indices during GCs; nevertheless, the performance of JFFS2 is not much different
to that of YAFFS2 because JFFS2 read a large amount of metadata when migrating
valid nodes. The performance gap between JFFS2 and UBIFS is mainly caused by
the reduced GC overhead in UBIFS; UBIFS reduces the number of valid pages to be
migrated by separating FEBs between metadata and data. In addition, the use of a
buffer for caching several inodes can avoid frequent writes of the updated inodes. On
the contrary, as JFFS2 writes an inode at every data write, it generates a number of
invalid pages, and accordingly, more GCs are triggered.

In UBIFS, 34.5% of the total elapsed time is still consumed to handle indices and
GCs. Specifically, managing indices, identifying valid pages in a victim FEB, and mov-
ing them to other FEB take 6.7%, 17.1%, and 10.7% of the elapsed time, respectively.
FlashLight reduces the index management overhead significantly by adopting the hy-
brid indexing scheme and intra-inode index logging. FlashLight decreases the GC
overhead as well by the fine-grained data separation, erase-unit data allocation, and
the use of a dirty list for instant identification of valid pages. The performance pat-
tern according to the request size agrees with the SysBench results, which reflects the
nature of OneNAND.

In the flash memory, UBIFS stores about 5.2MB of the tree index nodes, while
FlashLight uses up to about 3.5MB of metadata including DirInode pages, FileInode
pages, hash map pages, and extent map pages.

5.4 Filebench

5.4.1 Micro and Macro Tests. Table VII summarizes the configurations of each test
with Filebench. Figure 11(a) and Figure 11(b) depict the resulting bandwidth and the
breakdown of the elapsed time, respectively. Again, all the bandwidth results are nor-
malized to those of UBIFS. In the Create/DeleteFiles test, the bandwidth is measured
during 1,000 seconds.

For two microbenchmarks (CreateFiles and CopyFiles), Figure 11(a) shows that
the performance difference between file systems is very similar to the SysBench re-
sults with the request size of 4KB. In addition, both the performance of the macro-
benchmark and the breakdown results exhibit the same patterns as the Postmark
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Fig. 11. Results of the Filebench benchmark: (a) normalized bandwidth, (b) normalized elapsed time in
Create/DeleteFiles test, (c) real bandwidth according to the number of threads, and (d) real bandwidth
according to the amount of updated data and the update patterns.

results. In the Create/DeleteFiles results, FlashLight exhibits about 20% of the per-
formance improvement over UBIFS because it reduces the index management and
GC overhead considerably. During the Create/DeleteFiles test, UBIFS occupies about
6.3MB of flash memory space to store the index nodes of B+tree, while FlashLight
takes about 2.6MB for metadata.

As described in Section 4.3, the compaction process reads, writes, and erases
one FEB-sized data, which causes some delays. To measure this overhead quantita-
tively, we made another version of FlashLight, namely, “FlashLight (CP: Compaction
Process)”, which triggers the compaction process very intensively whenever 50 rem-
nants are newly created. During the Create/DeleteFiles test, FlashLight read/wrote
204,724 pages and erased 11,769 FEBs during the compaction process; the percent-
ages over the total number of I/Os were 71.8%, 14.2%, and 44%, respectively. As shown
in Figure 11(a), the overall performance is degraded by 12.5% over the original perfor-
mance of FlashLight that seldom triggers the compaction process. This means that,
even if the compaction process is triggered heavily, FlashLight can tolerate without
degrading the performance significantly.

5.4.2 Multiple Threads Tests. Figure 11(c) compares the performance of UBIFS and
FlashLight when we vary the number of concurrent threads during the test. The basic
configuration is the same as in the Create/DeleteFiles test described in Table VII, and
each thread performs four operations repeatedly until the time is over: (1) CREATE
that creates a new file and writes 128KB of data sequentially to the file, (2) APPEND
that opens a file and appends 128KB of data, (3) DELETE that selects a file randomly
and deletes it, and (4) STAT that requests a file’s stat.
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From Figure 11(c), we can observe that FlashLight outperforms UBIFS for all the
cases. Until the number of threads reaches 10, the performance of FlashLight im-
proves gradually. This is due to that FlashLight can afford to process multiple opera-
tions. However, this advantage disappears as the number of threads becomes greater
than 10. FlashLight then suffers from I/O contention. On the other hand, the perfor-
mance of UBIFS is getting worse as the number of threads increases because UBIFS
already has bounded capabilities.

5.4.3 File Update Tests. Recently, many camcorders support editing services; cus-
tomers can cut or paste the data in video clips, and modify the pictures with variety of
visual effects. To verify the effect of these services in performance, we made file update
tests as follows.

The basic configuration is also the same as in the Create/DeleteFiles test described
in Table VII, and a single process is triggered with four sequences: (1) CREATE, (2)
RANDOM WRITE, (3) DELETE, and (4) STAT. CREATE, DELETE, and STAT se-
quences are the same as in the previous multi-thread test described in Section 5.4.2.
RANDOM WRITE opens a file and randomly writes 32KB∼128KB of data to the file.

Figure 11(d) shows the performance degradation rate of UBIFS and FlashLight ac-
cording to the amount of updated data and the update patterns. All the tests are
categorized into two parts. One is updating between 0KB and 128KB of data in a file
as one extent. The other is updating 2, 4, 8, and 16 extents while the total size of up-
dates is fixed to 32KB. As shown in Figure 11(fig-filebench), the results of the former
tests are shown in the left-hand side; those of the latter are shown in the right-hand
side and they are represented as “(the extent size × the number of extents).” Note
that the “(2 × 16)” test performs the most scattered data updates, leading to the worst
performance.

We can see that FlashLight achieves better performance than UBIFS if the data is
updated as one extent; however, if many scattered data are updated in a file, UBIFS
exhibits better performance. However, this performance degradation is just due to
the GC policy of FlashLight; FlashLight performs GCs more frequently than UBIFS
to preserve the fixed number of FEBs in the dirty list. This means, on the other side,
that FlashLight is advantageous to prepare a large volume of free space for unexpected
large-sized data writes.

5.4.4 Real-Time Tests. FlashLight may freeze the system momentarily to perform
GCs. To address this problem, FlashLight allows the user applications to trigger GCs
through a certain file system API, as mentioned in Section 4.3. To ensure whether this
can work or not, we made a real-time test as follows.

(1) For aging the FlashLight file system, we first performed the Create/DeleteFiles
test shown in Section 5.4.1.

(2) To make a room to write consecutive data, we deleted several files in the test
directory.

(3a) One test measured the latencies of every write requests while writing the total
64MB of data in a unit of 64KB.

(3b) Unlike the previous test, the other test invoked the API to trigger GCs before
every write requests, and measured the latencies.

Figure 12 shows the latencies of data writes before and after using this API in the
application. We can see that the peak latency is decreased from 512.1ms to 304.9ms
by invoking GCs at user level. For the real-time environment, therefore, applications
may call the API on the fly before requiring a low latency during the data writes.
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Fig. 12. Latencies of data writes: (a) before and (b) after triggering GCs deliberately.

6. CONCLUSION

In this article, we investigate two design issues for high-performance flash file system.
One issue is to design an efficient index structure that locates where files and data
reside in the flash memory. With the increasing capacity of embedded systems, the
practical use of both JFFS2 and YAFFS2 has become difficult because they require a
large amount of memory. To reduce the memory consumption, UBIFS has been devel-
oped with an on-flash index structure; however, it degrades the system performance
to manage the index structure, B+tree. The other issue is to design an efficient GC
scheme. During GC, identifying and moving valid pages, called valid page migration,
can cause a considerable number of additional read and write operations. To identify
valid pages instantly, another data structure is required, and to minimize the number
of valid pages, hot and cold data must be separated effectively.

We present FlashLight, a lightweight, high-performance flash file system that has
the following features: (i) a lightweight index structure that introduces the hybrid
indexing scheme and intra-inode index logging to reduce the index management over-
head and (ii) an efficient GC scheme that adopts the fine-grained data separation,
erase-unit data allocation, and a list of dirty FEBs for instant identification of valid
pages. Our experimental results confirm that FlashLight alleviates index manage-
ment and GC overheads by up to 33.8% over UBIFS with the Postmark benchmark.
Furthermore, we demonstrate that FlashLight improves the overall performance by
up to 27.4% over UBIFS with the SysBench benchmark.
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