
 
Abstract—As the application of smart devices becomes more 

complex, the number of file I/Os has been increased on mobile 
devices, making the storage performance plays an important role 
in ensuring better user experience. According to this trend, 
various researches have been performed to reduce the storage I/O 
or to improve the performance of the storage device itself. 
However, existing schemes are not a fundamental solution for 
improving the storage performance and limited to specific parts of 
the entire storage layers. In this study, a new storage I/O 
framework, called NVMeDirect, is proposed to improve the 
storage performance. The proposed framework improves the 
performance by allowing applications to access storage directly 
without any hardware modification. Also, a lightweight 
filesystem, operated on top of the proposed framework is 
provided to enable existing applications to be ported on the 
NVMeDirect framework easily. To evaluate the proposed I/O 
framework, we have conducted extensive experiments with 
micro-benchmark and real-world workloads. The experiment 
results show that, compared to the existing kernel I/O scheme, the 
proposed framework improves the small file I/O performance by 
12.5% and the real-world mobile workload performance by up to 
20%. 
 

Index Terms—Mobile devices, Non-volatile memory express, 
SSD, I/O framework. 
 

I. INTRODUCTION 

n the past few years, the use of smart mobile devices has 
tremendously increased. Beyond the traditional functions of 

mobile phones, smartphones are used to run various 
applications such as portable multimedia players, games, web 
browsers, etc. Also, smart pads are replacing or breaking the 
boundaries of traditional laptops. In order to provide high 
performance, manufacturers have developed enhanced 
hardware components such as CPU and graphic processing unit. 
In addition, for improving user experience of smart devices, 
manufacturers are adding various features to applications and  
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frameworks. These trends make mobile applications contain 
higher quality images and large amount data to increase user 
satisfaction. Consequently, the amount of data to be read from 
or written to storage has been increased significantly. 

Mobile smart devices use NAND flash-based storage such as 
embedded multimedia cards (eMMCs). eMMCs have 
outstanding merits including small size form factor, low power 
consumption and shock resistance. These advantages 
contributed to the miniaturization of the device and the 
widespread adoption as the secondary storage of many mobile 
smart devices. However, because of the limitation of the 
underlying interface, the performance of eMMCs are being 
saturated. Recently, Non-Volatile Memory Express (NVMe) 
interface has been standardized to support high performance 
storage based on the PCI Express (PCIe) interconnect. Based 
on the NVMe standard, NVMe PCIe solid state drive (SSD) in a 
single ball grid array (BGA) package has been announced. The 
BGA form factor SSDs are currently being adopted by high-end 
smart phones and smart pads for providing high storage 
performance. In spite of this effort, storage is still often blamed 
as a major source of performance bottleneck in ensuring better 
user experience in smart devices.  

In order to increase the storage performance further, industry 
and academia have conducted extensive researches including 
both hardware and software techniques. Several studies have 
focused on combining emerging non-volatile memory (NVM) 
technologies such as phase change memory (PCM), spin-torque 
transfer magneto-resistive memory (STT-MRAM) and 
transistor-less cross [1], [2] with the conventional software 
stack to optimize the storage stack overheads on mobile devices. 
These memories are designed to be byte addressable and 
accessible at a similar latency to DRAM. For example, some 
researchers focused on utilizing NVM on the legacy I/O stack 
of operating system, including file system layer [3], [4] and 
page caches [5], [6]. Others studied utilizing NVM on specific 
application or database engine of mobile devices [7]-[9]. These 
studies either employed a small size of NVM as a cache 
memory of storage, or replaced the whole main memory or 
storage devices with NVM. However, prior works are 
inappropriate for mobile smart devices because employing a 
small size of NVM as a cache for specific applications is not 
cost-effective. Replacing main memory or storage with NVM 
also incurs high cost and significantly extends time-to-market.  

Other researchers tried to reduce the software overhead of 
storage stack by optimizing the I/O stacks of mobile devices. 
These include introducing mobile device-specific I/O policies 
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or subsystems, and reducing the number of I/O requests by 
optimizing the use of fsync() system calls [12]-[16]. However, 
these works concentrated on reducing the number of I/Os, 
instead of optimizing the fundamental I/O stack overhead. 

To optimize the fundamental I/O stack overhead in kernel, 
many researchers have tried to reduce the kernel overhead by 
using the polling mechanism [17], [18] and eliminating 
unnecessary context switching [19], [20]. However, 
kernel-level I/O optimizations have a couple of limitations to 
satisfy the requirements of user applications. First, the kernel 
should be general because it provides an abstraction layer for 
applications, managing all the hardware resources. Thus, it is 
hard to optimize the kernel without loss of generality. Second, 
the kernel cannot implement any policy that favors a certain 
application because it should provide fairness among 
applications. Therefore, it would be desirable if a user-space 
I/O framework is supported for high-performance storage 
devices which enables the optimization of the I/O stack in the 
user space without any kernel intervention. 

Recently, some industries announced libraries for accessing 
NVMe SSDs in the user space. However, these libraries only 
work for a single application because it moves the whole 
NVMe driver from the kernel to the user space and assigns it to 
the specific application. In addition, these libraries currently 
support only basic I/Os on raw block devices. We believe these 
libraries are inappropriate to be adopted for mobile smart 
devices, because many smart devices are equipped with a single 
storage device and applications of smart devices are run on file 
systems instead of the block-level storage. 

In this paper, we propose a novel user-level I/O framework 
called NVMeDirect, which improves the performance by 
allowing the user applications to access the storage device 
directly. The previous version of this work [21] can coexist with 
the legacy I/O stack of the kernel, allowing applications to access 
NVMe SSDs in the user space. However, because the previous 
version only supports I/Os on the raw block devices, it was not 
suitable for user applications on consumer smart devices. This 
paper enhances the previous version of our work in terms of 
usability by providing user-space file system layer to make it 
easy to port user applications on the proposed user- space I/O 
framework. In addition, this paper includes evaluation results 
using real-world application workloads of smartphones. Our 
results show that the proposed framework and filesystem 
outperforms the existing kernel-based I/O by up to 23% on micro- 
benchmark and by 20% on real-world workload benchmark. 

The remainder of this paper is organized as follows. Section 
II describes the overview of the NVMe interface and presents 
the motivation of this work. Section III presents the design of 
the NVMeDirect framework in detail. Section IV introduces the 
evaluation methodology and presents evaluation results in 
terms of performance with synthetic and real-world workloads. 
The related work is described in Section V. Finally, Section VI 
concludes the paper. 

II. BACKGROUND AND MOTIVATION 

This section describes the overview of the NVMe interface 
and then presents the I/O stack overhead in the existing kernel 
software stack to motivate this work. 

A. Non-volatile Memory Express (NVMe) 

NVM Express (NVMe) is a high performance and scalable 
host controller interface for PCIe-based SSDs. Legacy storage 
protocols such as SCSI, SATA, and Serial Attached SCSI 
(SAS), were designed to support rotational storage devices such 
as hard disk drives (HDDs). All of these protocols 
communicate with the host using an integrated on-chip or an 
external Host Bus Adaptor (HBA). eMMC also uses some of 
legacy storage protocols for compatibility with existing 
operating systems. As NAND flash-based storage evolves, their 
internal bandwidth capabilities exceeded the bandwidth 
supported by the external interface connecting the drives to the 
host system. Thus, the performance improvement of NAND 
flash-based storage has been limited by the maximum 
throughput of the interface protocol itself. Moreover, since 
access latencies of NAND flash memory are orders of 
magnitude lower than that of rotational media, protocol 
inefficiencies and external HBA became a dominant 
contributor to the overall access time. These reasons led to an 
effort to transition from existing storage protocols to NVMe, 
based on a scalable, high-bandwidth, and low-latency I/O 
interconnect, namely PCI express (PCIe).  

The notable feature of NVMe is to offer multiple queues to 
process I/O commands. Each I/O queue can manage up to 64K 
commands and a single NVMe device supports up to 64K I/O 
queues. When issuing an I/O command, the host system places 
the command into the submission queue and notifies the NVMe 
device using the doorbell register. After the NVMe device 
processes the I/O command, it writes the result to the 
completion queue and raises an interrupt to the host system. 
NVMe enhances the performance of interrupt processing by 
MSI/MSI-X and interrupt aggregation. In the current operating 
systems, the NVMe driver creates a submission queue and a 
completion queue per core in the host system to avoid locking 
overhead and cache collision. 

Fig. 1 illustrates a high-level representation of the 
differences between the I/O stack of SATA SSD and NVMe 
SSD. An NVMe-based I/O request bypasses the conventional 
block layer request queue and uses internal hardware 
submission queue and completion queue pairs. Because NVMe 
SSD uses multiple hardware queues and each queue is bound to 
a CPU, NVMe driver does not need to acquire a lock to 
guarantee data consistency. These mechanisms allow to reduce 
the overhead of software, and thus improving performance and 
scalability. 

B. Motivation 

As applications become more complex and they request 
more storage I/Os, the storage performance plays an important 
role in ensuring better user experience. In particular, the latency 
reduction in the storage I/Os is very important on mobile smart 
devices, because user interaction occurs frequently on mobile 
devices. 

As shown in Fig. 2, NVMe outperforms SATA SSD when 
the host reads a 4KB data, due to the enhanced storage interface 
and optimized software stack. However, NVMe SSD still 
consumes over 15% of its time on the software I/O stack. 
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NVMe RAMDISK in Fig. 2 represents the latency breakdown 
for the same condition over the NVMe device consisting of 
DRAMs. In this case, we can observe now the system spends 
70% of its time in the software I/O stack. It is apparent that the 
faster the memory technology becomes, the more the overhead 
in the kernel software I/O stack will hinder the performance 
improvement. 

Even if we use the state-of-the-art schemes for reducing the 
kernel software stack overhead, it is not possible to eliminate 
the kernel overhead completely due to the additional work 
associated with system call processing, permission check, 
memory allocation, and memory copy. In particular, most 
mobile smart devices are used by a single user and each 
application is executed in some form of sandbox, which is 
provided by the OS framework. These techniques allow only 
authorized applications to access storage devices. In other 
words, some kernel components on the storage I/O path can be 
eliminated or simplified. Hence, bypassing unnecessary 
features in the kernel and accessing the storage device directly 

in the user space is desirable for maximizing the performance 
of NAND flash-based storage devices and emerging high 
performance storage device in mobile smart devices. Also, 
under the proposed user-space I/O framework, each application 
can control the number of I/O queues flexibly according to its 
own requirement, which is not possible in the existing 
kernel-level I/O stack. 

III. DESIGN AND IMPLEMENTATION 

This paper proposes a novel user-level I/O framework called 
NVMeDirect, which enable user applications to access storage 
device without any kernel invention. The NVMeDirect 
framework consists of a light-weight user-level file system 
called NVMeDFS and basic block-level I/O mechanisms based 
on polling which can be configured freely according to the 
characteristics of applications. This section outlines how the 
NVMeDirect framework is designed in order to obtain optimal 
performance with NVMe SSD in mobile smart devices. 

A. System Overview 

Fig. 3 shows the overall structure of NVMeDirect I/O 
Framework. This framework avoids the overhead of the kernel 
I/O stack by supporting direct accesses between the user 
application and the NVMe SSD on mobile smart devices to 
achieve high performance with low latency. The framework is 
composed of two components: NVMeDirect Library and 
user-space library filesystem called NVMeDFS. 

The NVMeDirect Library enables user applications to access 
NVMe devices as a block storage on user-space application 

0

20

40

60

80

100

120

140

160

SATA SSD NVMe SSD NVMe RAMDISK

E
la

p
se

d 
T

im
e

 (
µ

s)

VFS Block layer Device Driver Others Device

30µs of 147µs

17µs of 108µs

17µs of 24µs

 
Fig. 2. Comparison of elapsed time of each layer on SATA SSD, NVMe SSD
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without kernel I/O stacks such as block device layer. In 
addition, The NVMeDirect Library supports several I/O 
features to perform various I/O policies as performed in the 
kernel. Because many applications in consumer devices are 
designed and implemented based on the file-level interface, 
filesystem is essential for accessing storage using the file 
abstraction instead of the simple block device abstraction. 

NVMeDFS is a light-weight library filesystem for 
performing I/Os on NVMeDirect using conventional file-level 
APIs. This library file system enables user-space application to 
see the NVMe device as a file-level storage. Applications can 
request file I/Os to NVMeDFS with provided APIs and 
NVMeDFS uses NVMeDirect library APIs internally for 
performing I/Os on NVMe devices. 

B. NVMeDirect Library 

The NVMeDirect library is designed to fully utilize the 
performance of NVMe SSDs while meeting the diverse 
requirements from user applications. The library exports 
NVMe storage device to user application directly as a 
block-level storage. Fig. 3 illustrates the overall architecture of 
the NVMeDirect I/O framework and components of the 
NVMeDirect library. The library consists of three components: 
Management I/O, Basic I/O and Extended I/O. 

The management I/O component is composed of Admin tool 
and kernel module. Admin tool controls the kernel module with 
the root privilege to manage the access permission of I/O 
queues with ioctl(). When an application requests to create a 
queue, the kernel module checks whether the application is 
allowed to perform user-level I/Os. And then it creates the 
required NVMe I/O queue pairs, and maps their memory 
regions and the associated doorbell registers to the user-space 
memory region of the application. After creating queues and 
mapping memory region is completed, the application can issue 
I/O commands directly to the NVMe SSD using Basic I/O 
component of NVMeDirect without any hardware modification 
or help from the kernel I/O stack. 

The Basic I/O components consists of I/O handles and I/O 
queues. I/O queues are memory-mapped address space for 
NVMe I/O queues, which is created in the kernel address space. 
NVMeDirect library offers the notion of I/O handles to send 
I/O requests to NVMe queues. I/O handle can be configured to 
use different features such as caching, I/O scheduling, and I/O 
completion according to the characteristics of the I/O requests. 
As shown in Fig. 4, a thread can create one or more I/O handles 
to access the queues and each handle can be bound to a 
dedicated queue or a shared queue. For example, Applications 

can share a single queue of NVMeDirect with multiple handles 
for asynchronous I/Os and dedicate a single queue with a 
handles for synchronous I/Os. These mapping of handles and 
queues provide an efficient and fast I/O service to synchronous 
I/O requests which make applications wait for I/O to complete. 

The last component of the NVMeDirect library is Extended 
I/O component which provides various I/O helper functions 
such as block cache, I/O scheduler, and I/O completion thread. 
As mentioned in the Basic I/O component, applications can use 
these components depending on the characteristics of I/O. 
Block cache is similar to the page cache in the kernel, which 
manages the cache memory in 4KB unit size. The NVMe 
interface uses the physical memory addresses for I/O 
commands. Thus, Block cache maintains pre-translated 
physical addresses for each memory unit to avoid address 
translation overhead during the actual I/Os. I/O scheduler 
issues I/O commands for asynchronous I/O operations or when 
an I/O request is dispatched from the Block cache. The I/O 
completion thread is implemented as a standalone thread to 
check the completion status of the I/Os using polling. Since the 
interrupt-based I/O completion incurs context switching and 
additional software overhead, it is not suitable for high 
performance and low latency I/O devices [18]. Polling 
mechanism is especially suitable for mobile smart devices, 
because the mobile smart devices occur user interaction 
frequently and the majority of file accesses is known as small 
random I/Os.  

However, when fewer storage I/Os are requested from 
application, the polling mechanism wastes most of CPU cycles 
in busy waiting. In particular, polling is not efficient in a large 
sequential access such as reading or writing multimedia files, 
which is sensitive to bandwidth rather than latency. To address 
this problem, the NVMeDirect library utilizes a dedicated 
polling thread with dynamic polling period control based on the 
number of I/O requests and the size of I/O request to avoid 
unnecessary CPU usage. 

The NVMeDirect library exposes various APIs such as 
nvmed_read(), nvmed_write(), nvmed_flush(), 
nvmed_discard(), etc. that can be used by any user applications. 
These APIs interact with various components of the library and 
eventually issue NVMe commands such as read, write, flush, 
and discard that correspond to each API. Also, the NVMeDirect 
framework supports APIs for managing queues and handles 
such as nvmed_create_queue(), nvmed_create_handle(), and 
nvmed_set_param(). 

C. NVMeDirect File System (NVMeDFS) 

NVMeDirect File System, called NVMeDFS, is designed to 
enable file-level I/Os on high performance NVMe devices. The 
existing user-level I/O libraries (including the previous version 
of NVMeDirect) lack the support for file systems. They merely 
present a storage device as a block device (i.e. an array of 
fixed-size blocks) to applications. This makes it very difficult 
for most applications in mobile smart devices to take advantage 
of user-level I/O libraries without extensive modifications to 
applications and and/or execution framework. To resolve this 
problem, NVMeDFS is developed in the form of a lightweight 
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shared library which provides POSIX-like interfaces to any 
applications at the user level. 

The internal architecture of NVMeDFS is illustrated in Fig. 5. 
NVMeDFS divides the storage device into two regions: 
metadata region and data block region. Filesystem metadata 
such as superblock, block bitmaps and inodes are managed 
using an embedded key-value store with an index structure 
called HB+Trie [22]. Because the key-value store maintains 
data using logging and checkpoint, it can guarantee durability 
and consistency of metadata effectively without any additional 
journaling mechanism. Since the key-value store itself is 
initially designed to run on a file system, we have modified the 
storage engine of the key-value store so that it operates on top 
of NVMeDirect library. Due to the nature of log-structured 
design, the original key-value store requires periodic 
compaction to reclaim the space occupied by deleted or updated 
data. In order to remove additional I/O overhead incurred 
during compaction, NVMeDFS reuses invalid blocks without 
making free space thorough compaction. In addition, 
NVMeDFS uses fixed-size metadata to reduce internal 
fragmentation while blocks are reused. 

Traditional filesystem accesses data blocks by pathname 
traversal though several metadata and data blocks such as 
directory entry and inodes blocks. This conventional structures 
occurs a significant amount of storage I/O operations and 
becomes overhead on accessing file data. Unlike the traditional 
filesystem, NVMeDFS maintains this information using a 
key-value pair, where key is the full pathname and value is the 
corresponding inode number. Whenever a file is created, this 
information is inserted into the key-value store. This scheme 
enables applications to access metadata and data blocks of the 
file with low latency. 

(KEY) Pathname → (VALUE) size, timestamp, etc… 

Because of the common prefix pathname such as parent 
directory, indexing based on the full pathname may incur storage 
space overhead. However, the key-value store in NVMeDFS 
uses the HB+Trie structure which provides common prefix 
compression. Using this feature, NVMeDFS avoids storage 
overhead by duplicated parts of the pathname (Fig 6). 

Each file is broken up into data blocks of fixed size. The data 
block size is 4KB and the contiguous blocks can be represented 
by a single extent as in the Ext4 filesystem. 

NVMeDFS supports POSIX-like APIs with nvmedfs prefix. 
Applications can access files using APIs such as 
nvmedfs_open(), nvmedfs_read(), and nvmedfs_write(). Every 
function of filesystem uses NVMeDirect library functions 
internally to perform I/Os on NVMe SSDs. NVMeDFS 
supports various options for file I/O including sync / async, and 
direct / buffered I/O as in the kernel I/O. These options use the 
features of the I/O handles in the NVMeDirect library. This 
approach enables applications to efficiently utilize the NVMe 
storage devices according to the characteristics of each I/O. 

IV. EVALUATION 

The performance of the proposed NVMeDirect framework 
has been evaluated using several micro-benchmarks and 
real-world mobile workloads on a commercial NVMe SSD. In 
the experiments, we compare the performance of the proposed 
framework with that of the legacy kernel I/O stack. 

A. Baseline I/O Performance 

First, we use a micro-benchmark to measure the baseline 
performance of the NVMeDirect framework. Fig. 5 depicts the 
baseline performance of sequential I/O (Fig. 5a) and random 
I/O (Fig. 5b) on NVMeDirect and Kernel I/O, respectively. For 
measuring sequential read or write performance, the 
micro-benchmark issues I/O requests of 128KB to the storage 
device using a single thread. When performing sequential read 
or write on the NVMe SSD, the performance meets or exceeds 
the maximum performance of the device on both NVMeDirect 
and Kernel I/O regardless. Because the performance is high 
enough to meet the requirement of mobile applications, such as 
storing or streaming 4K or higher-quality video, NVMe SSDs 
are effective in providing high user experience on mobile smart 
devices.  

Fig. 5b shows the random read and write performance on 
NVMeDirect and Kernel I/O. In term of user responsiveness on 
mobile smart devices, random I/O performance is more 
important than sequential I/O performance. For measuring 
random I/O performance, the micro-benchmark issues I/O 
requests of 4KB to the storage device with the queue depth of 
32. Because the majority of mobile devices has at least 
quad-core CPUs, the test is repeated not only for a single 
thread, but also for four threads. When the number of I/O 
requests is enough, the performance of random reads and writes 
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meets the performance specification of the device as shown in 
the result of four threads. However, NVMeDirect achieves 
higher IOPS compared to Kernel I/O on the single thread test in 
both reads and writes. This is because NVMeDirect avoids the 
overhead of the kernel I/O stack by supporting direct accesses 
between the user application and the NVMe SSD. On the single 
thread test, NVMeDirect framework records 23% higher read 
IOPS and 5% higher write IOPS than kernel I/O. 

B. Key-value Store Performance 

Key-value store is a widely-used data storage, which is 
designed for storing, retrieving, and managing unstructured 
data. In comparison to the RDBMS, which was used as a data 
repository for structured data, key-value store is easier to use 
and provides higher performance on unstructured data. 
Key-value store is being widely used in mobile smart devices as 
well, as the storage for storing various types of data generated 
from the applications.  

To measure the performance of the key-value store on the 
NVMeDirect framework, a synthetic micro-benchmark is used 
whose key size and value size follow the zipf distribution. The 
average key size and the average value size of the workload is 
set to 32 bytes and 512 bytes, respectively. Initially, one million 
key-value pairs are created and each reader and writer threads 
perform Get() or Put() operations for 10 minutes. To compare 
the results from the existing kernel-based I/O stack, the 
benchmark is performed both on the raw block device and on 
the ext4 filesystem. 

Fig. 7 illustrates the operations per second in Ext4, raw block 
device, and NVMeDirect while running the micro-benchmark. 
As shown in Fig. 7, key-value store on the NVMeDirect 
framework outperforms the other cases with Ext4 and raw 
block device. The Ext4 filesystem and the raw block device 
show almost similar results, even though the Ext4 filesystem 
includes software overhead, such as block allocation, metadata 
management, and journaling. Because the micro-benchmark 
performs on a single large file, the overhead of the Ext4 

filesystem is negligible. Compared to the kernel-based I/O 
stack, the NVMeDirect framework improves the throughput by 
about 12% on Get() operations and by 17% on Put() operations. 
This is because NVMeDirect reduces the latency by 
eliminating the software overhead of the kernel. 

Most smart device users are sensitive to the latency of the 
read operations because they usually sit idle while the result is 
delivered. Therefore, a longer delay time than a certain 
threshold results in degraded user experience on mobile smart 
devices. TABLE I shows the tail latency of Get() operations at 
the 90th, 95th, and 99th percentile while performing the 
micro-benchmark. For the 99th percentile latency, performing a 
Get() operation on the Ext4 filesystem or on the raw block 
device shows about 18~20x higher latency than the 90th 
percentile latency, while the NVMeDirect framework shows 
only 2.6x higher latency. We can see that the NVMeDirect 
framework shows more stable performance, being very 
effective in reducing the tail latency. 

C. Filesystem Performance 

According to our analysis on mobile smartphones, about 
50% of files in mobile storage are less than or equal to 4KB in 
size. In other words, the filesystem performance for small files 
is very important on mobile smart devices. Based on these 
observation, we have conducted an experiment for measuring 
the filesystem performance especially for small files. Our 
synthetic micro-benchmark measures the elapsed time of 
creating, deleting, reading, and writing operation over a large 
number of small files. The micro-benchmark performs 5 
million operations on one million files. Each operation is 
randomly chosen from create, delete, read, and append 
operations. The file sizes range from 4KB to 16KB, and the 
data size of each operation is set to 4KB. We compare the 
performance of our NVMeDFS with that of Ext4, which is one 
of the most widely-used filesystems in mobile smart devices. 

Fig. 8 shows the total elapsed time of performing the entire 
micro-benchmark (denoted by bars) and the amount of bytes 
written (denoted by lines) on each filesystem. As shown in the 
line graphs in Fig. 8, the amount of bytes written is reduced by 
23% when we use NVMeDFS. Because the Ext4 filesystem 
uses journaling for metadata consistency and crash recovery, 
metadata is written twice in the filesystem, which requires more 
time and space than actually needed. However, NVMeDFS can 
avoid duplicated write for consistency of filesystem metadata, 
because NVMeDFS uses the logging scheme of the underlying 
key-value store for ensuring filesystem metadata consistency. 
This leads to a significant reduction in the total elapsed time. As 
shown in the bar graphs in Fig. 8, NVMeDFS is 12.5% faster 
than the Ext4 filesystem by 12.5% on small file accesses. 
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Fig. 7. Performance comparison of key-value store on Ext4, Raw block device
and NVMeDirect framework. 

TABLE I 
TAIL LATENCY OF GET OPERATION BY STORAGE ENGINE 

Percentile 
Ext4 

Filesystem 
Raw Block 

Device 
NVMeDirect 
Framework 

90 24 ㎲ 23㎲ 23㎲ 

95 74㎲ 75㎲ 25㎲ 

99 438㎲ 473㎲ 59㎲ 
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Managed in 4KB Block Unit

Fig. 6. The overall structure of NVMeDirect File System. Filesystem manage
its metadata using key-value store to minimize the management overhead. 
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D. Real-World Mobile Workload Performance 

The last experiment evaluates the performance of three 
different mobile applications by replaying the database query 
traces. These traces are collected by a mobile embedded 
database on real mobile smart devices with running popular 
mobile applications for about a week. The messenger trace was 
obtained from a well-known smartphone messenger application 
that sends and receives a lot of text messages. The social 
network service (SNS) trace was collected by reading news 
feeds and writing comments on those feeds. Finally, the mail 
trace is obtained by smartphone mail client application that 
sends and receives a lot of mails. Because each of these 
applications stores and reads most of data on the embedded 
database, the collected workloads represent the entire storage 
I/O of the application and the reduction in the execution time 
means the increased storage performance for the application. 

These real-world workloads are fed to the the mobile 
embedded database which works on Ext4 or on NVMeDFS 
with the NVMeDirect framework. Fig. 9 shows the execution 
time of each workload on Ext4 and NVMeDFS. The execution 
time is normalized to the execution time on the Ext4 filesystem. 
Compared to the Ext4 filesystem, the execution time is reduced 
by up to 20% on NVMeDFS. Note that NVMeDFS avoids 
storage space overhead needed by journaling by using 
key-value stores for metadata consistency. However, as shown 
in the previous study [12], journaling on the Ext4 filesystem 
incurs a lot of storage I/O requests. Table II compares the 
difference in the number of write requests issued for each 
workload. From Fig. 9 and Table II, we can see that the 
performance gain of NVMeDFS mainly comes from reducing 
the number of write requests and the fast processing of those 
requests by bypassing the kernel I/O stack. 

V. RELATED WORK 

There have been several studies for improving the storage 
performance of mobile smart devices. This section briefly 
describes the related work. 

Kim et al. [14] presents the evidence that storage 
performance indeed affects application performance on smart 
devices and suggests several solutions for improving 
application performance, such as RAIDs, log-structured file 
system, and application modification.  Jeong et al. [12] 
investigates the relationship between embedded database 
systems and filesystem journaling, highlighting the “journaling 
of journaling (JoJ)” problem. Shen et al. [13] also focused on 
the JoJ problem and suggests an adaptive journaling mode for 
resolving the problem. Ngyen et al. [11] investigates the I/O 
behavior on smartphones and proposes the SmartIO approach 
to minimize application I/O delay. Jeong et al. [16] studies the 
effectiveness of asynchronous I/O on mobile devices and 
suggested QASIO scheme to reduce the latency some important 
asynchronous I/O requests. These works are focused on 
resolving abnormal behavior between OS and application or 
optimizing the kernel I/O path on mobile smart devices.  

In order to improve the performance of mobile devices, some 
researchers suggest employing NVM in mobile devices. Kim et 
al. [7] proposes a database engine, which reduces the number of 
synchronous writes by using NVM as a dedicated logging area. 
Oh et al. [8] also suggests a database engine of mobile devices 
to gain the advantages of NVM. Kim et al. [10] proposes the 
delta journaling scheme that reduces the journaling overhead of 
the filesystem layer using a small-sized NVM. Lin et al. [5] 
proposes a page cache replacement policy based on hierarchical 
memory structure. However, prior work is inefficient because 
employing NVM is restricted to page cache or logging area of 
filesystem or database. Also, adopting NVM in consumer 
devices is not cost-effective and extends time-to-market. 

Caufield et al. [17] proposes a flexible file-system 
architecture that exposes the storage-class memory to user 
applications to access storage without kernel interaction. This 
approach is somewhat related to the proposed NVMeDirect 
framework. However, their studies require special hardware 
while the NVMeDirect framework can be utilized on any 
consumer devices equipped with commercial NVMe SSDs. 

VI. CONCLUSION 

In mobile devices, storage device plays an important role in 
providing better user experience, as applications become more 
complex and I/O-intensive. According to these trends, 
researchers have strived to improve the storage performance of 
smart consumer devices. However, the previous approaches are 
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TABLE II 
THE NUMBER OF STORAGE WRITE REQUESTS 

Workload 
Ext4 

Filesystem 
NVMeDFS Difference 

Messenger 22,987 18,492 24% 

SNS 13,666 12,549 9% 

Mail 147,263 121,419 21% 
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Fig. 9. Normalized execution time of real-world mobile application database
workloads on Ext4 and NVMeDFS 
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limited to specific application or kernel layer and practically 
unacceptable on consumer smart devices. 

In order to improve the performance of mobile smart devices, 
this paper suggests the new NVMeDirect framework, which 
makes the application access to the NVMe storage directly in 
user space without any hardware modification. The framework 
achieves 23% higher random read IOPS and 5% higher random 
write IOPS on the NVMe SSD compared to the existing kernel 
I/O. This paper also proposes a light-weight user-space library 
filesystem, called NVMeDFS, which manages metadata 
consistency and durability using the key-value store. This 
filesystem makes it easy to port existing applications over the 
NVMeDirect framework. Evaluation results on NVMeDFS 
confirm that NVMeDFS and NVMeDirect framework 
improves small file I/O performance by 12.5%, and real-world 
mobile workload by up to 20% over the existing Ext4 
filesystem and kernel I/O. 
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