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Abstract—The flash translation layer (FTL) plays an impor-
tant role in achieving high performance and reliability for nand
flash-based storage devices. To ensure metadata consistency for
storage requests, FTL is forced to save its own metadata to nand
flash memory. However, a large number of FTL metadata writes
can impair the lifetime of nand flash-based storage devices. Even
though a small fraction of metadata is updated in the internal
memory, FTL should write the whole flash page with the redun-
dant data. In this paper, we utilize the subpage programming (SP)
technique to decrease the amount of FTL metadata written to
the nand flash memory. We also propose a novel FTL called sub-
page FTL based on the SP technique to prolong the lifetime of
embedded nand flash-based storage. The evaluation results show
that SPFTL reduces the written amount of FTL metadata by up
to 45.4%, and therefore enhances the lifetime of a storage device
by up to 19.3% in real workloads.

Index Terms—Flash memory, flash translation layer (FTL),
mobile devices, reliability, subpage programming (SP).

I. INTRODUCTION

DURING the last decade, nand flash memory became the
most popular and important medium for modern stor-

age in many consumer electronics devices. Unlike traditional
storage media, nand flash memory is read and written (or pro-
grammed) by pages, and written pages cannot be overwritten
until they are erased. Due to the idiosyncrasy of nand flash
memory, nand flash-based storage devices require a mecha-
nism to deal with these characteristics so that hosts can access
them over the traditional block I/O interface. Such a mech-
anism is generally referred to as the flash translation layer
(FTL). Many FTL designs have been proposed to efficiently
manage the address space on nand flash memory [1] and to
maximize performance and/or lifetime [2]–[4].

To efficiently and reliably store data on the nand flash mem-
ory, FTLs must not only manage the mapping information for
the address space but also perform several maintenance tasks,
such as garbage collection (GC) and wear-leveling. These
requirements force FTLs to maintain their own FTL metadata.
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For instance, FTLs are required to maintain the mapping infor-
mation between the logical block addresses (LBAs) and the
physical flash addresses. FTLs should also keep track of the
erase counts for all blocks to level wear among them. In gen-
eral, it is impractical to keep the entire metadata in the internal
memory of storage devices because these devices are usually
equipped with only a small amount of SRAM and the meta-
data should be persistent across power cycles. Thus, recent
FTLs [5], [6] usually cache a part of the metadata in the inter-
nal memory, whereas the original metadata is stored in the
nonvolatile flash memory.

Because the reliability and consistency of FTL metadata are
critical, FTLs should periodically flush or write back the FTL
metadata to nand flash memory. This is especially true for the
most popular flash-based storage devices for mobile consumer
devices such as embedded multimedia card (eMMC) and uni-
versal flash storage (UFS) [7], [8], which have a very limited
amount of internal memory due to resource constraints. Such
additional FTL metadata writes significantly increase the num-
ber of writes to the nand flash memory in embedded storage
devices. In the analysis with real I/O traces, we observe a large
fraction of flash writes is due to FTL metadata writes. We also
identify that FTL metadata updates are so small that most
of these FTL metadata writes have identical contents to the
previous writes except for a few bytes. However, FTLs cannot
write less than an entire page for FTL metadata updates, even
though the update changes only a few bytes of FTL metadata
and the rest of the page is unchanged. This wastes the lim-
ited lifespan of nand flash-based storage devices by repeatedly
writing almost identical FTL metadata.

This paper presents a novel subpage FTL (SPFTL) to reduce
the effective amount of FTL metadata writes thereby extend-
ing the lifetime of nand flash-based storage devices. To exploit
the small size of metadata updates, SPFTL adopts the sub-
page programming (SP) scheme [9] presented in our previous
work. SP allows to program only a part of the page, while the
rest of the page is left unprogrammed. This approach prevents
the unprogrammed part from wearing out, thereby extend-
ing the overall lifetime of nand flash memory. By reorganizing
the structures of FTL metadata on nand flash memory, SPFTL
handles small metadata writes using the SP scheme. Our eval-
uation results using real smartphone usage traces indicate that
SPFTL reduces the amount of metadata writes by up to 45.4%
and increases the lifetime of nand flash-based storage devices
by up to 19.3%, compared to a traditional page-mapping FTL.

The rest of this paper is organized as follows. Section II
introduces the fundamentals of FTL and its own metadata for
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typical mapping schemes, followed by our analysis on the
amount of FTL metadata writes with real I/O traces. The SP
scheme used to reduce the amount of data writes is explained
in Section III. Section IV describes the implementation of the
baseline FTL and SPFTL designs with SP. We compare the
amount of FTL metadata writes and show the device lifetime
enhancement by the SPFTL in Section V. Section VI describes
related work, and Section VII concludes this paper.

II. BACKGROUND AND MOTIVATION

A. Flash Translation Layer

The primary goal of FTL is to hide the idiosyncrasy of
nand flash memory, allowing hosts to access storage devices
made up of nand flash memory via the traditional block I/O
interface. To this end, FTL maps a LBA to a physical page
number (PPN). When a host requests for a write to an LBA,
FTL divides the request into a logical page number (LPN)
by its management unit and stores requested data in the flash
memory. FTL maintains the mapping information between the
LPN and the corresponding PPN. When the host later reads
the storage device using the same LBA, FTL translates its LPN
to corresponding PPN in flash chips, and serves the request
from the PPN location. Because nand flash memory cannot
be overwritten, FTL deals with overwrites via out-of-place
updates. When the host requests for a write to an already-
written LBA, FTL writes the requested data to a free page,
marks the previously stored data invalid, and updates the LPN
mapping for the LBA to the new PPN location.

The invalidated data is reclaimed by a procedure called
GC. When the number of free blocks in the storage falls below
a threshold, FTL initiates GC to secure enough free blocks
to allow FTL to keep handling write requests from the host.
To perform GC, FTL selects a victim block, migrates valid
data in the victim block to other blocks, and then erases the
victim block, which eventually converts the victim block to
a free block. The free block can be used again by FTL to han-
dle subsequent write requests. Typically, the victim block is
selected by considering the number of pages containing valid
data (called valid pages) to minimize the overhead of migrating
them [10], [11].

B. FTL Metadata

FTLs can be classified into three categories according to
their mapping granularity: 1) block-mapping FTL; 2) page-
mapping FTL; and 3) hybrid-mapping FTL. We can consider
the mapping information as one of FTL metadata because
it describes the property (i.e., the PPN location) of the
corresponding data stored in the storage device. In addi-
tion to the mapping information, FTL should maintain other
types of metadata to provide various features to improve the
performance and reliability of the storage device.

For example, FTL should distinguish free blocks from used
blocks and keep track of how many free blocks are available
in the storage. Usually, FTL manages these metadata using
a bitmap and a counter. To perform GC, FTL should maintain
the validity of pages to identify valid pages that need to be
migrated to reclaim the block. To optimize the victim block

selection for GC, FTL may trace the number of valid pages
for each block, the age of erase blocks, and the hotness for
each page [12].

FTL also should level the wear of blocks to maximize the
lifetime of the flash-based storage device [13]. FTL performs
so-called wear-leveling by switching a block erased many
times with a block whose erase count is small. To perform
wear-leveling, FTL should maintain a counter for each block
which tells the number of erases the block has experienced.
In addition, FTL may adopt various sophisticated features
such as hot–cold data separation [11], wear-leveling index [4],
wear-unleveling [15], and deduplication [14] to enhance the
performance and reliability of the storage device. These
schemes also require their own FTL metadata to keep track of
the associated information during the operation of FTL.

Most of the aforementioned FTL metadata should be per-
sistent and consistent across a power cycle. For this reason,
they must be stored in the nonvolatile flash memory. The
exact location of the metadata can vary according to the
FTL designs. One approach is to divide the PPN address
space into partitions, and reserve some partitions for storing
metadata [16], [17]. This design simplifies block manage-
ment while manipulating FTL metadata. However, the static
partitioning can lead to storage underutilization when the
amount of metadata is not static. The other approach is
to store metadata along with regular data without reserv-
ing blocks for metadata [2]. This approach can resolve the
storage underutilization issue; however, it complicates block
management.

C. Motivation

The types and amount of FTL metadata depend on the
design and implementation of its mapping scheme and the
features the FTL supports. Nevertheless, FTL metadata stored
in nand flash memory should be loaded into the internal mem-
ory of the storage device to be accessed or updated. However,
the amount of internal memory is so small and limited that
only a part of the FTL metadata can be loaded at a time.
For instance, the sizes of internal memory for typical eMMC
and UFS storage systems, which are currently popular in the
commercial consumer market, are about several hundred kilo-
bytes. When we consider an FTL that manages 32 GiB of
flash memory in 4-KiB page granularity, the FTL requires at
least 32 MiB for mapping information, which exceeds the size
of the internal memory of such storage devices. Thus, many
FTLs for embedded storage devices utilize the internal mem-
ory as a cache of FTL metadata, which is analogous to the
CPU cache and the main memory in the memory hierarchy.

After being loaded into the internal memory, FTL meta-
data can be modified by write requests, GC, wear-leveling,
and so on. The updated FTL metadata should be written
back to the nand flash memory to make the update persis-
tent across a power cycle. The FTL metadata updates occur
frequently, as the internal memory is small compared to the
entire FTL metadata and the FTL metadata reliability is criti-
cal for the reliability of the storage device. To mitigate the
frequent metadata writes, one might utilize journaling and
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recovery techniques [18]. These techniques attempt to skip
writing noncritical metadata updates. Instead, they scan the
metadata during the power-on sequence of the device to iden-
tify and recover possible metadata corruptions. However, this
approach can be inappropriate for embedded storage devices,
which need to guarantee a fast system boot time. Thus,
embedded storage devices are apt to write back or flush FTL
metadata to nand flash memory considering the time spent on
the power-on sequence. For instance, eMMC storage systems
flush dirty metadata periodically for the fast boot time.

The frequent metadata flush results in many metadata writes
to nand flash memory. To better understand the characteristics
of FTL metadata updates and the associated flash writes, we
conducted various trace-driven studies. We collected I/O traces
from actual smartphones used by customers, and replayed the
traces on an FTL simulator that implements the page-mapping
FTL designed for embedded storage devices. Please refer to
Section IV for the FTL design and Section V for details
about the I/O traces and the FTL simulator. Fig. 1 summarizes
interesting results obtained from this paper.

We segregate the FTL metadata writes from total flash
writes while replaying the various I/O traces. In the clean con-
dition where no host write requests have been issued before,
the FTL metadata updates account for 8.3%, 6.7%, and 11.0%
of total flash writes for patterns A, B, and C, respectively.
However, the percentage of FTL metadata updates are signif-
icantly increased to 88.8%, 87.4%, and 86.5% of total flash
writes for patterns A, B, and C, respectively, in the aging
condition after numerous host write requests. Fig. 1 shows
the breakdown of the amount of flash writes. These write
amounts for the FTL metadata updates are a significant frac-
tion of the total flash writes. In addition to the simulator study,
we also performed a similar evaluation inside commercial
eMMC storage systems, and observed a similar result; even in
the clean condition, approximately 24.8%–60.9% of the flash
writes were originated from FTL metadata writes. Commercial
embedded storage systems have large metadata overhead due
to many features such as fast boot time and sudden power-
off recovery on very restricted resources. This result of flash
writes implies that a considerable fraction of nand flash
wear-out comes from FTL metadata writes, and there is
an optimization opportunity to extend the lifetime of nand
flash-based storage further if these FTL metadata updates are
managed properly.

Interestingly, we found the unique characteristics for FTL
metadata writes. For each write for FTL metadata update, we
identified the changes in pages by comparing the updated FTL
metadata with the original FTL metadata stored in the cor-
responding page in the flash memory. We noticed that FTL
metadata updates are made to only a few bytes in the meta-
data pages. In particular, the average amounts of changes are
only 70.3, 48.4, and 66.0 bytes for patterns A, B, and C,
respectively. From 86.5% to 88.8% of FTL metadata writes
change less than 20 bytes, and the largest amount of changes
is only 1 KiB out of a 4-KiB page. The small FTL meta-
data update is because FTL metadata updates for write requests
or other operations usually touch only a few pages, altering
a few bytes of the corresponding mapping information and

Fig. 1. Breakdowns of flash writes on the real I/O traces.

other metadata. This means that FTL metadata updates are
programming flash pages with the almost identical values to
the original pages, except for the small updated part. From
this observation, we are motivated to eliminate unnecessarily
programmed data to extend the lifetime of embedded storage
devices.

III. SUBPAGE PROGRAMMING

As we discussed in the previous section, metadata updates
are small but comprise a large fraction of the total flash writes.
This section introduces SP, which is our previous work to
extend the lifetime of nand flash memory.

A. Subpage

We define a subpage as a programming unit that is smaller
than the page size. Typically, we set the subpage size to a mul-
tiple of the sector size (e.g., 512 bytes). For instance, we
can consider two 2-KiB subpages or four 1-KiB subpages for
a 4-KiB page. When programming a subpage with data, the
other subpages in the same page are filled with the predefined
value, typically 1, that corresponds to the unprogrammed cell.
Thus, the cells outside of the subpage being programmed are
actually left unprogrammed, incurring less stress to the oxide
layer in the cells. Thus, overall, SP inflicts less stress on cells
than regular full-page programming.

The key idea behind the SP scheme is to program the sub-
page only when we need to write a small amount of data rather
than to program the entire page padded with the original
data. Let us consider a case when an FTL metadata update
changes two 2-KiB ranges in two 4-KiB pages. It requires
two full-page programming operations to write 8 KiB in the
original case, whereas the update can be handled by two SP
operations that write only 4 KiB. In this sense, we consider
adopting the SP scheme in FTL designs to handle the small
FTL metadata writes.

SP is similar to the partial-page programming [19] in that
the pages are partially programmed. The main differences
between these programming schemes come from the way
in which the unprogrammed cells are handled. In case of
partial-page programming, the remaining part of a page is
programmed soon after by successive partial programming
operations. Contrarily, in SP, the remaining subpages are not
programmed by subsequent SP unless the block containing
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the page is erased. Consequently, partial-page programming
incurs more intrapage program disturbance, resulting in less
endurance compared to SP. In our previous evaluation with
real nand chips from three manufacturers, the endurance cycles
of partial-page programming obtained from SLC-mode blocks
were less than those of full-page programming by up to
24% [9]. In case of MLC-mode blocks, the partial-page pro-
gramming corrupted the corresponding LSB/MSB page data in
all nand chips.

B. Subpage Programming Mode

We first define a subpage partition as a set of subpages in
a block which have the same offset within the pages in the
block. For example, if the subpage size is half of the page size,
each block has two subpage partitions. The subpage partition
0 consists of subpages that are on the lower part of pages
whereas the subpage partition 1 on the upper part of pages.
In the same manner, we can define four partitions when the
subpage size is a quarter of the page. The number of subpages
in a partition is the same as that of pages in a block.

We call a block an SP block when the block is dedicated for
SP. We impose three restrictions in programming SP blocks.
The first is that full-page programming is prohibited on SP
blocks. The second is that only the subpages belonging to the
same partition can be used at a time. When a partition is used
for an SP block, the other partitions can be used only after the
block is erased. The last restriction is that each subpage should
be sequentially programmed from the lowest page number to
the highest page number, as done in full-page programming.

Because there are two or more subpage partitions in SP
blocks, we can consider a number of orders in using the
subpage partitions. Referring to the best result of endurance
cycle, we consider the pong-pong order [9] that all flash
cells in a page get the minimal program disturbance stress.
Fig. 2 shows an example use of the pong-pong order, where
a partition is continuously used until an uncorrectable bit error
occurs in the partition. Then, the next partition is used until
another uncorrectable bit error occurs again in the partition. In
the pong-pong order, the flash cells in unused partitions can
stay in the program inhibited state until they are actually used.

IV. SPFTL

This section discusses how an FTL can utilize the SP
scheme to alleviate the problem caused by excessive FTL
metadata writes. We first present the baseline FTL design, and
provide two different approaches to the FTL. We believe other
FTLs can adopt the SP technique to their metadata manage-
ment in a similar way.

A. Baseline FTL

The baseline FTL, which we refer to as DFTLpor, is
based on DFTL [2], which utilizes the on-demand mapping
technique [5], [6]. DFTL is one of the state-of-the-art FTLs
which dynamically loads necessary metadata into the internal
memory to maximize the random write performance. In order
to clarify our idea and contributions, we only add the minimal

Fig. 2. Pong-pong programming order for SP.

features to DFTL: per-block metadata management and meta-
data recovery scheme for a power cycle. We anticipate that
other sophisticated features that require more metadata, such
as deduplication, hot/cold data separation, and so on, can be
considered as well without any significant modification.

As depicted in Fig. 3, DFTLpor maintains the follow-
ing metadata in the internal memory: cached page map-
ping table (CPMT), cached block information table (CBIT),
and global context (GXT). Similar to DFTL’s translation
blocks [2], the entire page mapping table (PMT) is divided
by the flash page size and stored in the dedicated flash blocks
called PMT blocks. The active page mapping entries are cached
in a region of the internal memory called CPMT. For per-block
metadata management, DFTLpor maintains a metadata struc-
ture called the block information table (BIT). Each entry in
the BIT keeps track of the number of valid pages and the erase
count for a physical flash block. Because the size of the BIT
is huge, it is also divided by the flash page size and stored
in the flash blocks called BIT blocks. The BIT entries needed
for victim block selection and wear leveling are cached in an
area called CBIT of the internal memory. To track the loca-
tions of the most up-to-date PMT and BIT pages, DFTLpor
maintains the page mapping directory (PMD) and the block
information directory (BID) in the internal memory, respec-
tively. The two directories, PMD and BID, constitute the GXT,
which is the top-level metadata managed by DFTLpor. Other
than PMD and BID, the GXT also has other metadata such as
block summary information (BSI) and update/free-block point-
ers (UFP), which are used in GC for processing the victim
block. Because the GXT is frequently updated and its space
overhead is very low (e.g., 2047 bytes for a 16-GB device),
DFTLpor keeps the full GXT metadata in the internal memory
all the time.

DFTLpor writes the data into the update block which denotes
the flash block where the incoming data are written. This
updates the mapping entry in the CPMT and also changes the
corresponding information in the CBIT. Note that there can
be no space for the new entries in the CPMT or CBIT when
we update them. In this case, one or more dirty entries can
be flushed to the flash memory. Finally, DFTLpor updates the
associated entry in the PMD and BID. When there is no space
in the current update block, the GC process is invoked. As the
update block is changed after GC, DFTLpor first flushes all
dirty entries in CPMT/CBIT belonging to the current update
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Fig. 3. DFTLpor and SPFTL metadata architecture.

block to the flash memory. The victim selection is based on the
greedy policy which cleans the block with the least number of
valid pages by referring to the BSI in the GXT. After choosing
the victim, DFTLpor identifies all the valid pages in the victim
block and migrates them to a free block. Afterwards, the free
block becomes the new update block, while the victim block
is erased and then converted to a free block. Finally, the GXT
is updated and then flushed to the flash memory.

Similar to the update block for user blocks, metadata blocks
are managed in a log-structured manner. Each type of meta-
data block has its own update block and the new metadata is
written sequentially in the corresponding update block. If all
the free blocks are exhausted in the metadata partition, a vic-
tim metadata block is chosen within the partition based on the
greedy policy as done in user blocks. The information on the
current update block in each partition is tracked by the UFP
in the GXT. The UFP also manages free blocks in the user
partitions and the metadata partitions.

To safely recover any metadata on a sudden power fail-
ure, the contents of the GXT should be flushed to the flash
memory periodically. DFTLpor tries to minimize the amount
of metadata writes by flushing the GXT to the dedicated GXT
block only when one of the PMT, BIT, or user update blocks
is changed. This is sufficient to guarantee the metadata con-
sistency on a sudden power loss. Once we find the latest GXT
information from the GXT block, the metadata can be made
up-to-date by scanning pages in the PMT, BIT, and user update
blocks which are written after the GXT flush.

B. SPFTL

We first present the basic design of SPFTL, which is a clean-
slate approach that fully utilizes SP for metadata management.
SPFTL stores all metadata in SP blocks, and metadata updates
are directly written to their corresponding update blocks.

In SPFTL, PMT or BIT pages are written to the flash
memory when they are evicted from the corresponding cache
(CPMT or CBIT) due to the limited internal memory size. In
this case, the new PMT (or BIT) page differs from the old one
only by a few dirty entries. The rest of the metadata is writ-
ten to the flash memory redundantly simply because the entire
flash page should be programmed at once. However, the SP
technique unlocks a new opportunity to write the data smaller

than the flash page size. If we manage metadata pages (PMT,
BIT, and GXT pages) in the subpage unit, we can reduce the
effective amount of metadata writes by avoiding duplicated
writes to the unmodified part of the metadata page.

The basic metadata architecture of SPFTL is same as that
of DFTLpor as shown in Fig. 3. The main difference is that
SPFTL reduces the metadata size to fit into subpages, and
stores all the FTL metadata in SP blocks. For brevity, we only
consider the case where the subpage size is half of the flash
page size. Because the PMT and BIT pages are now stored in
the subpage granularity, SPFTL reads or writes them by sub-
pages. However, this does not require any change in managing
CPMT and CBIT. When one or more dirty entries are evicted
from CPMT or CBIT, SPFTL loads the corresponding sub-
page into the internal memory, updates the modified entries,
and writes it back to the corresponding metadata update block.

Compared to DFTLpor, one downside of SPFTL is that the
number of entries in PMD and BID is doubled due to the
increased number of PMT and BIT pages. If the GXT size
is increased beyond the subpage size due to the increase in
PMD and BID, the benefits of managing PMT and BIT pages
using the SP technique will be offset. However, this does not
have a significant effect on the overall performance for the fol-
lowing reasons. First, our experimental results using the real
workloads show that the ratio of the GXT writes to the total
metadata writes is only 3.0%. Therefore, its impact will be
negligible even though each GXT write requires two SP oper-
ations. Second, because the number and the location of PMT
and BIT blocks are fixed, it is possible to reduce the size of
GXT by storing only the block index instead of the block
number in PMD or BID entry.

C. SPFTL With Metadata Logging

We present another variant of SPFTL called SPFTLlog,
which employs the metadata logging approach. The design
principle behind SPFTLlog is to utilize SP in managing FTL
metadata, while minimizing the efforts to modify DFTLpor’s
metadata architecture. In this sense, SPFTLlog is identical to
DFTLpor except for handling metadata updates.

To handle small metadata updates with SP, SPFTLlog simply
logs only the modified metadata entries in a dedicated logging
block as shown in Fig. 4. Each metadata type has its own
logging block. Thus, there are three kinds of logging blocks in
SPFTLlog, each for GXT, PMT, and BIT. Those logging blocks
are set to the SP blocks so that they can be programmed only
via SP.

When a metadata update occurs, SPFTLlog creates a log
of the update and writes it to the corresponding logging block
via SP. For a PMT update, the log is comprised of an LBA and
its updated PPN. The log for a BIT update is comprised of the
block number, valid page count, and erase count of the updated
block. Similarly, the log for a GXT update is composed of the
type of updated metadata and its updated value.

Logs are coalesced into a subpage if multiple updates are
performed to the same original metadata page. For instance,
logs belonging to the same PMT page are coalesced in a sub-
page. The logs are merged into the original metadata when
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Fig. 4. SPFTLlog metadata architecture with logging blocks.

the subpage of the corresponding logs becomes full. To merge
logs, SPFTLlog loads the corresponding metadata page into the
internal memory, updates the metadata in the logs, and writes
back the updated metadata to the update block according to
the metadata type.

SPFTLlog keeps tracks of the up-to-date logs using
a data structure called log information directory (LID). Each
entry in LID points to the location of the update in logging
blocks for the corresponding metadata page. To access a meta-
data page, SPFTLlog first looks up the LID to see whether the
corresponding metadata page is updated and logged in the log-
ging block. If there is an entry for the metadata page, SPFTLlog
reads the up-to-date metadata from the logs in the logging
block pointed to by the LID entry. Otherwise, the meta-
data page does not have any associated logs, and SPFTLlog
accesses the metadata page stored in each update block.

V. EVALUATION

A. Evaluation Setup

We have implemented a trace-driven FTL simulator for
DFTLpor, SPFTL, and SPFTLlog. The FTL simulator accepts
a block-level trace and processes each request in the trace
according to the FTL implementation. We used the represen-
tative parameters of 20-nm-class MLC nand flash memory for
simulating nand flash memory by referring to hardware specifi-
cations from major flash manufacturers. Specifically, the nand
flash memory is comprised of 8-KiB pages which is the log-
ical to physical mapping granularity in our evaluation, and
each block is comprised of 128 pages. Thus, the size of a sin-
gle block is 1 MiB. Table I summarizes the characteristic of
20-nm-class MLC nand flash memory. We set up the total
16 384 blocks which yield 16-GiB capacity as the total stor-
age space. Note that 15 564 blocks are used for the user space,
which is equivalent to a 15.20-GiB capacity and the remain-
ing 5% of the blocks are reserved as an overprovisioning
space [25].

We assume 26 KiB of internal memory to operate all three
FTLs by referring to the common hardware specifications
for eMMC and UFS storage devices. Among the internal
memory, we set 2 KiB to cache PMT and BIT entries for
one update block and allocate 4 KiB for GXT to manage

TABLE I
CHARACTERISTIC OF 20-NM-CLASS MLC NAND FLASH MEMORY

TABLE II
FEATURES OF REAL WORKLOADS FROM SMARTPHONES

two directories and other remaining metadata. The internal
memory allows FTLs to cache the entire GXT, whereas only
a part of PMT and BIT can be loaded into the given mem-
ory. We assume the remaining internal memory is used for
an 8-KiB page copy-back and an 8-KiB buffer to manage
PMT (or BIT) page, which are required to operate each
FTL. An additional 4-KiB buffer is used in SPFTLlog for
merging logs.

We assume that metadata blocks are operated in the SLC-
mode [20], [21] whereas data blocks are in the MLC-mode.
Each block in MLC or TLC chip can be set to the SLC-
mode, in which only LSB pages are used. Because FTL
metadata occupies a small portion of storage space but has crit-
ical information, we utilize SLC-mode which provides higher
reliability and a longer lifetime than MLC-mode. However,
we should consider the different endurance cycles between
metadata blocks and data blocks. We believe that the pro-
posed scheme can be incorporated in any MLC or TLC chips
without significant modifications.

We use both real I/O traces and synthetic random write
patterns in our evaluation. The real I/O traces are collected
from customers by setting up smartphones with a block-level
tracing tool and letting consumers use smartphones in the
usual way for 24 h. Table II summarizes the characteristics of
three real I/O traces. We also perform various random writes
with 8-KiB page requests to measure the number of FTL
metadata writes. Because FTLs operate with limited internal
memory, the random writes can generate a large amount of
FTL metadata writes.

For the performance metric, all nand operations are gathered
while every request is served (i.e., metadata write counts and
the corresponding erase counts). Consequently, the operation
time for a given trace is measured to compare FTL perfor-
mance in the Flashsim simulator [22]. The operation time
is based on the time parameters of 20-nm-class MLC nand
memory shown in Table I.
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(a) (b) (c)

Fig. 5. Amount of FTL metadata writes in the real I/O traces. (a) Pattern-A. (b) Pattern-B. (c) Pattern-C.

B. Analysis of FTL Metadata

As we expected, a large amount of FTL metadata is written
when FTLs perform 15.20 GiB of random writes with 8-KiB
page requests. This is because random write patterns result
in many changes of PMT/BIT entries in different PMDs. For
DFTLpor, the total amount of FTL metadata written reaches
15.16 GiB, which is almost the same as the total amount of
user writes.

We replayed three real I/O traces on a trace-driven FTL sim-
ulator and collected performance metrics on FTL metadata.
First, we perform three real I/O traces on the clean condi-
tion in which all data and metadata blocks are empty. The
amount of metadata written for DFTLpor ranges from 6.7%
to 11.0% of the total flash writes as mentioned in Section II.
SPFTL decreases them to 6.3%, 3.9%, and 4.9% of the total
flash writes for three real I/O traces, respectively. SPFTLlog
also decreases the written metadata amounts to 6.2%, 3.8%,
and 4.7%.

Fig. 5 presents the amount of metadata writes incurred while
running the real I/O traces in the aging condition. To make
the aging condition, we fill up the entire user space with the
random workload and replay those I/O traces, which incurs
GC and activates metadata writes during the process of the
given I/O traces.

When running pattern A on DFTLpor, we can see that the
significant amount of FTL metadata traffic comes from PMT
writes (89.8%), while the writes for the BIT and the GXT are
responsible for 7.3% and 2.9%, respectively. This is due to
the small and random write pattern, which touches PMT/BIT
pages for each write request. We observe that the total amount
of FTL metadata writes accounts for 5.50 GiB in pattern A,
which is 7.93 times of the data written by the user. Similar
results are observed for patterns B and C. We can observe
that the total amount of FTL metadata writes in pattern C is
notably higher than that in patterns A and B. This suggests
that the amount of FTL metadata writes is proportional to the
amount of data written by the user.

We can observe that two SPFTLs significantly decrease the
amount of metadata writes for all the given traces. SPFTL
reduces the amount by 42.9%, 42.2%, and 43.0% for patterns

A, B, and C, respectively, compared to DFTLpor. Specifically,
SPFTLlog reduces the amount by 44.8%, 45.0%, and 45.4%.
This shows that the logging operations of SPFTLlog can further
decrease the metadata amount occurred due to the spatial local-
ity of real workloads. In Fig. 5, we also break down PMT/BIT
to PMT-GC/BIT-GC which represents the amount of valid FTL
metadata pages migrated during FTL metadata GC. PMT-GC
and BIT-GC of SPFTL and SPFTLlog are slightly increased
because the increased number of FTL metadata entries due to
the use of subpages, but their amounts are negligible compared
to the total FTL metadata writes. Consequently, the amount of
FTL metadata writes in all three real I/O traces is reduced by
up to 45.4% compared to that of DFTLpor.

C. Lifetime Analysis

The use of SP generally increases the erase count of the
SP block. However, our previous research shows that the SP
block can endure a greater number of erase counts compared to
other conventional blocks with full-page programming [9]. To
calculate the accurate lifetime of SPFTL designs, we should
reflect the increased endurance of the SP block in the total
erase count of SPFTL.

Because SPFTL and SPFTLlog use both full and SP, we
define the normalized wear index (NWI) to take into account
the erase count of SP blocks, which can be calculated as

NWI =
m∑

b=1

Erasefp(b) +
n∑

b=1

Erasesp(b) × Weightsp (1)

where m and n indicate the number of full-page blocks and SP
blocks, and Erasefp and Erasesp mean the erase counts of them,
respectively. Weightsp is a normalization factor for the erase
counts of SP blocks. In our previous result, the endurance
cycle of SP blocks is improved by 1.71 times compared to
the blocks with full-page programming, which was measured
on the SP2OSLC configuration that was composed of 4-KiB
subpages [9]. Therefore, we set Weightsp to 1/1.71 in order to
calculate NWI of SPFTL and SPFTLlog. Note that DFTLpor
does not use any SP blocks, while SPFTL use SP blocks for
all metadata blocks. In SPFTLlog, only the logging blocks are
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(a) (b) (c)

Fig. 6. Comparing the total erase count of DFTLpor, SPFTL, and SPFTLlog. (a) Pattern-A. (b) Pattern-B. (c) Pattern-C.

operated in SP blocks and the rest of the metadata blocks are
operated same as in DFTLpor.

Fig. 6 depicts the total erase counts of DFTLpor, SPFTL,
and SPFTLlog in three real I/O traces. NWI(SPFTL) and
NWI(SPFTLlog) represent the normalized total erase count
according to (1). Due to the use of SP, SPFTL, and SPFTLlog
show the slightly increased erase count. However, the normal-
ized total erase counts are estimated to be less than others
and the device lifetime can be significantly increased for all
the given traces. As a result, SPFTL increases the lifetime by
up to 17.5% in pattern A, 16.5% in pattern B, and 17.2% in
pattern C. SPFTLlog also gains more lifetime than DFTLpor
by 19.2% in pattern A, 19.3% in pattern B, and 19.3% in
pattern C.

D. Performance Analysis

We utilize the FTL service time to estimate the perfor-
mance of SPFTL and SPFTLlog. Because the only difference
is whether FTL metadata is managed with SP or not, we eval-
uate the performance by using the nand timing parameters
shown in Table I. Compared to DFTLpor, SPFTLlog increases
the service time by 4.7% in pattern A, 4.4% in pattern B,
and 4.1% in pattern C. This is because the overhead of look-
ing up the LID for the updated log is added in the critical
path. However, SPFTL decreases the service time by 4.3%,
3.2%, and 4.2% in patterns A, B, and C, respectively. This
improvement depends on the amount of data written by the
SP scheme. We also investigate the response time taken by
nand operations per request. SPFTLlog increases the average
write latency by up to 3.1% in pattern A, 3.1% in pattern B,
and 2.9% in pattern C. However, SPFTL reduces the average
write latency by up to 5.3%, 0.9%, and 5.4% for patterns A,
B, and C, respectively. The write latency of SPFTL is also
decreased due to the transfer time of subpages which is faster
than that of full pages.

VI. RELATED WORK

FTL can gather small host write requests to the write
buffer [26] which reduces read, modify, and write operations

for the full-page programming. However, SPFTL immedi-
ately writes the subpage and therefore reduces the redundancy
incurred by the small portion of metadata update. To increase
the endurance cycle of nand flash memory, equalizer [4] con-
siders both the erase count of the block and the variation of
the page programming time. In case of wear-unleveling [15],
every page endurance is inspected before a block wears
out. Dynamic program and erase scaling [23] can change
the erase voltage and the erase time of nand flash mem-
ory so that it improves the lifetime of nand flash-based
storage.

Similar to other approaches, content-aware FTL increases
the lifetime by removing the unnecessary and duplicated data.
Object-based FTL [24] enables lazy persistency of index meta-
data in a host file-system and eliminates journals while main-
taining consistency to extend the lifetime of nand flash-based
storage.

Our approach proposed in this paper is orthogonal to the
aforementioned approaches in that SPFTL can be combined
with other schemes to enhance the lifetime of nand flash-based
storage devices.

VII. CONCLUSION

Traditional FTLs always perform full-page programming,
which is extremely redundant, to store the small changes of
FTL metadata writes. In order to decrease the redundancy of
FTL metadata writes, we proposed a novel SPFTL that utilizes
the SP technique. We believe the proposed approaches can be
adopted for other FTLs.

Our evaluation results with real I/O traces showed that
SPFTL reduces the amount of metadata written by up to
45.4%. Finally, SPFTL improves the lifetime of embedded
nand flash-based storage by up to 19.3% in the environment
composed of 20-nm-class nand chips.
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