Superblock FTL: A Superblock-Based Flash
Translation Layer with a Hybrid Address
Translation Scheme

DAWOON JUNG

Korea Advanced Institute of Science and Technology
JEONG-UK KANG

Samsung Electronics Co.

HEESEUNG JO

Korea Advanced Institute of Science and Technology
and

JIN-SOO KIM and JOONWON LEE

Sungkyunkwan University

In NAND flash-based storage systems, an intermediate software layer called a Flash Translation
Layer (FTL) is usually employed to hide the erase-before-write characteristics of NAND flash
memory. We propose a novel superblock-based FTL scheme, which combines a set of adjacent
logical blocks into a superblock. In the proposed Superblock FTL, superblocks are mapped at coarse
granularity, while pages inside the superblock are mapped freely at fine granularity to any location
in several physical blocks. To reduce extra storage and flash memory operations, the fine-grain
mapping information is stored in the spare area of NAND flash memory. This hybrid address
translation scheme has the flexibility provided by fine-grain address translation, while reducing
the memory overhead to the level of coarse-grain address translation. Our experimental results
show that the proposed FTL scheme significantly outperforms previous block-mapped FTL schemes
with roughly the same memory overhead.

Categories and Subject Descriptors: D.4.2 [Operating Systems]: Storage Management—Sec-
ondary storage; B.7.1 [Integrated Circuits]: Types and Design Styles—Memory technologies

This work was supported by the Ministry of Knowledge Economy, Korea, under the (Information
Technology Research Center) Support program supervised by the (Institute of Information Tech-
nology Advancement) (IITA-2009-C1090-0902-0020), and by the Korea Science and Engineering
Foundation (KOSEF) grant funded by the Korea government (MEST) (No. R01-2007-000-11832-0).
Authors’ addresses: D. Jung, H. Jo, Computer Science Department, KAIST, Daejeon, Republic of
Korea; email: {dwjung, heesn}@calab.kaist.ac.kr; J.-U. Kang, Memory Division, Samsung Electron-
ics Co., Gyeonggi, Republic of Korea; email: jukang@samsung.com; J.-S. Kim, J. Lee, School of
Information and Communication Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do
440-746, Republic of Korea; email: {jinsookim, joonwon}@skku.edu;

Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2010 ACM 1539-9087/2010/03-ART40 $10.00

DOI 10.1145/1721695.1721706 http://doi.acm.org/10.1145/1721695.1721706

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

40:2 . D. Jung et al.

General Terms: Design, Performance

Additional Key Words and Phrases: FTL, NAND flash memory, storage system, hybrid address
translation
ACM Reference Format:

Jung, D., Kang, J.-U,, Jo, H., Kim, J.-S., and Lee, J. 2010. Superblock FTL: A superblock-based flash
translation layer with a hybrid address translation scheme. ACM Trans. Embedd. Comput. Syst.
9, 4, Article 40 (March 2010), 41 pages.

DOI = 10.1145/1721695.1721706 http://doi.acm.org/10.1145/1721695.1721706

1. INTRODUCTION

Many mobile devices, including MP3 players, PDAs (personal digital as-
sistants), PMPs (portable media players), high-resolution digital cameras
and camcorders, and laptop computers, demand a large-capacity and high-
performance storage system in order to store, retrieve, and process a large
amount of multimedia data quickly. In mobile embedded devices, NAND flash
memory is already becoming one of the most common storage medium because
of its versatile features such as nonvolatility, solid-state reliability, low power
consumption, small and lightweight form factor, shock resistance, and high
cell densities [Douglis et al. 1994; Park et al. 2003; Inoue and Wong 2003]. At
the same time, an increasing number of laptop computers are adopting NAND
flash-based SSDs (solid-state disks) in place of hard disks.

Unlike conventional hard disks, NAND flash memory has a unique erase-
before-write characteristic such that a page, which is the basic unit of read
and write operations, should be erased before any new data can be written
in the same location. The worse problem is that erase operations can only be
performed on a block! basis, whose size is larger than a page by 32 to 128
times. Thus, emulating traditional block device interface on top of NAND flash
memory necessitates an intermediate software layer called a flash translation
layer (FTL) that addresses these characteristics [Kawaguchi et al. 1995; Intel
Corp. 1998].

Typically, FTL redirects each write request to an empty location in NAND
flash memory that has been erased in advance and manages an internal map-
ping table to record the address translation information from the logical page
number to the physical location on flash memory. Although FTL gives an abil-
ity to update the same logical sector transparently, it adds extra flash memory
operations to prepare empty locations and extra storage to maintain the map-
ping table. The amount of extra operations and storage required are drastically
varied depending on the internal mapping scheme in FTL.

There is trade-off between the amount of extra storage and the number of
extra flash operations. One can use a fine-grain address translation scheme
in which each logical page can be located anywhere in flash memory, provid-
ing the best possible flexibility at the expense of extra storage for managing
a huge amount of mapping information. As the capacity of NAND flash-based

IThe “block” used in flash memory should not be confused with the unit of I/O used by the kernel.
Unless otherwise stated explicitly, this article uses the term “block” to denote the unit of erase
operation in flash memory.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

Superblock FTL: A Superblock-Based Flash Translation Layer J 40:3

storage increases, the extra storage required by the fine-grain address trans-
lation scheme actually imposes a serious cost problem in mass-market prod-
ucts [Kim et al. 2002]. On the other hand, it is possible to use a coarse-grain
address translation scheme in which a series of consecutive logical pages, di-
vided by the block size, are physically stored in the same block. The coarse-grain
address translation scheme reduces the amount of extra storage as only the
block-level mapping information needs to be maintained, but may cause more
extra flash memory operations due to its inflexibility in dealing with write re-
quests smaller than a block.

In this article, we propose a novel FTL, called Superblock FTL, which employs
a hybrid address translation scheme for NAND flash memory. In the proposed
scheme, we define a superblock as a set of adjacent logical blocks. Superblocks
are mapped at coarse granularity, while pages inside a superblock are mapped
freely at fine granularity to any location in a number of physical blocks allocated
to the superblock. To reduce the amount of extra storage and extra flash memory
operations, the fine-grain mapping information is stored in the spare area of
NAND flash memory. This hybrid mapping scheme has the flexibility provided
by the fine-grain address translation, while reducing the memory overhead
to the level of coarse-grain address translation. The performance evaluation
results show that our Superblock FTL scheme significantly reduces the flash
memory management cost compared to previous coarse-grain FTL schemes
with roughly the same memory overhead.

The rest of the article is organized as follows. Section 2 gives a brief overview
of NAND flash memory and FTL. Section 3 describes the motivation of the
proposed FTL. In Section 4, a detailed description of our Superblock FTL is
presented. In Section 5, the performance of our scheme is extensively compared
with previous schemes. Finally, we conclude the article in Section 6.

2. BACKGROUND AND RELATED WORK

In this section, we describe the characteristics of NAND flash memory and the
differences among various NAND flash memory types. We also present a short
overview of FTL and summarize related work.

2.1 Characteristics of NAND Flash Memory

A NAND flash memory chip is composed of a fixed number of blocks, where each
block typically has 32 pages. Each page in turn consists of 512 bytes of main data
area and 16 bytes of spare area. NAND flash memory does not support in-place
update. Once a page is written, it should be erased before the subsequent write
operation is performed on the same page. Since read and write (or program)
operations are executed on a page basis while erase operations on a much larger
block basis, NAND flash memory is sometimes called a write-once and bulk-
erase medium.

The spare area in each page is often used to store out-of-band data such
as a bad block indicator, page management information, and error correction
code (ECC) to correct errors while reading and writing [Harari et al. 1997].
Note that the spare area can be read or written along with the main data area

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

40:4 . D. Jung et al.

using a single read or write operation. Therefore, there is virtually no additional
overhead to store/retrieve out-of-band data to/from the spare area.

Unlike hard disks or other semiconductor devices such as SRAMs and
DRAMs, a write operation in flash memory requires a relatively long latency
compared to a read operation. As the write operation usually accompanies the
erase operation, the operational latency becomes even longer. Another limita-
tion of NAND flash memory is that the number of program/erase cycles for a
block is limited to about 100,000 to 1,000,000 times. Thus, the number of erase
operations should be minimized not only to improve the overall performance
but also to extend the lifetime of NAND flash memory.

Recently, a new type of NAND flash memory, called large block NAND, has
been introduced in order to provide high density and high performance in bulk
data transfer. In the large block NAND flash memory, a page consists of 2KB of
main data area and 64 bytes of spare area, and a block has 64 pages. Note that a
new programming restriction is added in the large block NAND flash memory;
pages should be programmed in sequential order from page 0 to page 63 within
a block. Random page address programming in a block is strictly prohibited by
the specification [Samsung Elec. 2007]. Most of the latest NAND flash devices
whose capacity is more than 1Gbits have the large block organization [Micron
Technology Inc. 2005].

As semiconductor technology improves, multilevel cell (MLC) NAND flash
memory has been introduced. In the previous single-level cell (SLC) NAND
flash memory either with a small block or with a large block organization,
each cell can represent only 1 bit. On the contrary, the voltage level of a sin-
gle cell in MLLC NAND flash memory is divided into four or more levels, with
each cell representing more than 1 bit. This MLC technology allows for higher-
capacity NAND flash memory with lower cost compared to the SLC technology.
2-bit MLC is already in mass production, while quad-bit MLC is expected to be
available in the near future. In two-bit MLLC NAND flash memory, the page size
and the block size are doubled; each page has 4KB of main data area plus 128
bytes of spare area, and each block consists of 128 pages. Several packages of
MLC NAND flash memory even uses the larger spare size, 218 bytes per 4KB
of main data [Cooke 2007]. Although MLLC NAND flash memory provides much
higher capacity, several limitations should be noted. First, the read and write
latency has been increased. Especially, a write operation sometimes takes 3 or 4
times longer than SLLC NAND. Second, the bit error rate (BER) of MLC NAND
is two orders of magnitude worse compared to SLC NAND, due to the reduced
distance between adjacent voltage levels [Dan and Singler 2003]. This necessi-
tates more powerful ECC to detect and correct multiple bit errors. Third, MLC
NAND flash has smaller program/erase cycle limit (typically, around 10,000
cycles) due to the increased bit error rate. Finally, MLC NAND flash memory
does not allow partial page programming. A whole page of MLC NAND flash
memory should be programmed at once. It also has the same restriction as large
block SLC NAND flash such that pages within a block should be programmed
in sequential order.

Since the small block SLC NAND flash memory is being phased out in the
market, we primarily focus on the large block SLC and MLC NAND flash

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

Superblock FTL: A Superblock-Based Flash Translation Layer J 40:5

Table I. A Comparison of (Large Block) SLC and MLC NAND Flash Memory

I Characteristics | sLct | MLC? |
Page size (KB) 2 4
Spare size (Byte) 64 128
Structure BT I size (KB) 128 512
(64 pages) | (128 pages)
NAND Flash data read time (us/page) 129.7 165.6
Access time (18) NAND Flash spare read time (us/page) 30.5 63.2
" NAND Flash write time (us/page) 298.9 905.8
NAND Flash erase time (us/block) 1,998.7 1,500.0

'Based on Samsung K9F1G16UOM [Samsung Elec. 2003].
?Based on Samsung K9GAG08UOM [Samsung Elec. 2006].

memory in this article. Table I compares the structure and the access time of typ-
ical SLC and ML.C NAND flash chips. The access time of SLC NAND flash mem-
oryis actually measured on Samsung K9F1G16UOM [Samsung Elec. 2003], and
that of MLC NAND flash memory is estimated based on the datasheet of Sam-
sung K9GAGO8UOM [Samsung Elec. 2006].

2.2 Flash Translation Layer (FTL)

The main goal of FTL is to emulate the functionality of a normal block device
with flash memory, hiding the presence of erase operation and the erase-before-
write characteristics. To achieve this, FTL redirects each write request from the
host to an empty location (free page) in flash memory that has been erased in
advance and manages the mapping information internally. As a result of the
write operation, the page storing the old data becomes invalid and the page
in which the new data is written becomes a valid page. Among others, two
particularly important functions of FTL are address translation and garbage
collection.

The primary role of the address translation is to translate the logical sector
number (e.g., logical block address [LBA]) of a request into a physical address
that points to the corresponding page in flash memory. According to the gran-
ularity with which the mapping information is managed, FTLs are classified
either as page-mapped [Ban 1995; Intel Corp. 1998] or as block-mapped [Ban
1999; Kim et al. 2002]. Garbage collection is the process that reclaims invalid
pages scattered over the blocks by erasing appropriate blocks so that invalid
pages are changed to free pages. Unless all the pages are invalid for the chosen
block, a merge operation should be performed; before erasing the victim block,
the valid pages in the block must be copied to some other blocks in order to
prevent valid data from being lost.

A page-mapped FTL scheme is a fine-grain translation from a logical sector
number to a physical block number and a physical page number, as shown in
Figure 1(a). Since a logical sector can be mapped to a page in any location
in NAND flash memory, the page-mapped FTL scheme permits more flexible
storage management. However, the size of the mapping table becomes large in
proportion to the total number of pages in NAND flash memory. Generally, the
mapping table resides in RAM; therefore, it consumes a large amount of RAM.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

40:6 . D. Jung et al.

Page-level Block-level

Logicalsector ~ Mappingtable mappingtable

number : number

:’ Physilcal Lock number Flash block -mm

Logical block

Physical number
page —P|

number

Logicalsector

Physical Flash block
block number

Logical page number-

(a) Page-mapped FTL (b) Block-mapped FTL

Fig. 1. Basic address translation schemes in FTL.

In a block-mapped FTL scheme, a logical sector number is divided into a
logical block number and a logical page number, and then the logical block
number is translated to a physical block number, as depicted in Figure 1(b).
The logical page number helps to find the wanted page within the physical
block. Unlike the page-mapped FTL scheme, each logical sector cannot be placed
freely in flash memory under the block-mapped FTL scheme. Instead, a set of
consecutive logical sectors should be stored in the same physical block. The
size of the mapping table is only proportional to the total number of blocks
in NAND flash memory. Therefore, the amount of RAM required by the block-
mapped FTL scheme is significantly smaller compared to the page-mapped FTL
scheme.

As the capacity of NAND flash-based storage increases, the large amount
of RAM required by the page-mapped FTL scheme actually imposes a serious
cost problem in mass-market products. For example, a Secure Digital (SD) card
with a 4GB large block NAND flash memory chip requires 8MB of RAM for
maintaining the mapping table with the page-mapped FTL scheme, while re-
quiring only 128KB for the block-mapped FTL scheme. Thus, some variations
of the block-mapped FTL scheme are widely used for NAND flash-based storage
systems.

2.3 General Architecture of Block-Mapped FTLs

Generally, we can classify physical flash memory blocks into D-blocks (or data
blocks) and U-blocks (or update blocks) according to their usage in block-mapped
FTL schemes. D-blocks represent those blocks used to store user data. The total
size of D-blocks serves as the effective storage space provided by FTL. A small
number of U-blocks, which are invisible to users, are managed by FTL to handle
the erase-before-write characteristics of NAND flash memory. When there is a
write request to one of the pages and the write request cannot be accommodated
in the corresponding D-block, FTL allocates a U-block and writes the fresh data
into the U-block, invalidating the previous page in the D-block. Once a U-block
is allocated, the subsequent write requests to the D-block can be redirected to
the associated U-block. When the U-block itself becomes full, FTL can allocate
another U-block or can generate a new D-block by merging the original D-block
with the U-block. Although there are many different kinds of block-mapped
FTLs, the difference largely comes from the way those D-blocks and U-blocks
are managed.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

Superblock FTL: A Superblock-Based Flash Translation Layer J 40:7

Page-mapping table for a block

D-block U-block U-block D-block U-block
0 W Free Free 0 W Invaiid
1 W Free Free 1
2| Invalid > invalid > X, 2 X-»{ invalid Free
3 W Free Free 3 W Free
(a) In-place scheme (b) Out-of-place scheme

Fig. 2. Page-management schemes within a block.

Logical pages in a D-block or a U-block are organized either by in-place
scheme or by out-of-place scheme. In the in-place scheme, the logical page
number is always equal to the physical page number in the physical block;
therefore, the logical page number is invariant during the address translation.
In the out-of-place scheme, however, a page can be placed anywhere inside the
physical block, requiring another page-level mapping information to find the
exact location of the page.

Assume that the third page (logical page #2) in a D-block is updated twice in
Figure 2. Under the in-place scheme (see Figure 2(a)), two extra U-blocks are
allocated in order to write to the same location as the previous page. The in-place
scheme simplifies the storage management, while other free pages in U-blocks
may be wasted when only a part of pages is heavily updated. In addition, due
to the sequential page programming restriction, using the in-place scheme is
not always possible, especially in the large block SLC or MLC NAND flash
memory.

In the out-of-place scheme (see Figure 2(b)), the logical page is written to
any free page in a U-block and the page-mapping table for the block is modified
to point to the newly written page. Although the out-of-place scheme is more
flexible, the extra overhead is added to manage the second level of page-mapping
table for each block. Thus, the out-of-place scheme is usually employed in a very
limited way.

When all the available U-blocks are exhausted, a merge operation is invoked
to generate a free U-block. During the merge operation, FTL selects a victim U-
block and merges it with the corresponding D-block. According to the situations,
the merge operation can be classified into full, partial, or switch merge, as
illustrated in Figure 3. The full merge (see Figure 3(a)) is simple; it allocates a
free block that is erased beforehand, and then copies the most up-to-date pages
(we call them valid pages), either from the D-block or from the U-block, into
the free block. After copying all the valid pages, the free block becomes the D-
block and the former D-block and the U-block are erased. Therefore, a single
full merge requires read and write operations as many as the number of valid
pages in the merged blocks and two erase operations.

Partial and switch merges are special cases of the full merge operation. The
partial merge takes place when all the valid pages in the D-block can be copied
to the rest of the U-block. As shown in Figure 3(b), the partial merge copies only
the valid pages in the D-block and one erase operation can be saved compared
to the full merge. On the other hand, if all the pages in the D-block are already

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

40:8 . D. Jung et al.

D-block Free block U-block D-block U-block D-block U-block
[nvaiid Free I [Invalid Invalid Invalid ZLETY,
Invalid | \,..q | Free VDQZZZ i Invalid | g V8847 Invalid
-pages) Free %o, Y/ A8ld/ W-Pag@ Free Invalid Naid
CO}
M A—OOE)‘ Free | Free W P Free Invalid | /W
Erise Ch{nge Er{se Er{se Chaige Er{se Chaige
Free Block D-block U-block U-block D-block U-block D-block
Free Free Free Free
Free Free Free Free
Free W Free Free W Free W
Free Free Free Free
(a) Full merge (b) Partial merge (c) Switch merge

Fig. 3. The types of merge operations.

invalidated, we can simply switch a U-block to a new D-block and erase the
old D-block. This case is called the switch merge (see Figure 3(c)). The switch
merge requires only one erase operation without any valid page copy and hence
is the most efficient case among merge operations. The switch merge typically
occurs when the whole pages in a block are sequentially updated. This is the
storage access pattern commonly found in many file systems when they attempt
to store large multimedia or archive files.

The performance of block-mapped FTLs significantly depends on how to orga-
nize D-blocks and U-blocks, and on how to select victim U-blocks during merge
operations. We note that the performance degradation in FTL is mainly caused
by copying valid pages and performing erase operations to make free blocks
during merge operations.

2.4 Related Work

As described in Section 2.2, FTLs can be classified into page-mapped FTLs and
block-mapped FTLs according to the mapping granularity. Various schemes
have been proposed to improve the performance of FTLs.

DAC [Chiang et al. 1998] is one of the most popular page-mapped FTL
schemes. The key idea of DAC is to cluster pages that have data with a similar
update frequency into the same block. DAC logically partitions flash memory
into several regions. To classify pages into separate regions according to its
update frequency, data migrate between regions. When data are updated, they
are promoted to the upper region, while data are demoted back to the lower
region when the associated block is erased. In this way, DAC tries to maximize
the chance that pages in a block become invalidated together in a certain pe-
riod. During garbage collection, the block can be reclaimed with small overhead
because the number of valid pages to be copied remains fairly small. Owing to
the fine-grain address translation, DAC can flexibly cluster data into a block.
However, a large amount of RAM is required to maintain fine-grain mapping
information. In addition, finding a victim block for garbage collection is a time-
consuming job, as DAC examines all the block information to find the victim
block. Due to these drawbacks, page-mapped FTLs can be used, if any, only for
a small-sized flash memory.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

Superblock FTL: A Superblock-Based Flash Translation Layer J 40:9

For high-capacity flash memory storage systems, block-mapped FTLs are
widely used mainly due to their relatively small memory requirement. Ban
[1995] has proposed the replacement block scheme based on the concept of a
replacement block. In this scheme, U-blocks are called replacement blocks, and
both D-blocks and U-blocks are organized by the in-place scheme. The operation
of the replacement block scheme is similar to the example shown in Figure 2(a).
When there is a write request, it allocates a U-block if the write cannot be ac-
commodated in the existing D-block and U-blocks. During garbage collection,
the D-block, which has the largest number of U-blocks, is selected as a victim,
and all the valid pages are copied into the last U-block. The last U-block then be-
comes a new D-block. Since the pages are always merged into the last U-block,
only the partial or the switch merge is performed. As noted in the previous sec-
tion, the replacement block scheme exhibits poor storage utilization especially
when only some of the pages are frequently updated. Moreover, this scheme
is not suitable for the recent flash memory, where pages in a block cannot be
programmed in random order.

Kim et al. [2002] have suggested the log block scheme that uses U-blocks
as logging blocks. The log block scheme logs the changes of the data stored
in a D-block into a U-block until the U-block becomes full. In the log block
scheme, D-blocks are organized by the in-place scheme, while U-blocks by the
out-of-place scheme in order to overcome the disadvantage of the replacement
block scheme. If there is a write request, the log block scheme writes the data
into the U-block sequentially and maintains the separate page-level mapping
information only for U-blocks. Since only the small number of U-blocks is used
by FTL, the additional mapping overhead can be kept low. When all the U-
blocks are used, some U-blocks are merged with the corresponding D-blocks to
secure a new free U-block. As D-blocks are managed by the in-place scheme, the
full merge may happen in order to change from the out-of-place scheme to the
in-place scheme. In addition, the utilization of U-blocks can still be low, since
even a single page update of a D-block necessitates a whole U-block similar to
the replacement block scheme.

To solve the problem of the log block scheme, Lee et al. [2007] have recently
proposed the fully associative sector translation (FAST) scheme. In FAST, a
U-block is shared by all the D-blocks, and every write request is logged into the
current U-block. This effectively improves the storage utilization of U-blocks
and delays the merge operation much longer. However, the full merge may be
performed more frequently than the previous schemes, since a single log block
contains pages that belong to several D-blocks. To alleviate this problem, FAST
uses a special U-block, called sequential log block, and handles sequential writes
in a special way.

Wu and Kuo [2006] have proposed AFTL, an FTL scheme that dynamically
and adaptively switches between fine-grain and coarse-grain mapping granu-
larities. The main objective of AFTL is to provide fast address translation with
a small amount of memory for large-capacity flash memory. AFTL achieves this
goal by using a page-level mapping table in memory for hot pages in U-blocks.
The rest of the pages are managed by a coarse-grain mapping table similar to
the replacement block scheme. When a U-block is fully written, valid pages in

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

40:10 . D. Jung et al.

the block are considered as hot and managed in the page-level mapping table. If
the page-level mapping table is full, the least recently used mapping table en-
tries are evicted, and those pages are merged with the corresponding D-blocks.
AFTL allocates more than one U-block into a D-block to delay merge operations
and uses free pages in D-blocks for further updates. However, the latter opti-
mization is only possible in the small block NAND flash. In addition, in most
cases, it is not possible to exploit free pages in D-blocks, since all the storage
space is written during format or mkfs to check bad blocks. Overall, AFTL can
be viewed as a variant of the replacement block scheme with a small, fixed
in-memory cache for address translation of hot pages.

Recently, Park et al. [2007, 2008] have studied N+K mapping scheme, which
is in part influenced by our earlier work [Kang et al. 2006]. Similar to our Su-
perblock FTL, the N+K mapping scheme organizes N blocks into a group and
allocates up to K U-blocks to each group. The distinction is that pages in D-
blocks are stored by the in-place manner in the N+K mapping scheme, while we
organize D-blocks by the out-of-place manner to maximize flexibility. In fact,
the main goal of their study is not to propose an efficient FTL but to propose
an effective design space exploration methodology for the optimal values of N
and K, which show the best performance in the given workload. Although the
methodology is useful to understand the characteristics of the target workload,
the result cannot be used directly as they do not consider the memory require-
ment or the management overhead for the mapping information, especially
when N or K becomes large.

3. MOTIVATION

In this article, we propose Superblock FTL that combines the adjacent logical
blocks into a superblock. In our Superblock FTL, pages inside a superblock can
be freely mapped at page granularity to several physical blocks allocated for
the superblock. This section elaborates the motivation of our work.

3.1 Analysis of the Merge Cost

Let W =< wi,ws,...,w;,...,w, > be a trace of write requests issued from
the host. W is a time-ordered list of logical page numbers of length n, where
w; denotes the i-th logical page number written. Let C,, be the cost to write a
page in NAND flash memory and WriteCost (W) be the total cost of writing the
given trace W. Apparently, WriteCost (W) can be represented as the summation
of the time to write |W| pages and the cost associated with merge operations,
MergeCost (W), as follows.

WriteCost (W) = C,, - |[W| + MergeCost (W) (@8]

Equation (1) shows the unique performance characteristics of NAND flash
memory compared to hard disks. Since NAND flash memory is a solid-state
device that has no seek time, each write operation has a constant cost, namely
C,, regardless of the location of the sector written. On the other hand, the addi-
tional merge cost is unavoidable due to the erase-before-write characteristics of
physical medium. From Equation (1), we can see that the write performance of

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

Superblock FTL: A Superblock-Based Flash Translation Layer o 40:11

FTL mostly depends on the efficiency of garbage collection. Thus, reducing the
garbage collection overhead has been a primary goal in designing FTLs [Chiang
et al. 1999; Kim et al. 2002; Lee et al. 2007; Park et al. 2008].

The total merge cost, MergeCost (W), is the summation of the individual
cost to make a free page for each write request w;, which we refer to as
MergeCost;,; (w;). MergeCost;,; (w;) includes the time to erase blocks (referred
to as Corqse(w;)) for making free blocks, as well as the time to copy valid pages
from victim U-blocks or D-blocks to a new block (referred to as Ceopy(w;)). Note
that if there is already a free page in the D-block or the associated U-block, the
write request does not incur any additional overhead. Using MergeCost,;,; (w;),
MergeCost (W) is given by

W]
MergeCost (W) = ZMergeCostmd (w;) (2)
i=1

where

Cerase Wi) + Ceopy (w;), if a merge operation occurs
0, otherwise.

MergeCost;,,(w;) = { (3)

Assume that MergeCount (W) denotes the total number of merge operations
performed for the given trace W. Many FTLs try to minimize MergeCount (W),
that is, the number of occurrences that a new U-block is allocated, by sharing
the existing U-block among multiple write requests. The higher the storage
utilization of U-blocks grows, the lower the frequency of merge operations tends
to be. For example, unlike the replacement block scheme, the log block scheme
uses the out-of-place scheme for U-blocks so that several updates to the same
logical block can be absorbed in the existing U-block regardless of the logical
page number. FAST goes one step further to increase the utilization of U-blocks
by allowing any updates to be logged in the current U-block.

However, Equation (3) tells us that it is equally important to reduce the cost
of the individual merge operation, MergeCost;,; (w;), to improve the overall
FTL performance. One way to reduce MergeCost;,; (w;) is to raise the chance of
partial and switch merge operations while preventing the full merge operation
from taking place as much as possible, so as to reduce Cerqse(w;) and Ceopy (w;). In
fact, two factors, MergeCount (W) and MergeCost;,; (w;), are dependent on each
other; hence, both factors should be considered carefully in designing FTLs to
minimize the overall merge cost.

3.2 Exploiting Block-Level Locality

Typical storage access patterns exhibit both the block-level spatial locality and
the block-level temporal locality. This observation has already been mentioned
in several literature including Ruemmler and Wilkes [1993] and Chang and
Kuo [2005].

The block-level spatial locality represents that the pages in the adjacent
logical blocks are likely to be updated in the near future. The block-level spatial
locality appears when two or more adjacent logical blocks are allocated by file
systems to the same file or to the same metadata such as FATSs (file allocation

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

40:12 . D. Jung et al.

tables), directories, i-nodes, and bitmaps. In this case, if several adjacent logical
blocks share a U-block, the storage utilization of U-blocks will increase.

In our Superblock FTL, we define the superblock as a set of adjacent logical
blocks that share D-blocks and U-blocks. The advantage of using the superblock
is that we can exploit the block-level spatial locality to increase the storage
utilization of U-blocks, while controlling the degree of sharing by adjusting the
superblock size. We define the degree of sharing for a physical block as the
number of logical blocks to which the pages, stored in the given physical block,
belong.

FAST achieves the best storage utilization for U-blocks by logging every
write request to a single log block regardless of the logical block number of the
target page. Hence, in the worst case, the degree of sharing in FAST is identical
to the number of pages within a block. As noted in Section 2.4, this tends to
increase the merge cost. The log block scheme is another extreme case, where
the degree of sharing is always limited to one. In the log block scheme, the
block-level spatial locality is not exploited at all, which curtails the utilization
of the log block. Therefore, we can notice that it is necessary to increase the
degree of sharing for better storage utilization, but not too much, so that the
merge cost can be kept low. We will explain the basic idea to reduce the merge
cost in Section 3.3.

On the other hand, the block-level temporal locality indicates that the pages
in the same logical block are likely to be updated again in the near future. The
log block used in the log block scheme is essentially the mechanism to capture
the block-level temporal locality, by redirecting the update requests to the same
logical block into the associated log block.

Our Superblock FTL exploits the block-level temporal locality by allocat-
ing more than one U-block to each superblock, hoping that the other pages in
the superblock will be updated soon by the subsequent write requests to the
same superblock. Usually, the merge operation is delayed until there is a short-
age of U-blocks for other superblocks. At the time the merge is required for a
superblock, there will be several U-blocks allocated for the superblock, many
pages of which are already invalidated due to the block-level temporal locality.
This effectively increases the opportunity of performing the partial or switch
merge operation instead of the costly full merge operation.

3.3 Hot—Cold Separation Using Page-Level Mapping inside a Superblock

We call a page hot if the page is relatively frequently updated compared to other
pages in the logical block. Otherwise, the page is cold. In the previous block-
mapped FTL schemes, the merge cost usually increases when both hot pages
and cold pages are stored in the same logical block together. To illustrate the
problem, consider the situation shown in Figure 4. In this example, we assume
that the number of physical pages per block is four and only a single U-block is
available in the system. For a given write trace W = < PO, PO, P5, P6, P8 >,
four hot pages, namely PO, P5, P6, and P8, are being updated.

In the log block scheme shown in Figure 4(a), each logical block possesses a
different U-block. To update P5 at w3, we have to merge D-block 0 with U-block

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

Superblock FTL: A Superblock-Based Flash Translation Layer o 40:13

Superblock 0
D-block 0 w U-block 0 D-block 0O D-block 0
PO | Invalid ~—» PO | Invalid PO | Invalid PO | Invalid
P WA o 55 P 87 \V ps [invaiia |y
P2 600 Free P2 /Lol U-block 0 P6 | Invalid U-block 0
P3 (601 Free P3 [/ Sold) W\ PO | Invalid P1 G PO | Invalid
D-block 1 U-block 1 D-block 1 ws 4 P5 /M8t D-block 1 \Ps e
e [Z8887) sy P 0547 o4 /5887 /u vo 8 P2 75887 | Wi s [)04,
ps [nvalid 1 P v ps | Invalid / P3 /SO
P6 | Invalid 4" Free P6 | Invalid | W4 P4 /ﬁfjﬁ/
QT Free A7, U-block 1 P7 S0l
7%
D-block 2 U-block 2 D-block 2 / Free Superblock 1
pe [Invalid |—» P8 [/Hdt/ pe [Invalid | Ws Free D-block 2 U-block 1
Po Ws Free Po (/G510 Free ps [Invalid > P8 [t/
P10 881/ Free P10 /S8 po 601 |Ws Free
P11 (/S50 Free P11 S0 P10 S8/ Free
P11 W Free
(a) Log block scheme (b) FAST (c) Superblock scheme

Fig. 4. Examples of handling write requests in block-mapped FTLs, when W = < PO, PO, P5,
P6, P8 >.

0 to make a free block. Since there are not enough free pages left in U-block 0, a
full merge operation should be performed, resulting in two erase and four page
copy operations. At ws, another block merge between D-block 1 and U-block 1
is required to give a free block to D-block 2. Although there is enough space
in U-block 1 to copy valid pages from D-block 1 (P4 and P7), a partial merge
operation cannot be taken, since the pages in D-blocks need to be arranged by
the in-place scheme. As a result, the merge cost at the moment is again two
erase and four page copy operations, and the total merge cost is given by four
erase and eight page copy operations.

In FAST (see Figure 4(b)), the block merge is not carried out until P8 is
updated at ws because all the previous update requests can be handled using
U-block 0. However, two full merge operations are still required at w5 as U-block
0 has the pages that belong to both D-block 0 and D-block 1. FAST first merges
D-block 0 with U-block 0 to generate the new D-block 0, and then merges D-block
1 with U-block 0 again for the new D-block 1. Thus, the merge cost in FAST is
given by three erase and eight page copy operations. Compared to the log block
scheme, MergeCost (W) is reduced by one erase operation, and MergeCount (W)
is also decreased from two to one.

Under our Superblock FTL scheme, assume that D-block 0 and D-block 1
are grouped together to form a superblock. If we can place all the hot pages to
D-block 0 and all the cold pages to D-block 1, as presented in Figure 4(c), we
can reduce not only the merge count but also the individual merge cost. Since
logical blocks in a superblock share a U-block, the merge operation is delayed
until w5 as in FAST. However, as all the invalid pages are now stored in D-block
0, only a single full merge operation is required between D-block 0 and U-block
0, resulting in two erase and four page copy operations for the total merge
cost.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

40:14

. D. Jung et al.

Table II. The Characteristics of Previous Work and Superblock FTL

Replacement
Block Scheme |Log Block Scheme | FAST Superblock
[Ban 1995] [Kim et al. 2002] | [Lee et al. 2007] | Scheme
D-blocks | Terminology Data blocks Data blocks Data blocks D-blocks
Management In-place In-place In-place Out-of-place
scheme
Max. degree of |1 1 1 N (the
sharing superblock
size)
U-blocks | Terminology Replacement | Log blocks Random and U-blocks
blocks Sequential log
blocks
Management In-place Out-of-place Out-of-place Out-of-place
scheme
Max. degree of |1 1 32 or 64 (the N (the
sharing number of superblock
pages in a size)
block)
Block Frequency high middle low low
merge |Average Cost middle middle high low

The key observation is that if we can dynamically arrange the pages into a
physical block according to their hotness, we can reduce the merge cost. It is
already pointed out in the previous study on page-mapped FTL schemes that
the performance of FTL can be improved by relocating hot pages and cold pages
to different physical blocks [Chiang et al. 1999]. Unfortunately, this technique
could not be used for traditional block-mapped FTL schemes, since the page
was not able to move outside the associated block boundary.

In our Superblock FTL, we still use the block mapping at the superblock
level, but we allow logical pages within a superblock to be freely relocated
in one of the allocated D-blocks and U-blocks by maintaining the page-level
mapping information within the superblock. During merge operations, we try
to separate hot pages from cold pages and put them into different D-blocks
(details will be explained in Section 4.3).

We summarize the characteristics of previous work and the proposed
Superblock FTL in Table II.

4. SUPERBLOCK FTL

In this section, we describe the design and implementation of the proposed
Superblock FTL in detail.

4.1 Overall Architecture

The basic idea behind Superblock FTL is to map pages that belong to N logical
blocks to any location in up to N + M physical blocks. N indicates the number
of logical blocks composing a single superblock, which is, in most cases, equal to
the number of D-blocks allocated to the superblock. M denotes the maximum
number of U-blocks that can be attached to each superblock.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

Superblock FTL: A Superblock-Based Flash Translation Layer o 40:15

We construct a superblock by combining several adjacent logical blocks in
order to utilize the block-level spatial locality. For example, if the superblock
size is four, four logical blocks whose logical block numbers are 0, 1, 2, and 3 form
a superblock 0. When a write request arrives for any page in the superblock,
Superblock FTL allocates an empty U-block and logs the write request in the
first page of the U-block.

A U-block is exclusively used by the associated superblock to exploit both the
block-level temporal locality and the block-level spatial locality. Once a U-block
is allocated to a superblock, the subsequent write requests to the superblock are
logged in the U-block sequentially. This out-of-place scheme is suitable for use
with the large block SLC or MLC NAND flash memory, in which pages should
be programmed in sequential order from the first page to the last page within
a block. When there are no more free pages in the U-block, another U-block
is allocated for the superblock, as mentioned in Section 3.2. Some of these U-
blocks are eventually turned into D-blocks during garbage collection. Further
details on manipulating D-blocks and U-blocks are given in Section 4.3.

In order to make Superblock FTL useful, we need to consider the following:
(i) how to maintain the mapping information compactly and efficiently, and (ii)
how to intelligently merge D-block and U-blocks to reduce MergeCount (W) as
well as the individual merge cost MergeCost;,; (w;). In the following text, we
attempt to answer these questions in detail.

4.2 Address Translation

4.2.1 Hybrid Mapping with Three-Level Mapping Table. Since Superblock
FTL utilizes the page-level mapping inside a superblock, the pages belonging
to NV logical blocks can be distributed anywhere in up to N + M physical blocks.
The page-level mapping information should be capable of covering all pages in
N + M Dblocks. In addition, the mapping information is frequently accessed by
various FTL operations. Therefore, maintaining the address translation infor-
mation efficiently and compactly is a challenging issue.

The simplest way of keeping such information in block-mapped FTLs is to
store LBA in the spare area of the corresponding page and then to scan all spare
areas in a block to find the particular page or to build the mapping information
on demand. In Superblock FTL, however, since the size of a superblock is much
bigger than that of a flash memory block, on-demand scanning incurs longer
latency than in other block-mapped FTLs.

Instead, we use spare areas more aggressively to record the entire page-
mapping information of each superblock. When user data are written in the
main data area, the up-to-date page-mapping information is also stored simul-
taneously in the spare area of the same physical page. In this way, we can avoid
any additional overhead in terms of space and flash operations. Although this
strategy looks simple, it is not straightforward to implement, since the spare
area is limited in its size.

To make the mapping information fit into the limited size of the spare area,
we organize the page-mapping table in three levels, as shown in Figure 5. The
overall architecture resembles the page table structure used in modern CPUs

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

40:16 . D. Jung et al.

<_ Logical block number + Logical page number —>
Superblock number PGD index PMD index :

PTEi
index > Page tables (PT)

32— (s+ m+t) bits s bits m bits t bits PTO
' PTE O
; ; PTE 1
Page global
directory (PGD)
| 1 Page middle
Offset 0 directory (PMD) PTE 211
.
Offset 1 Offset 0
PT1
P Offset 1
PTE 2
H t
Offset 21| PTE 21
251 |- - :
Offset 0)
Offset 1 PTE 2*2"1
Superblock
| H Page middle m
| : directory (PMD) 1271
> | PTE @m-1)%2!
Y 2%-1 Offset 0 @1
........... L ! PTE (2™-1)*2"1
Offset 2"-2
Offset 2"-1
PTE 2721

Fig. 5. The address translation in Superblock FTL with three-level page-mapping table.

for implementing virtual memory system. The first-level page table is the page
global directory (PGD) indexed using the superblock number and PGD index.
When the superblock size is N = 2%, PGD index is low s bits of the logical
block number. Each entry of PGD points to a page middle directory (PMD) that
holds 2™ entries. Each PMD entry, in turn, points to the location of one of 2™
page tables (PTs), whose entry (page table entry [PTE]) contains the physical
block number and the physical page number of the wanted data. Using the high
m bits of the logical page number, which we call PMD index, we retrieve the
location of PT from PMD and find the final PTE using the remaining ¢ bits of
the logical page number, PTE index. Note that 2™*? should be equal to the
number of pages in a block.

The role of PMD is to locate the up-to-date position of each PT. The loca-
tion of the up-to-date PMD is kept track of by PGD. While PGD is stored
in main memory, PMD and PTs are saved in the spare area of NAND flash
memory. Since the number of entries in PGD is equal to the number of logical
blocks, the memory overhead for PGD is comparable to other block-mapped FTL
schemes.

The rationale for this three-level mapping structure can be briefly explained
as follows. Let us consider a hypothetical situation where the spare area is
large enough to hold all the 27"**) PTEs for a given logical block. In this case,
the latest address translation information for any block can be retrieved from
the spare area of the most recently written page in the block. All we have to

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

Superblock FTL: A Superblock-Based Flash Translation Layer o 40:17

Main area
Spare area ———

PMD PTEs: 48-63
Data [l T] [T
Page global

directory (PGD) Ciata s (i
PMD PTEs: 16-31
Data T]

o

Superblock | pap index | PMD index | PTE index

Number

Superblock
3

0
1
2
3
_ r PMD PTEs:0- 1 ?
block 6
3 PMD PTEs: 32- 47
0
1
2
3

> T T (T
=
—7]

Superblock
5

'

Fig. 6. An example of the address translation in Superblock FTL.

do is to let PGD keep track of the physical location of the last page written for
each logical block.

In reality, however, the size of the usable spare area is far smaller than
what is required to store 2"+ PTEs. Our basic idea is to split 27 PTEs
into a set of 2" PTs and to record only the affected PT into the spare area of
the updated page. Consequently, the latest 27"+*) PTEs are distributed over 2™
different pages inside a superblock, which necessitates another level of data
structure, that is, PMD, to maintain the current locations of 2" PTs. Since one
of PT and PMD need to be changed whenever a page is updated, we write PMD
and the corresponding PT into the spare area along with the main data. Thus,
Superblock FTL works as long as there is a space for storing PMD and one PT
in the spare area. There is only one valid PMD in each logical block, whose
location is maintained by PGD.

4.2.2 Address Translation for SLC NAND Flash. Figure 6 illustrates an
example of address translation performed in Superblock FTL on large block
SLC NAND flash memory. For the large block SLC NAND flash memory, the
whole page table is divided into four separate PTs (i.e., m = 2) due to the space
limitation of the spare area within a single page. Since a block consists of 64
pages, each PT has 16 PTEs (i.e., t = 4).

Suppose that we would like to find the physical address corresponding to the
logical address whose logical block number is 17 and the logical page number is
12. The logical block number is divided into the superblock number 4 and PGD
index 1, and the logical page number is split into PMD index 0 and PTE index
12. As shown in Figure 6, we find the latest PMD for the logical block 17 from
PGD using the superblock number 4 and PGD index 1. Once PMD is read from
the spare area, we extract the first entry from PMD to find the location of PTO.
PTO holds PTEs from PTEO to PTE15, and the location of data can be found by
reading PTE12 from PTO.

When a logical page is updated, the up-to-date page-mapping information is
also saved in the spare area of the same physical page. For instance, suppose
that the logical page that we find in the previous example is updated. In this
case, PTE12 is modified to point to the location that the logical page will be
written, and the first PMD entry is also changed to locate the same physical

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

40:18 . D. Jung et al.

20bytes 21bytes 5 bytes 18 bytes

Physical block mapping table,
(PBMT)

|«— Data Information (DI) —#>t=e- Page table (PT) —]

Page middle directory(PMD)

(a) Spare area
» Bad block indicator
» Error correction code Error correction code
(ECCy) for data area (ECC) for spare area Page-director entry, Page-director entrys
ECC, ECC, ECC, [> Logical sector number s g, PR o B {PDE)
[1]3Bytes [3Bytes | 3Bytes [3Bytes [3Bytes | 4 Bytes 3 bits 6 bits e o o o 3 bits, 6 bits
|«—— Error correction code —————»} Page index —» Page index —
Block index lock index
(b) Data Information (d) Page middle directory (PMD)
Page table entry « Pagetableentrys _,
(PTE) > (PTE s)
8 635
3Bytes | 3Bytes | 3Bytes | 3 Bytes | 3Bytes | 3 Bytes | 3 Bytes 3 bits 6 bits e o o o o o o o o 3 bits 6 bits
PBI PBN, PBN, PBN. PBI PBN. PBN, < Pageindex -5 Page index
Mo ! 2 ° Ne ° ° Block index Block index
(c) Physical block mapping table (PBMT) (e) Page table (PT)

Fig. 7. The spare area format for SLC NAND flash memory in Superblock FTL for recording the
page-mapping information.

page, since it now has the new PTO. After the page is written with the modified
PMD and PTO, the second PGD entry is changed to point to a new location.
As the up-to-date PMD and the corresponding PT is stored in flash memory
whenever a page is updated, we can guarantee that each entry of PMD and PT
always point to the valid page.

Since our FTL should read PMD and the corresponding PT from flash mem-
ory every time when the FTL read, write, or copy a page, we introduce a map
cache to reduce the number of flash read operations. A map cache entry con-
sists of PMD and one of the associated four PTs that are used to record the
page-mapping information of a single logical block. The number of map cache
entries is fixed and we manage those entries based on a least recently used
(LRU) replacement policy. This cache mechanism is similar to those used in
the log block scheme and FAST. Our experimental results show that the small
number of map cache entries works quite well (see Section 5.7).

Figure 7 depicts the overall layout of the spare area for large block SLC
NAND flash memory. The spare area is divided into four sections: data infor-
mation (DI), physical block mapping table (PBMT), PMD, and PT, as presented
in Figure 7(a). DI consists of a bad block indicator, 15 bytes of error correction
code (ECC), and a logical sector number (see Figure 7(b)). The logical sector
number in DI is typically used for recovery. PBMT is an array of seven physi-
cal block numbers, as shown in Figure 7(c). Each PMD has four page directory
entries (PDEs) for locating four PTs (see Figure 7(d)), and each PT consists of
16 PTEs (see Figure 7(e)).

In principle, each PDE or PTE needs to point to a physical location of a page
in flash memory, where the location is identified by the physical block number
and the page offset inside the block. Allowing every PDE or PTE to specify the
physical block number redundantly is not only wasteful but also impossible
due to the limited size of the spare area. Instead, we adopt an indirect mapping
to accommodate the whole information in the spare area. In our Superblock
FTL, PBMT has an array of actual physical block numbers allocated for the

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

Superblock FTL: A Superblock-Based Flash Translation Layer o 40:19

Table III. The Spare Area Formats for SLC and MLC NAND Flash Memory in Superblock FTL

For SLC NAND For MLC NAND
(m=2,t=4) (m=3,t=4)
Unit Size | Size Unit Size | Size
Field Name Count (bit) (byte) | Count (bit) (byte)

Bad block indicator 1 8 2 1 16 2

DI Logical sector number 1 32 4 1 32 4
ECC for data area 4 24 12 8 56 56
ECC for spare area 1 24 3 1 48 6
PBMT | Physical block number 7 24 21 9 24 27
PMD PDE Block index 4 3 2 8 4 4
PDE Page index 4 6 3 8 7 7
PT PTE block index 16 3 6 16 4 8
PTE Page index 16 6 12 16 7 14

Total 64 128

superblock, and the block index in PDE or PTE is used to retrieve the proper
physical block number from PBMT. Then, the page index is used to identify the
target physical page in the block.

Since there are 64 pages in a physical block of the large block NAND flash
memory, 6 bits of page index in PDE or PTE are sufficient to locate any physical
page in a block. The block index in PDE or PTE is 3 bits, which can indicate one
of eight physical blocks. There are only seven physical block numbers in PBMT
due to space limitation, and the eighth index has a special meaning. If the block
index is specified as 7, it points out that the target physical block number is the
same as that of the upper-level data structure; in case of PDE, it represents that
the target PT is on the same physical block with PMD. For PTE, it denotes that
the target page is on the same physical block with PT. This indirect mapping
scheme for physical block numbers implies that the total number of D-blocks
and U-blocks that can be allocated to a superblock is limited to eight in our
current implementation.

4.2.3 Address Translation for MLC NAND Flash. Since the architectural
characteristics of MLC NAND flash memory are different from those of SLC
NAND, the format of the mapping table needs to be adjusted. There are some
notable differences that affect the mapping table structure. First, the number
of pages in a block is increased from 64 to 128; hence, each PTE entry requires 7
bits for page index. This also doubles the total number of PTEs managed by PTs.
Second, a larger portion of the spare area in MLC NAND should be reserved
for ECC. SLC NAND usually employs ECC for 1-bit error correction among
512-byte data. On the contrary, most MLC NAND manufacturers recommend
to use ECC that can correct at least 4-bit errors per 512-byte data. The ECC
capable of this requires 62 bytes for both 4-KB data and 128-byte spare area,
implying almost half of the spare area is dedicated to ECC.

Table III compares the spare area formats for SLC and MLC NAND flash
memory with 4-bit ECCs under Superblock FTL. For MLLC NAND flash memory,
the data information is comprised of 2-byte bad block indicator, 4-byte logical
sector number, 56-byte ECC for 4-KB data, and 6-byte ECC for 128-byte spare

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

40:20 . D. Jung et al.

& Superblock: /

Pageufme

Page global Superblock: /+1

=% [EEEE [T oo

Map page

Superblock: / \

Superblock: j+k-1

E h E Map page: C—J

Fig. 8. Map page structure.

area itself. Due to the increased size of ECC, a single spare area can only ac-
commodate 16 PTEs (i.e., t = 4), and the whole PTEs should be divided into 8
PTs. Accordingly, each PMD has 8 entries (i.e., m = 3). All the remaining space
is assigned to PBMT. PBMT has 9 entries, which allows to allocate up to 10
physical blocks to a superblock.

MLC NAND flash, however, often requires stronger ECC for higher reliabil-
ity. Protecting 4-KB data area with 8-bit/512-byte BCH error correction requires
104 bytes of spare area (out of 128 bytes). This implies that almost all the spare
area needs to be dedicated to ECC, making it difficult to utilize the spare area
for keeping the page-level mapping information. Recently, manufacturers are
introducing a new MLC NAND flash architecture, which expands the spare
area size to 218 bytes (per 4-KB data) to accommodate stronger ECC as well
as other management information [Cooke 2007]. With this type of NAND flash
memory, we can still exploit the spare areas for storing the page-level mapping
information.

However, conventional MLC NAND flash, which has a standard 128 bytes
of spare, is widely employed. In this case, Superblock FTL may adopt an alter-
native strategy, which keeps the page-level mapping information in a separate
page called a map page. For each physical block, Superblock FTL reserves at
least one map page to store the page-level mapping information. The structure
of the map page is quite similar to that of the spare area except that the map-
ping information is organized in two levels without PMDs. As illustrated in
Figure 8, each PGD entry keeps track of the location of each map page. When a
page is accessed, Superblock FTL looks up the corresponding map page in PGD.
Whenever a new map page is written to flash memory, PGD is also modified to
indicate the up-to-date location of the map page.

Since the size of the map page is much larger than that of the spare area,
a single map page can contain PBMTs and PTs for multiple superblocks. If
the whole page is dedicated to a single superblock (i.e., 2 = 1 in Figure 8), the
superblock size can grow up to 15 (IV = 15) and each superblock may have up to

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

Superblock FTL: A Superblock-Based Flash Translation Layer o 40:21

17 U-blocks (M = 17). On the other hand, if the superblock size is four (N = 4)
with the maximum number of U-blocks being restricted to four (M = 4), a
single map page can hold the mapping information for six superblocks (£ = 6
in Figure 8).

Unlike mapping information stored in spare area, writing a map page re-
quires an additional flash write operation because a map page is stored in a
separate page. This connotes that updating a map page increases the write
traffic of NAND flash memory. To alleviate the traffic, Superblock FTL caches
map pages like the map cache. When the page-level mapping information is
modified, the cached page buffers the update instead of writing the map page
to flash. The page is flushed to flash memory either when the associated su-
perblock is fully merged or when the dirty map page needs to be evicted from
the cache. Superblock FTL even uses the cache to accelerate accesses to map
pages. When a map page is fetched from flash memory, it is cached in memory.

4.3 Merge Operation

We need an intelligent merge mechanism in order to reduce the number of erase
operations and valid page copies, which are the main sources of performance
degradation. A merge operation is invoked when one of the following situations
occur; (i) when a block is completely invalidated, (ii) when a free block cannot be
assigned to a superblock because the total number of D-blocks and U-blocks al-
located for the superblock reaches the limit, and (iii) when there is no free block
to allocate. For the first situation, the block is immediately reclaimed (switch
merge). Whenever a page is invalidated, we update the number of valid pages in
the corresponding block and see if it is the last valid page in the block. Since no
pages are copied in this situation, the merge requires only one erase operation.

In the second situation, a merge operation is needed even though free blocks
are available. This is because the number of blocks composing a superblock is
limited to 8 for SLC NAND and 10 for MLLC NAND in our current implementa-
tion. The merge process for this case is illustrated in Figure 10. First, we load
all the mapping information for the given superblock sb by reading spare areas
(line 3) and find a victim block that has the minimum number of valid pages
(line 5). The actual reclamation of the victim block is done by the algorithm
shown in Figure 9. The valid pages in the victim block are first copied into the
last U-block hoping for the partial merge. In case it becomes full, we allocate a
new free block and copy the remaining pages to the block. When all the valid
pages are copied, the victim block is erased. This routine is repeated until two
free PBMT entries are generated. This particular number is determined by the
simulation, as it shows the lowest merge cost.

The final situation is when no free block is available. In this situation, a
victim superblock is selected and then U-blocks and D-blocks in the superblock
are merged to make free blocks. To select the victim superblock, we maintain
an LRU list of superblocks that have at least one U-block. Once the victim is
selected, all D-blocks and U-blocks that belong to the superblock are merged
together so that the superblock is composed of D-blocks only. The detailed merge
process is illustrated in Figure 11.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

40:22 . D. Jung et al.

Algorithm 1. Copying valid pages

1: procedure SIMPLECOPYANDCOMPACT(sb, src)

2 dest := GetLastU Block(sb) > Gets the last allocated U-block of sb
3 ret :=1

4: RemoveFromSB(src) > Removes src from sb
5: for all valid page p in block src do

6: if dest has no free page then

7
8

ret :=0
: dest := AllocReservedBlock()

9: AddT oS B(sb, dest) > Adds dest to sb
10: SetLastU Block(sb, dest) > Sets dest as the last U-Block of sb
11: end if
12: ValidPageCopy(p, dest)

13: end for
14: Erase(src)
15: if ret = 0 then

16: AddToReservedBlock(src)
17: end if
18: return ret

19: end procedure

Fig. 9. Copy and compact procedure. Valid pages in the src block are copied to free space, and src
is erased.

Algorithm 2. Merge some - Case 2

1: procedure MERGESOME(sb)

2 nkreed :=0

3: LoadAllM apTable(sb) > Gets all block information of sb
4 repeat

5 victim := FindVictimGreedy(sb) > Finds a block which has the minimum number of

valid pages
6 nFreed := nFreed + SimpleCopyAndCompact(sb, victim)
T until nFreed < 2
8: end procedure

Fig. 10. Merge algorithm invoked when the number of D-blocks and U-blocks of a superblock
reaches the physical limit.

The first step is to load all the mapping information for the victim superblock
sb (line 3). Then, we classify blocks that belong to the superblock into hot blocks
and cold blocks (line 7). The hot/cold information is stored by using 1 bit for each
PBMT entry. D-blocks are initially marked as cold and U-blocks as hot when
they are assigned to a superblock.

In the second step, all valid pages in hot blocks are packed in a new free block
(lines 8 through 12). If the last U-block does not have any invalid pages, free
pages in the U-block can be used to copy valid pages from other hot blocks, even-
tually being converted to a D-block. Otherwise, free pages in the last U-block are
discarded as it cannot be a D-block (lines 4 through 6). When all valid pages of a
hot block are migrated, the block is erased for further allocation. If free pages in
the newly allocated block are exhausted, another free block is allocated to pack
hot blocks. After compacting hot blocks, pages in cold blocks are also packed in
the same manner (lines 13 through 17).

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

Superblock FTL: A Superblock-Based Flash Translation Layer o 40:23

Algorithm 3. Merge all - Case 3

1: procedure MERGEALL(sb)

2 dest := GetLastU Block(sb)

3 Load AlUM apT able(sb) > Gets all block information of sb
4: if dest has one or more invalid pages then

5: Invalidate AllFreePages(dest) > Abandons free pages of dest
6: end if

7 < H,C >:= ClassifyHotColdBlocks(sb)

8: for all hot block h in H do

9: if h has no free page and has invalid pages then

10: SimpleCopyAndCompact(sb, h)

11: end if

12: end for

13: for all cold block ¢ in C' do

14: if ¢ has no free page and has invalid pages then
15: SimpleCopy AndCompact(sb, c)
16: end if

17: end for

18: for all block in sb do

19: SetCold(block) > Sets all blocks of sb into D-blocks
20: end for

21: end procedure

Fig. 11. Merge algorithm invoked when no free block is available in the system.

copy (1)

Victim superblock FL
U-block

P3 U-block P6 P7 ¥
b DR V5 (AT P L

[::#] Invalid page
Cold page

Hot page

Free page

Copy (2)

7]

New superblock
New D-block
B4

P3 P2 P4 PS5 P6 P7 PO P13

New D-block T 7
o X (A R

Fig. 12. An example merge operation in Superblock FTL.

Finally, all the blocks in the superblock become D-blocks and marked as cold
(lines 18 through 20). The merge process completes by removing the victim
superblock from the LRU list. Let us assume that the victim superblock was
composed of N + « blocks, where N is the superblock size and « denotes the
number of U-blocks associated with the superblock. As a result of MERGEALL
algorithm, we restructure the superblock to have only NV D-blocks, reclaiming
a free blocks from the superblock.

Our merge algorithm is based on the observation that U-blocks tend to have
relatively hot pages, while D-blocks have cold pages. Clustering hot pages into
the same block is desirable for future merge operations, since it is highly proba-
ble that hot pages are updated again [Chiang et al. 1999]. Likewise, cold pages
will not be updated for a long time or even never be updated. Therefore, cluster-
ing cold pages in the same block is helpful for improving efficiency of upcoming
merge operations.

Figure 12 shows an example merge operation performed in Superblock FTL.
In the example, the superblock size is two, and two additional update blocks
are assigned to the superblock. As specified in Figure 11, hot pages in By are

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

40:24 . D. Jung et al.

first copied into free pages in the last U-block Bs (Step (1)), and then pages in
cold blocks are clustered into a new block By (Step (2)). We can see that hot
pages and cold pages are separated from each other simply by rearranging the
location of each valid page inside the superblock during merge operations.

Unlike other block-mapped FTLs, the distinction between D-blocks and U-
blocks is somewhat confusing in Superblock FTL, as each page can be located
in any N + M physical blocks inside a superblock. Let Ny, and N, represent
the number of D-blocks and the number of U-blocks for the given superblock i,
respectively. Basically, whenever a new free block is allocated to the superblock
i,itis regarded as a U-block, increasing N, by 1. These U-blocks are eventually
turned into D-blocks during garbage collection.

In the first and the second merge situations, N4, and/or N,, may be decreased
depending on the type of victim block. If the final number of physical blocks is
same as N, that is, Ng, + N,, = N as a result of the merge operation, all U-
blocks are promoted to D-blocks. Similarly, in the final merge situation where
Ny, + Ny, blocks are compacted into N physical blocks, all the resulting blocks
are set to D-blocks.

To improve response time of Superblock FTL, merge operations can be per-
formed in the background. When there is no pending requests, Superblock FTL
can explicitly trigger merge operation to produce free space. This distributes the
merge cost into idle periods, hiding the cost during handling normal requests.
The background merge is especially effective when the intervals between bursts
of requests are long. Numerous studies have already mentioned the background
merge as a sole research problem. Chang et al. [2004] proposed a garbage col-
lection scheme for real-time systems, which performs merge operations in the
background as a separate thread. Choudhuri and Givargis [2008b, 2008a] also
suggested partial block cleaning for guaranteeing performance, which divides
the merge process into several steps and schedules each step among normal re-
quests. We can address the background merge in the same way. However, this
background merge is applicable not only to Superblock FTL but also to all other
FTLs and flash file systems, and most literatures have addressed only FTL ar-
chitectures and algorithms. In addition, a number of distinct issues, such as
how many blocks to be reclaimed and when background merge is performed,
arise when we implement background merge. These issues are dependent on
the workload characteristics rather than the architectures of FTLs. Considering
these, background merge can be regarded as an orthogonal issue in designing
FTLs. Thus, we do not disscuss the details of the background merge in this
article and leave it as future work.

4.4 Reliability Issues

In designing an FTL, another important concern is to ensure reliability in any
harsh environment. In particular, FTLs usually confront a situation where the
system is suddenly shut down due to system failure or instant power outage.
The ramification of this is that FTLs lose all the information stored in in-
memory data structures. Especially, missing PGD is critical to our Superblock
FTL, as it cannot work properly without the top-level mapping information.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

Superblock FTL: A Superblock-Based Flash Translation Layer o 40:25

Another problem is that the metadata of FTL may remain inconsistent after
sudden power failure because any FTL operation in progress is aborted. For
example, allocating a new U-block to a superblock involves two steps: (i) the
U-block is removed from the free block list, and (ii) the U-block is added in
the mapping table for the superblock. If the system had been down somewhere
between Step (i) and (ii), the U-block would be neither on the free block list nor
allocated to any superblock. Therefore, after power-on, it is required to identify
the exact location interrupted and to roll back or redo the failed operation
correctly for maintaining consistency among FTL metadata.

Note that this is not a unique problem that arises only in Superblock FTL.
Every FTL faces the same problem, and we can apply a similar approach that
is used in other FTLs. In particular, taking a snapshot is one of the common
techniques used in various flash-based storage systems [Kim et al. 2002; Yim
et al. 2005; Lim and Park 2006; Bityutskiy 2005], and here, we briefly outline
the recovery strategy from sudden power-off based on snapshots.

When Superblock FTL is normally shut down, a full snapshot is written into
flash memory. The full snapshot consists of the following information: PGD,
the free block list, the U-block list, and the valid page counter for each block.
Therefore, Superblock FTL can restore the up-to-date states from the full snap-
shot after FTL is gracefully turned off. As the full snapshot contains PGD, the
size of the full snapshot is proportional to the capacity of flash memory, and
the snapshot can occupy several hundreds of pages. Superblock FTL tries to
reduce the number of written pages for the snapshot by writing only the mod-
ified pages. In the worst case, however, the entire snapshot should be written.
If 32GB of SLC NAND flash is employed, the PGD size is 768KB and the size
of the other information including the list of free blocks and U-blocks and the
valid page counters is about 216KB. In total, the full snapshot size is 984KB.
In case of MLLC NAND flash with map pages, the full snapshot size is 70KB due
to the reduced the PGD size (8KB) and the increased block size. As a result,
maximum 147.1ms and 16.3ms are required for 32GB of SLC NAND and MLC
NAND, respectively.

The full snapshot size is a linear function of the flash memory capacity. This
implies that taking the full snapshot with a huge capacity of flash memory
takes a large amount of time. Even though 1 TB of MLLC NAND flash is used,
however, the full snapshsot size is 2.2MB,? and the time taken to write the full
snapshot becomes 507.2ms, still being less than 1 second.

Whenever a block is allocated, we take a partial snapshot, which contains
the address of the allocated block and the list of written pages with their LBAs
and original page addresses after the last allocation. The partial snapshot is
organized to fit into a single physical page. Even when no block is allocated, the
partial snapshot is taken if the list of updated pages exceeds the partial snap-
shot size. After writing one or two blocks of the partial snapshots, Superblock
FTL takes a full snapshot. Writing a partial snapshot results in 1.56% of ex-
tra page write operations when a block consists of 64 pages. As the utilization

2The PGD size is 256KB. The size of valid page counters is 1,792KB, and the list of U-blocks and
free blocks occupies 192KB.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

40:26 . D. Jung et al.

of a block decreases, the overhead tends to grow. However, since the average
utilization in Superblock FTL is usually higher than 90%, the added overhead
remains less than 2% of total write operations.

The location of both the full snapshot and partial snapshot are indirected
from the first few fixed blocks of flash memory. If a full snapshot is taken or
blocks are allocated for partial snapshot, a page keeping the locations is written
to the fixed areas. To prevent wear out of the fixed blocks, we can use multiple
levels of indirections. Note that this technique has been popular in flash-based
storage systems [Yim et al. 2005; Bityutskiy 2005].

During the system start-up, Superblock FTL rebuilds the up-to-date data
structures from snapshots. It first initializes in-memory data structures with
the information in the last full snapshot. Then Superblock FTL modifies data
structures reflecting the information stored in any partial snapshots taken af-
ter the full snapshot. Finally, Superblock FTL scans those pages in U-blocks
written after the last partial snapshot, updating PGD, PMDs, and PTs (or map
pages) with the information stored in spare areas (DI), accordingly. For 32GB
SLC NAND flash memory, the full snapshot size is about 984KB. If two blocks
are assigned for logging partial snapshots, there are at most 128 partial snap-
shots to be read. With the partial snapshots, Superblock FTL replays allocation
and page writes by modifying PGDs. After the last partial snapshot, the loca-
tions of updated pages are unknown. In order to find these pages, we should
investage all U-blocks and scan the pages updated after the last partial snap-
shot. This requires at least two spare reads for each U-block for identifying its
logical block address and the end of the log in it. In addition, one spare read
for each written page. For 32GB SLC NAND, 8,192 extra blocks are assigned.
Therefore, about 16,640 spare areas including those of updated pages should be
scanned. Overall, the estimated initialization time is about 587.9ms. If 32GB
MLC NAND flash memory (with the map page) is employed and one block is
assigned to partial snapshots, the full snapshot size is roughly 70KB and at
most 128 partial snapshots exist. For 32GB MLC NAND, we currently allocate
2,048 extra blocks; hence, at least 4,096 spare areas need to be scanned. As a
result, the initialization time is estimated as about 283.0ms.

Wear leveling is also an important issue in designing flash-based storage,
since NAND flash memory has limited erase cycles. However, wear leveling
is beyond the scope of this article, being a subject of another study. Other re-
searchers already proposed several wear leveling schemes that can be applied
to numerous FTLs [Jung et al. 2007; Chang 2007]. Furthermore, an abstraction
layer such as UBI [(MTD) 2008] has been proposed that provides wear leveling
transparent to the upper layer. Therefore, Superblock and other FTLs can adopt
one of these solutions to achieve wear leveling.

5. PERFORMANCE EVALUATION

This section evaluates the performance of the proposed Superblock FTL. For
comparison, we have also evaluated two previous block-mapped FTL schemes,
the log block scheme [Kim et al. 2002] and FAST [Lee et al. 2007], and one page-
mapped FTL scheme, DAC (Dynamic dAta Clustering) [Chiang et al. 1999].

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

Superblock FTL: A Superblock-Based Flash Translation Layer o 40:27

Table IV. Traces used for Evaluation

Total The Number

Storage of Sectors
Trace Description Size (MB) Written
PIC This trace models the workload of digital cameras. Pic- 8,192 55,145,707
ture files whose average size is 1.9MB are created and
deleted.
MP3 This trace models the workload of MP3 players. MP3 8,192 56,237,750
files whose average size is 4.4MB are created and
deleted.
MOV This trace models the workload of movie players. 8,192 54,360,116
Movie files whose average size is 681MB are created
and deleted.
PMP This trace models the workload of portable media play- 8,192 55,614,913

ers (PMPs). A number of picture files, MP3 files, and
movie files are created and deleted.

PC This trace is extracted from a real user activity on a | 32,768 28,951,277
desktop of personal usage during 5 days.
PCMark | This trace is obtained by running PCMark05 HDD | 32,768 19,477,495
tests five times. The tests consist of Windows XP start-
up, general application loading, general hard disk us-
age, virus scanning, and writing files.

Install This trace is collected during the installation of gen- | 40,960 24,472,089
eral applications in SYSmark 2007 preview.
SYSmark | This trace is gathered while performing all scenar- 40,960 32,962,880
ios in SYSmark 2007 preview. The scenarios include
e-learning, office productivity, video creation, and 3D
modeling with real applications.

5.1 Evaluation Methodology

We have implemented trace-driven simulators for the log block scheme, FAST,
DAC, and the proposed Superblock FTL. The workload is chosen to reflect the
representative storage access patterns of multimedia mobile devices and laptop
computers. Table IV summarizes the characteristics of traces used in this arti-
cle. These traces are extracted from disk access logs on FAT32 and NTF'S file
systems by using DiskMon [Russinovich 2006]. Four traces, PIC, MP3, MOV,
and PMP, synthetically model the workload of digital cameras, MP3 players,
video players, and portable media players. The PC trace is the storage access
trace of a real user during 5 days, which includes Web surfing, e-mailing, word
processing, preparing presentations, and playing MP3 songs and movies.
PCMark [Futuremark Corp. 2005] and SYSmark [BAPCo 2007] are popular
benchmarks for desktop or laptop computers. PCMark is a series of synthetic
benchmark tools that measure the overall performance and the performance
of individual components, such as CPU, memory, graphics card, and hard disk
drive (HDD), in typical home PC usage. Our PCMark trace is obtained from
HDD Test suite, which is one of PCMark test suites where the performance of
the hard disk is measured by simulating Windows XP start-up, application load-
ing, general hard disk usage for several common applications, virus scanning,
and file writes. SYSmark is an application-based benchmark that reflects usage

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

40:28 . D. Jung et al.

patterns of business uses in the areas of video creation, e-learning, 3D model-
ing, and office productivity. SYSmark differs from PCMark in that SYSmark
emulates the real-world scenarios by actually installing popular applications
that many people use every day such as Microsoft Office, Adobe Photoshop,
WinZip, and many others. The Install trace represents disk activities during
the installation of these applications in SYSmark, and the SYSmark trace is
obtained while the SYSmark benchmark is running. The first four traces are
from systems running on FAT32 file system and model the usage pattern for
mobile embedded devices, while the others are for general computer systems
running on NTFS file system.?

The main performance metric we use is the total merge cost MergeCost (W)
for a given trace W. As described in Section 3.1, it is a function of the number of
erase operations and the number of valid pages copied during merge operations.
The simulators model the timing parameters related to current technologies as
exactly as possible. The actual value of MergeCost (W) is calculated based on
the parameters of the large block SLC and MLC NAND flash memory shown
in Table I. In addition, we have measured the average utilization of U-blocks,
Uqyg, for each FTL scheme. The utilization of a U-block is defined as a fraction of
written pages when the block is selected as a victim during the merge operation.
The evaluated NAND flash memory size ranges from 8GB to 40GB depending
on the configuration where each trace is obtained (see Table IV).

Unless otherwise stated explicitly, we have performed our experiments in the
following conditions. The superblock size is four (N = 4), and the number of map
cache entries is 16.* The number of available U-blocks is initially configured
as 2,048 for 8GB, and 8,192 for 32GB and 40GB. These numbers correspond
to 2.5% to 3.1% of the total number of blocks in NAND flash memory.® Before
each run starts, the whole D-blocks are filled with valid pages so there are
no free pages available in D-blocks. Our experiments are performed both on
the large block SLC NAND and on the MLC NAND flash memory, but due to
space limitation, our analysis focuses on the results obtained on the large block
SLC NAND flash memory. Results on the MLLC NAND flash are briefly given
in Section 5.8.

5.2 Overall Performance for Original Traces

Figure 13 compares the merge cost, MergeCost (W), for each FTL scheme. There
are four bars for each trace, which correspond to the result of DAC, the log block
scheme, FAST, and Superblock FTL, respectively. We break down the merge cost
into the time spent on manipulating map cache entries (CACHE), copying valid
pages (Copry), and performing erase operations (ERASE).

First, we can observe that DAC outperforms other block-mapped FTLs in
most traces except for PIC and MP3 traces. This is because the flexibility of

3The results of the last four traces (PC, PCMark, Install, and SYSmark) are included in this article
as the proposed Superblock FTL can be also used inside flash SSDs (solid state disks).
4One entry can cache the mapping information stored in a spare area of a single page.
5Tt is known that most commercial NAND flash-based storage reserves about 5% of the total number
of blocks for the purpose of FTL’s internal use such as U-blocks, bad block remapping, and snapshots.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

Superblock FTL: A Superblock-Based Flash Translation Layer o 40:29

e 14 14000
12000
10000
8000
6000
4000
2000

8000
6000
4000 -
2000 L

8000
6000
4000
2000 .

Merge cost (second)
Merge cost (second)
Merge cost (second)

Merge cost (second)

0 0 0 0
DAC Log Block FAST Superblock DAC Log Block FAST Superblock DAC Log Block FAST Superblock DAC Log Block FAST Superblock

(a) PIC trace (b) MP3 trace (¢) MOV trace (d) PMP trace

— 7000 = 2000 5 6000 2500
| 1800 s
1600 g s000

1400 8 4000
1200 =
1000 & 3000

S
600 g 2000

2000

@
3
3

Merge cost (second)
3 3
g8 g
8 8

0!
@
8
8
8
Merge cost (second;
©
g
8

=2 400 3 1000
@ 1000 Lo [G%e]
= [200 =

o

o LEH 0 1 ol
DAC Log Block FAST Superblock DAC Log Block FAST Superblock DAC Log Block FAST Superblock DAC Log Block FAST Superblock

(e) PC trace (f) PCMark trace (g) Install trace (h) SYSmark trace

Fig. 13. Comparisons of the merge cost in DAC, the log block scheme, FAST, and Superblock FTL
for original traces.

the page-mapped FTL scheme effectively avoids the overhead in performing
full merge operations as much as possible by clustering pages with similar
update frequency into the same region. In PIC and MP3 traces, it turns out
that the number of U-blocks is not enough to identify hot pages from cold pages
accurately. On the other hand, the copy costs of DAC over MOV and PMP traces
are very small, since the average file size is big enough to correctly cluster
pages with 2,048 U-blocks. Our analysis indicates that the overhead of DAC
is heavily influenced by the number of available U-blocks. In Section 5.5, we
will examine the impact of the number of U-blocks on the merge cost in more
detail.

Overall, Superblock FTL exhibits noticeably smaller merge costs than other
block-mapped FTL schemes. Superblock FTL outperforms FAST by reducing
the merge cost by 41% to 88% over the whole traces. In particular, most of the
benefits come from the decrease in the number of valid pages copied during
merge operations; in comparison to FAST, Superblock FTL reduces the time
spent on copying valid pages by up to 99.8% for PCMark, and by 43% to 56% for
other traces. The result of Superblock FTL over PCMark trace is outstanding as
comparable as that of DAC. Since the number of blocks touched by the PCMark
trace is small, every superblock can have four U-blocks (the maximum value),
and merge operations are delayed as long as possible.

We also point out that the map cache manipulation time in Superblock FTL is
almost negligible. This includes the time to read the page-mapping information
from spare areas as necessary, but the overhead is only 0.8% to 1.7% of the total
merge cost over all traces except for PCMark. In the PCMark trace, the cache
manipulation time occupies 11.8% of the merge cost (MergeCost (W)), but the
time accounts for only 0.9% of the total write cost (WriteCost (W)).

5.3 Overall Performance for Aligned Traces

Apparently, the performance of block-mapped FTLs will increase if a large
amount of data are written sequentially, since it increases the chance of switch
merge operations; U-blocks are sequentially updated and they can be switched

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

40:30 . D. Jung et al.

Table V. The Proportion of Aligned and Unaligned Requests
for 2KB Page Size

Original Trace Aligned Trace
Trace Aligned | Not Aligned | Aligned | Not Aligned
PIC 0.1% 99.9% 98.2% 1.8%
MP3 1.1% 98.9% 98.8% 1.2%
MOV 0.2% 99.8% 99.8% 0.2%
PMP 0.7% 99.3% 99.2% 0.8%
PC 1.7% 98.3% 93.4% 6.6%
PCMark 1.3% 98.7% 97.3% 2.3%
Install 0.6% 99.4% 97.9% 2.1%
SYSmark 0.7% 99.3% 97.4% 2.6%

with the corresponding D-blocks without copying valid pages. In Figure 13,
however, we can see that block-mapped FTLs consume most of their time on
copying valid pages even for PIC, MP3, MOV, and PMP traces, which are ex-
pected to show relatively sequential write patterns. Specifically, the number of
copied pages exceeds the number of pages written in these traces and, unlike
our expectations, full merge operations are mostly performed. This implies that
most write requests are not handled as sequential ones.

We have investigated the reason of this phenomenon, and it is revealed that
most write requests are not aligned to the page size of NAND flash memory.
In consequence, the last page of a request is overlapped with the first page of
the following sequential request. For instance, assume that there are two se-
quential write requests w; and wg, where w; writes 8 sectors from LBA #3 to
#10 and wo writes another 8 sectors thereafter from LBA #11 to #18. When the
page size is 2KB, w is essentially treated by FTL as a write request of 3 pages
from LPA (logical page address) #0 to #2, and wq as a write request of 3 pages
from LPA #2 to #4. Even if the original requests form a sequential write pat-
tern, FTL regards this as nonsequential write requests where the overlapped
page (LPA #2) is updated twice. When w; is arrived, the overlapped page is
first written to a U-block, and then the page is rewritten to the same U-block
while ws is processed. As a result, it will be required to perform an expensive
full merge operation later to reclaim the U-block, instead of a switch merge
operation.

The left column in Table V shows the proportion of aligned and unaligned
requests in each trace when the page size is 2KB. We can see that the starting
LBAs of almost every write request are not aligned to the page boundary. We
believe the generation of such unaligned write requests is closely related to the
location of the disk partition where the trace is collected. In general, a disk
partition can start at any point of a hard disk, and our study shows that the
first disk partition usually begins at the 63rd sector. Since the unalignment is
originated from the initial location of the particular disk partition, we have ad-
justed our traces by shifting sector numbers by a fixed offset. The right column
in Table V presents the resulting statistics on the proportion of aligned and
unaligned requests. We can observe that most requests are now aligned to 2KB
page size.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

Superblock FTL: A Superblock-Based Flash Translation Layer o 40:31

7000 500 5000 —

5 4500

aohel
6000 == G

— Emee § 3500 § 400 4§ 4000

5000 8 3000 S 3501 4§ 3500

4000 £ o500 2 300 1 3000

3 2500

3000 g 2000 8 200 2000

2000 1500

1000

Merge cost (second)

e
@
g
s
e
o
g
Merge cost (st

1000 ! 2 50

] F i b 4 500 1
0 0 0 0
DAC LogBlock FAST Superblock DAC LogBlock FAST Superblock DAC LogBlock FAST Superblock DAC LogBlock FAST Superblock
(a) PIC trace (b) MP3 trace (c) MOV trace (d) PMP trace
2500 1200 200 450
=2 = T 18 T 400
& 1500 g 800 g 8 300
= = = = 250
F G 600 7 10 B 500
8 1000 8 8 800 8
s g 400 s 600 g 150
g 500 Lo g) 200 1 g ;gg 1 % ‘gg— ”
0 0 0 0
DAC LogBlock FAST Superblock DAC LogBlock FAST Superblock DAC LogBlock FAST Superblock DAC LogBlock FAST Superblock
(e) PC trace (f) PCMark trace (g) Install trace (h) SYSmark trace

Fig. 14. Comparisons of the merge cost in DAC, the log block scheme, FAST, and Superblock FTL
for aligned traces.

Figure 14 depicts the merge costs simulated with the aligned traces. For all
traces, the merge costs of the log block scheme, FAST, and Superblock FTL
are significantly reduced, especially in the copy overhead. Since a large portion
of disk accesses are now sequential, U-blocks can be fully written, eventually
being switched with the corresponding D-blocks.

As shown in Figure 14, Superblock FTL still outperforms other block-mapped
FTLs, and in many cases its performance is comparable to DAC. Over PIC, MP3,
and PMP traces where most requests are sequential and a large number of files
are created and deleted, the merge cost of Superblock FTL is lower than the
log block scheme and FAST by 30% to 76% and 88% to 93%, respectively. In
PC, Install, and SYSmark traces, the trend is similar; Superblock FTL reduces
the merge cost by 70% to 80% compared to FAST, mainly in the copy cost. For
PCMark trace, Superblock FTL outperforms FAST by 19%. All the evaluated
FTLs show very similar performance in MOV, as the trace is highly sequential
with only a small fraction of metadata updates. Overall, we can see that Su-
perblock FTL is indeed quite effective in reducing the overall merge cost, while
imposing very little management overhead.

Comparing Figure 14 with Figure 13, we observe that FAST shows a rela-
tively small performance gain with aligned traces. This is because FAST fre-
quently misinterprets directory entry updates as sequential accesses. If a re-
quest is about to update the first page of a block, FAST considers it as the start
of sequential writes and allocates a sequential log block. When the prediction
fails, however, this strategy may come at high cost, involving full merge opera-
tions for sequential log blocks.

In recent high-performance flash storage devices such as SSDs, manufac-
turers often employ a small memory buffer to mitigate the problem associ-
ated with the trace alignment. To investigate the impact of the buffer, we have
added an 1MB write buffer to our simulator and examined changes in the write
performance with unaligned traces. As depicted in Figure 15, the merge cost
has been significantly reduced in all traces. Over PIC, MP3, MOV, and PMP
traces, the merge costs of both the log block scheme and Superblock FTL are

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

40:32 . D. Jung et al.

7000 — 4500
= === Cache| 5 5 5 —
T 6000 | g Gogy T 4000 T 450 — T 4500

g —— Erase S 3500 § 400 1§ 4000

g 5000 2 3000 3 350 4 8500

8 3 8

2500 P
2000 8
1500 2 50l
1000 g 100

e
Merge cost (:
Merge cost

@

g

8

= 1000 s 500 oy ”:‘ =1 = o] 500 -y
0 0 0 0
DAC Logblock FAST Superblock DAC Logblock FAST Superblock DAC Logblock FAST Superblock DAC Logblock FAST Superblock
(a) PIC trace (b) MP3 trace (c) MOV trace (d) PMP trace
2500 1400 2000 700
T Bl el T 1800 5 —
§ 2000 g 1200 & 1600 g 0
§ § 1000 § 1400 - § 500
2 1500 2 a0 2 1200 2 400
3 3 % 1000 3
8 1000 & 600 8 800 8 300
<3 & 400 & 6w S 200
g s m’ 2 200 = 2 400 e 2 100 1
F‘ ’—‘ r‘“z‘ 200 |-
0 0 0 0
DAC Logblock FAST Superblock DAC Logblock FAST Superblock DAC Logblock FAST Superblock DAC Logblock FAST Superblock
(e) PC trace (f) PCMark trace (g) Install trace (h) SYSmark trace

Fig. 15. Comparisons of the merge cost in DAC, the log block scheme, FAST, and Superblock FTL
with an 1MB write buffer.

reduced by 82.1% to 96.6% compared to the results with unaligned traces shown
in Figure 13. DAC exhibits almost the same merge costs compared to those mea-
sured with aligned traces. In case of FAST, the merge costs are lowered by 41.0%
to 96.1%, with deviating from the results with aligned traces by at most 5.2%.

The results evaluated with PC, PCMark, Install, and SYSmark traces also
show the similar trend, reducing the merge cost by up to 85.5% compared to
Figure 13. These traces exhibit slightly smaller improvement than PIC, MP3,
MOV, and PMP traces. This is because these traces contain a large number of
small random accesses.

Our evaluation results show that the use of a small write buffer is quite
effective in improving the write performance especially when the requests from
file systems are not aligned to the page boundary. Since the merge cost easily
varies by more than a factor of 10 depending on the existence of unaligned
write requests, a more fundamental approach is to let file systems manage disk
blocks whose offsets are aligned to the page size. Recently, the International
Disk Drive Equipment and Materials Association (IDEMA) [2007] has released
the Long Data Block standards. The objective of the standards is to use a new
4KB sector size, instead of the traditional 512-byte sector size. Hence, we expect
that every disk access request will be aligned to 4KB boundary in the near
future. As aligned traces reflect the actual behavior of storage access pattern
more accurately and ease the analysis, we only show the results of aligned
traces in the following discussions.

5.4 The Detailed Analysis of the Merge Costs

The detailed analysis of the merge cost under the aligned PC trace is presented
in Table VI including previous FTL schemes and Superblock FTLs with several
different configurations. In Table VI, the superblock size of SB-1-IP and SB-1-
OOP is one, while that of SB-4-IP and SB-4-OOP is four. D-blocks are arranged
by the in-place scheme in SB-1-IP and SB-4-IP and by the out-of-place scheme
in SB-1-OOP and SB-4-OOP. Table VI compares Uy, MergeCount (W), and
MergeCost ,,o(W).

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

Superblock FTL: A Superblock-Based Flash Translation Layer J 40:33

Table VI. The Detailed Analysis of the Merge Cost for (Aligned) PC Trace in DAC, the Log
Block Scheme, FAST, and Superblock FTL with Several Different Configurations

| DAC Logblock FAST SB-1-IP SB-1-O0P SB-4-IP SB-4-O0P

Uqug 100.0% 84.8% 74.2% 89.7% 90.5% 96.0% 95.4%
MergeCount (W) 38,045 134,561 153,791 127,300 127,236 118,910 110,137
MergeCostyg(W) 7.7 14.6 13.5 8.4 6.2 10.2 5.0
(millisecond)

MergeCost (W) 293.0 1,963.7 2,074.4 1,070.0 793.5 1,215.7 550.5
(second)

SB-n-p represents a Superblock FTL scheme with the superblock size n and the placement scheme p. The
placement scheme p is either IP or OOP, which denotes the in-place scheme or the out-of-place scheme,
respectively. SB-4-OOP also tries to separate hot pages from cold pages during the merge operation and
corresponds to the scheme labeled “Superblock” in Figure 14.

In FAST, MergeCount (W) is increased by 14.3% compared to the log block
scheme due to the decrease in Uy,,,. This is because FAST incorrectly classifies
nonsequential write requests into sequential ones. Accordingly, sequential log
blocks are frequently merged before they are fully used. MergeCost,,,(W) is
decreased by 7.5%, as most of the increased number of merge operations are
partial merges for sequential log blocks. According to our simulation results, the
number of full merge operations in the log block scheme and FAST is 54,976 and
38,659, respectively, while the number of partial merge operations is increased
from 4,316 (the log block scheme) to 52,127 (FAST). Even for other traces such
as PIC, MP3, and PMP, FAST shows U,z value between 73.5% to 82.3%, which
is far less than that of the log block scheme ranging from 98.5% to 99.5%. The
original motivation of FAST is to share U-blocks among all the D-blocks to
improve Uy,g, but it does not work out that way if it fails to isolate sequential
write requests properly. On the other hand, FAST shows better performance
than the log block scheme over PCMark and SYSmark traces, as there are not
many sequential requests in these traces and the performance of FAST is not
interfered with them.

The difference between the log block scheme and SB-1-IP is that SB-1-IP
allocates more than one U-block for a logical block in order to exploit the block-
level temporal locality, as mentioned in Section 3.2. Both MergeCount (W) and
MergeCost,,,(W) of SB-1-IP have been reduced by 5.4% and 42.5%, respectively,
compared to the log block scheme. Since the pages in a block can be distributed
over numerous U-blocks in SB-1-IP, the merge operation can be delayed much
longer. Moreover, a single merge operation in SB-1-IP usually produces many
free blocks at once.

We have further opportunity to cut down MergeCost,,,(W) by managing D-
blocks with the out-of-place scheme as the result of SB-1-OOP indicates. The
in-place scheme requires extra full merge operations to meet the programming
restriction of the large block SLC or MLC NAND flash memory, as described in
Section 2.3. Using the out-of-place scheme not only eliminates such extra full
merge operations but also increases the chance of partial merge operations. As a
result, when we move from SB-1-IP to SB-1-OOP, MergeCost,,,(W) is decreased
by 26.2%.

avg

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

40:34

14,000
12,000
10,000

8,000

4,000

Merge cost (second)

2,000

0

D. Jung et al.

DAC ——

Log block |
FAST e

Superblock a

6,000

izl
i

ey Yo o o |

16

32

64 128 256 512 1,024 2,048 4,096 8,192
The number of extra blocks

Merge cost (second)

12,000
10,000
8,000
6,000
4,000

2,000

2o

g

bR
> & 0 F XS
A RN QSRS P N P

The number of extra blocks

)
o AC
o7 o

(a) Merge cost over the aligned PMP trace. (b) Merge cost over the aligned PC trace.

Fig. 16. The impact of the number of U-blocks on the merge cost (aligned traces).

When we increase the superblock size from one (SB-1-OOP) to four (SB-4-
OOP), U,yg is raised from 90.5% to 95.4% due to the block-level spatial locality.
Accordingly, MergeCount (W) is reduced by 13.4%. Note that SB-4-OOP also
implements the merge algorithm described in Section 4.3, which separates hot
pages from cold pages within a superblock. We can confirm that such strategy is
effective in suppressing the growth in MergeCost,,, (W) despite of the increased
degree of sharing.

avg

5.5 The Effect of the Number of U-Blocks

Figure 16 illustrates the changes in the merge cost over two traces, PMP and
PC, with respect to the total number of U-blocks. Again, each graph corresponds
to the result of DAC, the log block scheme, FAST, and Superblock FTL, respec-
tively. As the amount of U-blocks is raised, the merge cost gradually falls in
all schemes. This is an expected result, since merge operations are delayed if
there are more free blocks. In particular, we can observe that the performance
of DAC is quite sensitive to the number of free blocks, which is in line with
previous findings [Kawaguchi et al. 1995; Chiang et al. 1999; Kim et al. 2002;
Chang and Kuo 2005]. Block-mapped FTLs are less affected by the number of
U-blocks, especially when most of write requests are sequential as can be seen
in the PMP trace (see Figure 16(a)).

Figure 16 shows that Superblock FTL defeats other block-mapped FTL
schemes for the same number of U-blocks. Superblock FTL even outperforms
DAC when the number of available U-blocks is relatively small.

5.6 The Effect of the Superblock Size

Figure 17 investigates the impact of the superblock size on the merge cost for
aligned PMP and PC traces. For this experiment, we held all the page-mapping
information in RAM without storing them in spare areas, since the current
implementation does not support the superblock size greater than eight.

As the superblock size grows, the merge cost is decreased because the storage
utilization of U-blocks increases due to the block-level spatial locality. When
the superblock size is increased from one to four, the merge costs over PMP and
PC traces are reduced by 17.0% and 52.4%, respectively. The PC trace is more
sensitive to the superblock size (see Figure 17(b)), with the merge cost improved

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

Superblock FTL: A Superblock-Based Flash Translation Layer J 40:35

~
=]
)

= 1,100 —
—2 Page L
600 |- C——— Erase/| | 1,000
= 2 900 -
S 500 - 8 800 |- =
3 8 700 -
=400 % 600 |
§ 300 L 8 500 [
S @ 400 -
2 200 o 300 [l 4
[0} s [
= 100 | 200 -]
100 al
0 0
1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128 256 512
The size of a superblock (blocks) The size of a superblock (blocks)
(a) Merge cost over the aligned PMP trace. (b) Merge cost over the aligned PC trace.

Fig. 17. The impact of the superblock size on the merge cost (aligned traces).

by up to 70.8% at the superblock size of 128. On the contrary, the multimedia
workload is less affected by the superblock size, as shown in Figure 17(a).

If the superblock size goes beyond some point, the merge cost begins to re-
main stable or even increase. This is because the larger degree of sharing in
U-blocks tends to increase MergeCost,,,(W), while the benefit from the higher
storage utilization diminishes as the superblock size grows. In particular, the
cost of full merge operations grows as larger superblock size is used. According
to our simulation results, MergeCost,,,(W) is increased by 9.4% (from 3.2ms to
3.5ms) when the superblock size is increased from 128 to 512 for the PC trace.
Meanwhile, MergeCount (W) is decreased only by 1.3%.

5.7 The Effect of the Cache Size

Figure 18(a) presents the changes in the map cache hit ratios with respect to
the number of cache entries for the PC trace. The cache hit ratio is calculated
as follows.

Map Cache Reads
PMD/PT Reads

Whenever Superblock FTL reads or writes a page, it requires one or two spare
accesses. If PMD and PT is stored in the same spare area, only one spare ac-
cess is enough. Otherwise, one for PMD entry and the other for PT entry are
necessitated.

From the results, we can notice that the cache hit ratio is slightly improved
from 92.4% to 93.8% as the number of cache entries increases from 16 to 1,024.
The improvement is only 1.4% at most, as illustrated in Figure 18(a). Thus, 16
cache entries seem to be sufficient in most cases.

Figure 18(b) illustrates hit ratios in the map cache across all the aligned
traces with 16 cache entries. For all tested workloads, the hit ratio is equal to
or greater than 91.5%. Due to the high hit ratio in the map cache, the cache-
management overhead hardly affects the overall performance, as shown in
Figure 14. The main reason of these high hit ratios is that most requests consist
of multiple pages and numerous requests are sequential so that the same PMD
and PT entries are accessed in a row.

In Section 4.2.1, we briefly mentioned that it is possible to construct the
page-level mapping information without using the proposed hybrid mapping

Hit ratio =

4)

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

40:36 . D. Jung et al.

0.94 0.945
— 0.94 [
0.935 i : —]
/ 0.935 .
.2 .8
£ 093 // = 093 i
< o
T 0925 e T 0925 - §
0.92 - -
0.92
0.915 - H ﬂ -
0.915 o] 0.91
16 32 64 128 256 512 1024 N\ e
) 3 N _® W o
The number of cache entries NN S R SR)
(a) The cache hit ratio according to the (b) The cache hit ratios across all traces (aligned).
number of cache entries (aligned PC
trace).
Fig. 18. Hit ratios for map cache.
8000 -:m o 6000 160 6000 —
T H === Copy k=) k=) - <3
§ ;ggg == § 5000 § :zg L :% 5000
2 5000 8 4000 8100l 8 4000
B 4000 3 3000 3 8o 3 3000
g 3000 2 2000 g 60 s 2000
£ 2000 4 L 2 %0 g |
= 1000 = 1000 S f = 1000
0 “pac Log block ;sT SB-S STP 0 “pac Log block FAST SB-S SB-P O "DAC Logblock FAST SBS SB-P 0 “pac Logblock FAST SB-S SB-P
(a) PIC trace (b) MP3 trace (c) MOV trace (d) PMP trace
4500 1800 3000 — 1400
'g 4000 [E 1600 [2 e
33500 S 1400 5 2500 5 1200 [
8 3000 812001 8 2000] 8 1000
7 2500[1000[% e b 5 800[
8 2000 3 800 g 1800 8 600 [
8 1500 1 g 60 g 1000 2 00
g 1000l 12w . £ soof 2 of ERE
0 "DAC Logblock FAST SBS SBP O "DAC Logblock FAST S5s S5P O "DAC Logblock FAST SBS SBP O "DAC Log block FAST SBS SBP
(e) PC trace (f) PCMark trace (g) Install trace (h) SYSmark trace

Fig. 19. Comparisons of the merge cost on MLLC NAND flash memory (aligned traces).

scheme by scanning all the spare areas in a superblock on every cache miss.
Even though the hit ratio is pretty high, this strategy is not practical because
the total number of page accesses is significant and the miss penalty is also
considerable. Scanning spare areas of a superblock, which we assume consists
of four blocks, requires about 7.8ms, and it takes even longer if additional U-
blocks are assigned to the superblock. The total number of page write requests
in the PC trace is over 11 million excluding those generated during garbage
collection. In this case, 8.5% of cache miss ratio results in at least 7,293.0 sec-
onds of the additional cache access cost, which increase the total overhead by
1,387.2%.

5.8 The Results on MLC NAND Flash Memory

Figure 19 depicts the results simulated on MLC NAND flash memory. In the
figure, SB-S denotes the original Superblock FTL, which keeps the page-level
mapping information in spare areas. On the contrary, SB-P represents Su-
perblock FTL which utilizes map pages for the same purpose. In SB-P, the
map cache size is set to four entries for PIC, MP3, MOV, and PMP traces, and
16 entries for other traces. Although the map cache size is configured to 4 or 16

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

Superblock FTL: A Superblock-Based Flash Translation Layer o 40:37

pages, the overall mapping information size of SB-P is smaller than that of SB-
S due to the reduced size of PGD. For fair comparison, we have also reduced the
number of extra blocks in SB-P by the amount of space reserved for map pages.

Similar to previous results on SLC NAND flash memory, Superblock FTL no-
tably outperforms other block-mapped FTLs. In many cases, Superblock FTL
shows comparable performance to DAC. Several factors affect the merge cost on
MLC NAND either positively or negatively. The positive side is that since the
block size is quadrupled, a single erase operation generates more free space.
In addition, when there is enough block-level temporal and spatial locality,
a single U-block can absorb larger number of update requests. This will re-
duces the number of merge operations. However, there are several negative
sides that adversely affect the FTL performance. First, since the page size is
doubled, reading or updating a small area inside a page takes relatively more
time. Second, the write latency of MLC NAND flash memory is much longer
than that of SLC NAND. The quadrupled block size also increases the num-
ber of valid pages in a given block. Therefore, the cost of copying valid pages
becomes more expensive. Third, if many blocks are updated rather randomly,
the utilization of U-blocks will drop and the increased block size can introduce
considerable merge overhead. Finally, in Superblock FTL using map pages, the
chance of switch merge and partial merge operations is lowered due to map page
update.

For multimedia traces such as PIC, MP3, MOV, and PMP, moving toward
MLC NAND from SLC NAND is beneficial due to the increased block size,
lowering the overall merge cost of Superblock FTL by a factor of 2.6 to 4.2
when the page-level mapping information is stored in spare areas (SB-S). In the
results of Superblock FTL, the cost of erase is significantly reduced, while the
overhead of copying pages is slightly augmented. In PC, Install, and SYSmark
traces, however, the performance of Superblock FTL is degraded by a factor of
1.4 to 3.2 by switching from SLC to MLC. The reason is that these traces exhibit
more random access patterns and MLLC NAND adds more cost in copying valid
pages. Although the merge count is reduced by a factor of 3.6 to 4.0 in the
PC, Install, and SYSmark traces, the average merge cost has increased more
rapidly by 5.3 to 11.5 times.

If the page-level mapping information is kept in map pages, Superblock FTL
exhibits slightly higher erase and copy costs in most traces. Over multimedia
traces, SB-P shows 1.0 to 40.2% of additional erase and copy costs compared to
SB-S. This is because map page updates interfere with the possibility of switch
and partial merge operations. If a map page is written in a block more than
twice, the block should be fully merged later. On the other hand, the large cache
space and the wider coverage of map pages lower the cache access overhead by
81.9 to 89.7%. In case of PC, Install, and SYSmark traces, the increment in
the overhead is 18.3 to 49.9% due to more frequent map page updates. As a
result, the ratio of full merge operation is increased. Similar to the results
over multimedia traces, the cost of accessing map cache is lowered by 1.6 to
2.4% except for the PC trace. The PC trace suffers from 20.4% of the additional
map cache cost, since the request pattern shows weaker locality than the other
traces.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

40:38 o

D. Jung et al.

Table VII. The Detailed Statistics of Merge Operations on MLLC NAND Flash Memory
Log Log
DAC| Block| FAST| SB-S| SB-P|| DAC| Block| FAST| SB-S| SB-P
PIC MP3
Full merge 17,991 12,665| 21,788 406 865((18,329| 6,795| 13,570 75 82
(%) (100)| (22.7)| (28.8)| (0.8)| (1.6)|| (100)| (12.2)| (19.8)| (0.1)| (0.1)
Partial merge 0 631| 37,918 403 205 0 153| 24,331 0 0
(%) 0) ((1.1| (50.0)| (0. (0.4 0)| (0.3)| (35.5) (0) (0)
Switch merge 0| 42,558 16,043| 53,032| 53,293 0| 48,807 30,669 |54,810(55,223
(%) 0)| (76.2)| (21.2)| (98.5)| (98.0) (0)| (87.5)| (44.7)| (99.9)| (99.9)
MergeCount (/17,991 55,854 | 75,749 53,841 | 54,363 ||18,239| 55,755 | 68,570|54,885[55,305
MergeCostyyg 4.5 33.7| 105.4 3.5 4.2 4.5 18.6 73.5 2.2 1.7
MergeCost 81.4| 1883.4| 7986.5| 189.9| 227.7 82.5| 1036.6| 5039.0| 120.0| 94.7
Uqvg (%) 100 96.6 71.3 98.0 97.7 100 98.6 80.2 100 100
MOV PMP
Full merge 17,698 417 220 0 16(/18,279| 18,140| 15,924 164 417
(%) (100)| (0.8)| (0.4) (0) (0)]| (100)| (32.0)| (22.5)| (0.3)| (0.8)
Partial merge 0 77 429 0 0 0 268| 24,493 127 45
(%) 0) (0.1] (0.8 (0) (0) 0)| (0.5)| (34.6)] (0.2)| (0.1)
Switch merge 0| 52,829 52,648 53,063 | 53,472 0| 38,333 | 30,346 |54,456 |54,781
(%) (0)| (99.1)| (98.8)| (100)| (100) (0)| (67.5)| (42.9)| (99.5)| (99.1)
MergeCount ||17,698| 53,323 | 53,297 | 53,063 | 53,488((18,279| 56,741 70,763 |54,747|55,243
MergeCostyyg 4.5 2.7 2.3 2.0 1.6 4.5 46.2 79.4 2.5 2.8
MergeCost 79.6| 144.1| 120.8 107.8 84.1 82.3|2,619.9(5,616.9| 136.4| 152.2
Uqvg (%) 100 99.6 99.4 100 100 100 96.6 77.5| 99.4| 99.1
PC PCMark
Full merge 9,596 28,733| 12,335| 4,700 8,780|| 6,353| 12,153 468 18 15
(%) (100)| (61.1)| (28.2)| (15.8)| (26.8)|| (100)| (63.8)| (2.4)|] (0.1)| (0.1)
Partial merge 0 968| 16,972 2034 975 0 0 910 0 0
(%) 0)| (@2.1)] 38.7) (6.9 (3.0 (0) 0)| (4.7 (0) (0)
Switch merge 0| 17,318 14,501 | 22,955 22,949 0| 6,900(17,975|18,990(19,182
(%) (0)| (36.8)| (33.1)| (77.3)| (70.2) (0)| (36.2)| (92.9)| (99.9)| (99.9)
MergeCount 9,596 47,019 43,808| 29,689| 32,704 || 6,353 | 19,053| 19,353|19,008(19,197
MergeCostyyg 57.1 88.6 914 53.0 55.2 4.5 89.9 6.0 2.8 2.0
MergeCost 547.8|4,165.414,003.0|1,215.6(1,805.0 28.6|1,713.5| 115.8| 53.0| 37.9
Uquvg (%) 100 61.3 65.8 86.1 80.0 100 100 96.7 100 100
Install SYSmark

Full merge 8,021| 16,398| 8,881| 1,754| 2,724|| 2,778| 7,066| 3,760 736| 1,556
(%) (100)| (49.8)| (27.0)| (7.1)| (10.7)|| (100)| (62.4)| (31.0)| (8.2)| (16.8)
Partial merge 0 695| 12,510 736 233 0 323| 5,767 702 245
(%) 0)] (2.1)] (38.0)| (29| (0.9 0)| (2.8)| 47.6)| (7.8)| (2.6)
Switch merge 0| 15,807| 11,496 22,336 22,453 0| 3,939 2,588| 7,568 7,463
(%) (0)| (48.1)| (35.0)| (90.0)| (88.4) (0)| (34.8)| (21.4)| (84.0)| (80.6)
MergeCount 8,021 32,900| 32,887| 24,826 25,410(| 2,778| 11,328| 12,115| 9,006| 9,264
MergeCostyyg 4.5 72.5 87.3 22.6 25.9 4.5 90.7| 115.0| 29.6| 36.9
MergeCost 36.2(2,384.0|2,870.2| 560.5| 657.8 12.5(1,027.5|1,392.8| 266.2| 342.2
Uqvg (%) 100 73.1 73.2 92.4 90.9 100 73.6 68.8| 89.6| 87.5

MergeCost and MergeCost,,, are given in seconds and in milliseconds, respectively.

Table VII compares MergeCount (W), MergeCost

avg

(W), MergeCost (W), and

Uqyg for each trace in detail. Specifically, the number of merge operations are
further classified according to the type of each merge operation: full, partial,
or switch merge. From Table VII, we notice that Superblock FTL is successful

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

Superblock FTL: A Superblock-Based Flash Translation Layer J 40:39

in reducing the number of merge operations, as several logical blocks in a su-
perblock share a U-block with effectively increasing the utilization of U-blocks
(Uavg)- At the same time, the average merge cost MergeCost,,,(W) has been also
improved compared to other block-mapped FTLs. This is because the ratio of
switch merge operations is significantly increased by (i) using fine-grain ad-
dress translation inside a superblock and (ii) separating hot pages from cold
pages during merge operations. On the contrary, when a logical block is not
sequentially written from the beginning, the full merge operation is inevitable
in the log block scheme and FAST.

5.9 Memory Consumption of Mapping Information

In Superblock FTL, the mapping information size is given by the summation
of the PGD size and the map cache size. The PGD size depends on the flash
memory size, while the map cache size is configurable as needed. Assuming
that the number of data blocks is L and the superblock size is N, the PGD size
is equal to ¢; x L where ¢ is the size of each PGD entry. If the total number of
PT cache entries is n and the entry size is cg, the cache size is given by co x n.
For 32GB SLC NAND flash memory, L is 262,144 (256K), c; is 3 bytes, and ¢ is
64 bytes. Assuming that Superblock FTL caches 16 entries, the total mapping
information size becomes 769KB.

In case of MLC NAND flash memory with additional map pages, the PGD size
is given by (¢1 x L)/(N x k), where k denotes the number of superblocks covered
by a map page. The size of the map cache entry is equal to the page size. Thus,
the size of mapping information is formulated by (c1 x L)/(N x k)+ PageSize x n.
For instance, consider 32GB MLC NAND flash whose page size is 4KB. When
the superblock size is 4 (IV = 4), k is 6 and c; is 3 bytes. In this case, the PGD
size becomes 8KB and the mapping information including the cache for 16 map
pages requires 72KB. For SLC and MLC NAND flash whose capacity is 1TB,
the memory consumption is about 24MB and 320KB, respectively.

6. CONCLUSIONS

In this article, we have proposed a novel FTL scheme called Superblock FTL
for NAND flash memory. In Superblock FTL, the block-level mapping is still
used at the superblock level, but logical pages within a superblock can be freely
located in one of the physical blocks allocated to the superblock. This hybrid
address translation scheme has the flexibility provided by fine-grain address
translation, while reducing the memory overhead to the level of coarse-grain
address translation. The notion of the superblock is effective in exploiting the
block-level temporal and spatial locality, reducing not only the number of merge
operations but also the average merge cost to make a free block. In addition,
Superblock FTL makes use of spare areas in NAND flash memory to store
page-mapping information so as not to incur any additional overhead in terms
of space and flash memory operations.

From our results, the proposed FTL scheme significantly decreases the merge
cost compared to previous block-mapped FTL schemes with roughly the same
memory overhead. During the simulation study of representative storage access

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

40:40 . D. Jung et al.

patterns, we also find out that it is very important to get storage access requests
aligned on the page boundary of NAND flash memory.

ACKNOWLEDGMENTS

We would like to thank anonymous reviewers for valuable comments and
Young-Sik Lee who helped the evaluation.

REFERENCES

Ban, A. 1995. Flash file system. U.S. Patent, no. 5,404,485.

Ban, A. 1999. Flash file system optimized for page-mode flash technologies. U.S. Patent, no.
5,937,425.

BAPCo. 2007. SYSmark 2007 Preview. http://www.bapco.com/products/sysmark2007preview.

Birvurskry, A. B. 2005. JFFS3 design issues. version 0.32 (draft). http:/www.linux-
mtd.infradead.org/tech/JFFS3design.pdf.

Cuang, L.-P. 2007. On efficient wear leveling for large-scale flash-memory storage systems. In
Proceedings of the Symposium on Applied Computing (SAC). ACM, New York, 1126-1130.

Cuang, L.-P. anp Kuo, T.-W. 2005. Efficient management for large-scale flash-memory storage
systems with resource conservation. ACM Trans. Storage 1, 4, 381-418.

Cuang, L.-P.,, Kuvo, T.-W., anDp Lo, S.-W. 2004. Real-time garbage collection for flash-memory stor-
age systems of real-time embedded systems. Trans. Embedded Comput. Syst. 3, 4, 837-863.

Cuiang, M.-L., Leg, P. C., anD CHANG, R.-C. 1998. Data management in a flash memory-based
storage server. http:/dspace.lib.fcu.edu.tw/bitstream/2377/2050/1/ce07ics001998000138.pdf.

CHiang, M.-L., Lgg, P. C. H., aND CHANG, R.-C. 1999. Using data clustering to improve cleaning
performance for flash memory. Software Pract. Exp. 29, 3, 267-290.

CHOUDHURI, S. AND Givarais, T. 2008a. Deterministic service guarantees for nand flash using
partial block cleaning. In Proceedings of the 6th International Conference on Hardware / Software
Codesign and System Synthesis (CODES/ISSS’08). ACM, New York, 19—-24.

CHOUDHURI, S. AND Givarais, T. 2008b. Real-time access guarantees for nand flash using partial
block cleaning. In Proceedings of the 6th International Workshop on Software Technologies for
Embedded and Ubiquitous Systems (SEUS’08). Springer-Verlag, Berlin, 138-149.

CookE, J. 2007. Flash memory technology direction. In Proceedings of the Windows Hardware
Engineering Conference (WinHEC’07).

Dan, R. aND SINGLER, R. 2003. Implementing MLC NAND flash for cost-effectie, high-capacity
memory. M-Systems Inc. http:/www.data-io.com/pdf/NAND/MSystems/Implementing MLC_
NAND_Flash.pdf.

Douaus, F., Caceres, R., KaasaoEk, F., L1, K., MarsH, B., AND TAUBER, J. A. 1994. Storage alterna-
tives for mobile computers. In Proceedings of the 1st Symposium on Operating Systems Design
and Implementation (OSDI). USENIX, Berkeley, CA, 25-37.

FururemARK Corp. 2005. PCMark05. http:/www.futuremark.com/products/pcmark05.

Harary, E., Norman, R. D., anD MEnROTA, S. 1997. Flash EEPROM system. U.S. Patent, no.
5,602,987.

IDEMA. 2007. IDEMA Long Data Block White Paper. http:/www.idema.org/_smartsite/ mod-
ules/local/data_file/show _file.php?cmd=standards&cat=103&h=1.

INoUE, A. AND Wong, D. 2003. NAND flash applications design guide. Tech. rep., Toshiba America
Electronic Components, Inc.

InteL Corp. 1998. Understanding the flash translation layer (FTL) specification.
http://developer.intel.com/.

Jung, D., CHaE, Y.-H., Jo, H., Kiv, J.-S., aND LEE, J. 2007. A group-based wear-leveling algorithm
for large-capacity flash memory storage systems. In Proceedings of the International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems (CASES’07). ACM, New York,
160-164.

Kang, J.-U,, Jo, H., Kiv, J.-S., anp LEg, J. 2006. A superblock-based flash translation layer for
NAND flash memory. In Proceedings of the 6th Annual ACM Conference on Embedded Systems
Software (EMSOFT06). ACM, New York.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

Superblock FTL: A Superblock-Based Flash Translation Layer o 40:41

KawagucHr, A., NisHIOKA, S., AND MoTopa, H. 1995. A flash-memory based file system. In Proceed-
ings of the USENIX Winter Technical Conference. USENIX, Berkeley, CA, 155-164.

Ky, J., Kiv, J. M., Nos, S., Min, S. L., anp CHo, Y. 2002. A space-efficient flash translation layer
for CompactFlash systems. IEEE Trans. Consum. Electron. 48, 2, 366-375.

LEE, S.-W., Parg, D.-J., Caung, T.-S., Leg, D.-H., Parg, S., AND Song, H.-J. 2007. A log buffer-based
flash translation layer using fully-associative sector translation. ACM Trans. Embedded Comput.
Syst. 6, 3.

Liv, S.-H. anp Parg, K.-H. 2006. An efficient NAND flash file system for flash memory storage.
IEEE Trans. Comput. 55, 7, 906-912.

MicroN TEcHNOLOGY INc. 2005. Small block vs. large block NAND flash devices. Tech. rep., Tech-
nical Note TN-29-07.

M. T.D. 2008. Ubi - unsorted block images. http:/www.linux-mtd.infradead.org/doc/ubi.html.

Parg, C., Curon, W., Kang, dJ., Ron, K., Crao, W., anp K, J.-S. 2008. A reconfigurable ftl (flash
translation layer) architecture for nand flash-based applications. ACM Trans. Embedded Comput.
Syst. 7, 4, 1-23.

Parg, C., Cueon, W., LEE, Y., Jung, M.-S., Cao, W., aND Yoon, H. 2007. A re-configurable FTL ar-
chitecture for NAND flash-based applications. In Proceedings of the 18th International Workshop
on Rapid System Prototyping (RSP). IEEE, Los Alamitos, CA, 202-208.

Parg, C., Sko, J., SEo, D., Kiv, S., anp Kiv, B. 2003. Cost-efficient memory architecture design
of NAND flash memory embedded systems. In Proceedings of the International Conference on
Computer Design (ICCD). IEEE, Los Alamitos, CA, 474-480.

RueMMLER, C. aND WiLKES, J. 1993. UNIX disk access patterns. In Proceedings of the USENIX
Winter Technical Conference. USENIX, Berkeley, CA, 405-420.

RussivovicH, M. 2006. DiskMon.
http://technet.microsoft.com/en-us/sysinternals/bb896646.aspx.

Samsunc ELEc. 2003. 64Mx16 bit NAND flash memory (K9F1G16UOM).

Samsuna Erec. 2006. 2Gx8 bit NAND flash memory (K9GAGO8UOM).

Samsunc ELEc. 2007. 1Gx8 bit/2Gx16 bit NAND flash memory (K9WAGO8U1A).
http://www.samsung.com/global/system/business/semiconductor/product/2007/6/11/NANDFlash/
SLC_LargeBlock/16Gbit/K9WAGO8U1A/ds_k9xxg08uxa_rev11.pdf.

Wru, C.-H. anp Kuo, T.-W. 2006. An adaptive two-level management for the flash translation
layer in embedded systems. In Proceedings of the 2006 IEEE | ACM International Conference on
Computer-aided Design (ICCAD’06). ACM, New York, 601-606.

Y, K. S., Kiv, J., anD Kon, K. 2005. A fast start-up technique for flash memory based computing
systems. In Proceedings of the Symposium on Applied Computing (SAC’05). ACM, New York,
843-849.

Received December 2008; revised April 2009; accepted July 2009

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 40, Publication date: March 2010.

