

Abstract—As the application of smart devices becomes more

complex, the number of file I/Os has been increased on mobile
devices, making the storage performance plays an important role
in ensuring better user experience. According to this trend,
various researches have been performed to reduce the storage I/O
or to improve the performance of the storage device itself.
However, existing schemes are not a fundamental solution for
improving the storage performance and limited to specific parts of
the entire storage layers. In this study, a new storage I/O
framework, called NVMeDirect, is proposed to improve the
storage performance. The proposed framework improves the
performance by allowing applications to access storage directly
without any hardware modification. Also, a lightweight
filesystem, operated on top of the proposed framework is
provided to enable existing applications to be ported on the
NVMeDirect framework easily. To evaluate the proposed I/O
framework, we have conducted extensive experiments with
micro-benchmark and real-world workloads. The experiment
results show that, compared to the existing kernel I/O scheme, the
proposed framework improves the small file I/O performance by
12.5% and the real-world mobile workload performance by up to
20%.

Index Terms—Mobile devices, Non-volatile memory express,
SSD, I/O framework.

I. INTRODUCTION

n the past few years, the use of smart mobile devices has
tremendously increased. Beyond the traditional functions of

mobile phones, smartphones are used to run various
applications such as portable multimedia players, games, web
browsers, etc. Also, smart pads are replacing or breaking the
boundaries of traditional laptops. In order to provide high
performance, manufacturers have developed enhanced
hardware components such as CPU and graphic processing unit.
In addition, for improving user experience of smart devices,
manufacturers are adding various features to applications and

Manuscript received December 30, 2016; accepted February 28, 2017. Date

of publication April 12, 2017. This work was supported partly by the National
Research Foundation of Korea (NRF) grant funded by the Korea Government
(MSIP) (No. 2016R1A2A1A05005494). (Corresponding author: Jin-Soo Kim.)

Hyeong-Jun Kim is with College of Information and Communication
Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon
16419, South Korea (e-mail: hjkim@csl.skku.edu).

Jin-Soo Kim is with College of Information and Communication
Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon
16419, South Korea (e-mail: jinsookim@ skku.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCE.2017.014709

frameworks. These trends make mobile applications contain
higher quality images and large amount data to increase user
satisfaction. Consequently, the amount of data to be read from
or written to storage has been increased significantly.

Mobile smart devices use NAND flash-based storage such as
embedded multimedia cards (eMMCs). eMMCs have
outstanding merits including small size form factor, low power
consumption and shock resistance. These advantages
contributed to the miniaturization of the device and the
widespread adoption as the secondary storage of many mobile
smart devices. However, because of the limitation of the
underlying interface, the performance of eMMCs are being
saturated. Recently, Non-Volatile Memory Express (NVMe)
interface has been standardized to support high performance
storage based on the PCI Express (PCIe) interconnect. Based
on the NVMe standard, NVMe PCIe solid state drive (SSD) in a
single ball grid array (BGA) package has been announced. The
BGA form factor SSDs are currently being adopted by high-end
smart phones and smart pads for providing high storage
performance. In spite of this effort, storage is still often blamed
as a major source of performance bottleneck in ensuring better
user experience in smart devices.

In order to increase the storage performance further, industry
and academia have conducted extensive researches including
both hardware and software techniques. Several studies have
focused on combining emerging non-volatile memory (NVM)
technologies such as phase change memory (PCM), spin-torque
transfer magneto-resistive memory (STT-MRAM) and
transistor-less cross [1], [2] with the conventional software
stack to optimize the storage stack overheads on mobile devices.
These memories are designed to be byte addressable and
accessible at a similar latency to DRAM. For example, some
researchers focused on utilizing NVM on the legacy I/O stack
of operating system, including file system layer [3], [4] and
page caches [5], [6]. Others studied utilizing NVM on specific
application or database engine of mobile devices [7]-[9]. These
studies either employed a small size of NVM as a cache
memory of storage, or replaced the whole main memory or
storage devices with NVM. However, prior works are
inappropriate for mobile smart devices because employing a
small size of NVM as a cache for specific applications is not
cost-effective. Replacing main memory or storage with NVM
also incurs high cost and significantly extends time-to-market.

Other researchers tried to reduce the software overhead of
storage stack by optimizing the I/O stacks of mobile devices.
These include introducing mobile device-specific I/O policies

A User-space Storage I/O Framework
for NVMe SSDs in Mobile Smart Devices

Hyeong-Jun Kim, and Jin-Soo Kim, Member, IEEE

I

0098 3063/17/$20.00 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
 See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

28 IEEE Transactions on Consumer Electronics, Vol. 63, No. 1, February 2017

or subsystems, and reducing the number of I/O requests by
optimizing the use of fsync() system calls [12]-[16]. However,
these works concentrated on reducing the number of I/Os,
instead of optimizing the fundamental I/O stack overhead.

To optimize the fundamental I/O stack overhead in kernel,
many researchers have tried to reduce the kernel overhead by
using the polling mechanism [17], [18] and eliminating
unnecessary context switching [19], [20]. However,
kernel-level I/O optimizations have a couple of limitations to
satisfy the requirements of user applications. First, the kernel
should be general because it provides an abstraction layer for
applications, managing all the hardware resources. Thus, it is
hard to optimize the kernel without loss of generality. Second,
the kernel cannot implement any policy that favors a certain
application because it should provide fairness among
applications. Therefore, it would be desirable if a user-space
I/O framework is supported for high-performance storage
devices which enables the optimization of the I/O stack in the
user space without any kernel intervention.

Recently, some industries announced libraries for accessing
NVMe SSDs in the user space. However, these libraries only
work for a single application because it moves the whole
NVMe driver from the kernel to the user space and assigns it to
the specific application. In addition, these libraries currently
support only basic I/Os on raw block devices. We believe these
libraries are inappropriate to be adopted for mobile smart
devices, because many smart devices are equipped with a single
storage device and applications of smart devices are run on file
systems instead of the block-level storage.

In this paper, we propose a novel user-level I/O framework
called NVMeDirect, which improves the performance by
allowing the user applications to access the storage device
directly. The previous version of this work [21] can coexist with
the legacy I/O stack of the kernel, allowing applications to access
NVMe SSDs in the user space. However, because the previous
version only supports I/Os on the raw block devices, it was not
suitable for user applications on consumer smart devices. This
paper enhances the previous version of our work in terms of
usability by providing user-space file system layer to make it
easy to port user applications on the proposed user- space I/O
framework. In addition, this paper includes evaluation results
using real-world application workloads of smartphones. Our
results show that the proposed framework and filesystem
outperforms the existing kernel-based I/O by up to 23% on micro-
benchmark and by 20% on real-world workload benchmark.

The remainder of this paper is organized as follows. Section
II describes the overview of the NVMe interface and presents
the motivation of this work. Section III presents the design of
the NVMeDirect framework in detail. Section IV introduces the
evaluation methodology and presents evaluation results in
terms of performance with synthetic and real-world workloads.
The related work is described in Section V. Finally, Section VI
concludes the paper.

II. BACKGROUND AND MOTIVATION

This section describes the overview of the NVMe interface
and then presents the I/O stack overhead in the existing kernel
software stack to motivate this work.

A. Non-volatile Memory Express (NVMe)

NVM Express (NVMe) is a high performance and scalable
host controller interface for PCIe-based SSDs. Legacy storage
protocols such as SCSI, SATA, and Serial Attached SCSI
(SAS), were designed to support rotational storage devices such
as hard disk drives (HDDs). All of these protocols
communicate with the host using an integrated on-chip or an
external Host Bus Adaptor (HBA). eMMC also uses some of
legacy storage protocols for compatibility with existing
operating systems. As NAND flash-based storage evolves, their
internal bandwidth capabilities exceeded the bandwidth
supported by the external interface connecting the drives to the
host system. Thus, the performance improvement of NAND
flash-based storage has been limited by the maximum
throughput of the interface protocol itself. Moreover, since
access latencies of NAND flash memory are orders of
magnitude lower than that of rotational media, protocol
inefficiencies and external HBA became a dominant
contributor to the overall access time. These reasons led to an
effort to transition from existing storage protocols to NVMe,
based on a scalable, high-bandwidth, and low-latency I/O
interconnect, namely PCI express (PCIe).

The notable feature of NVMe is to offer multiple queues to
process I/O commands. Each I/O queue can manage up to 64K
commands and a single NVMe device supports up to 64K I/O
queues. When issuing an I/O command, the host system places
the command into the submission queue and notifies the NVMe
device using the doorbell register. After the NVMe device
processes the I/O command, it writes the result to the
completion queue and raises an interrupt to the host system.
NVMe enhances the performance of interrupt processing by
MSI/MSI-X and interrupt aggregation. In the current operating
systems, the NVMe driver creates a submission queue and a
completion queue per core in the host system to avoid locking
overhead and cache collision.

Fig. 1 illustrates a high-level representation of the
differences between the I/O stack of SATA SSD and NVMe
SSD. An NVMe-based I/O request bypasses the conventional
block layer request queue and uses internal hardware
submission queue and completion queue pairs. Because NVMe
SSD uses multiple hardware queues and each queue is bound to
a CPU, NVMe driver does not need to acquire a lock to
guarantee data consistency. These mechanisms allow to reduce
the overhead of software, and thus improving performance and
scalability.

B. Motivation

As applications become more complex and they request
more storage I/Os, the storage performance plays an important
role in ensuring better user experience. In particular, the latency
reduction in the storage I/Os is very important on mobile smart
devices, because user interaction occurs frequently on mobile
devices.

As shown in Fig. 2, NVMe outperforms SATA SSD when
the host reads a 4KB data, due to the enhanced storage interface
and optimized software stack. However, NVMe SSD still
consumes over 15% of its time on the software I/O stack.

H.-J. Kim and J.-S. Kim: A User-space Storage I/O Framework for NVMe SSDs in Mobile Smart Devices 29

NVMe RAMDISK in Fig. 2 represents the latency breakdown
for the same condition over the NVMe device consisting of
DRAMs. In this case, we can observe now the system spends
70% of its time in the software I/O stack. It is apparent that the
faster the memory technology becomes, the more the overhead
in the kernel software I/O stack will hinder the performance
improvement.

Even if we use the state-of-the-art schemes for reducing the
kernel software stack overhead, it is not possible to eliminate
the kernel overhead completely due to the additional work
associated with system call processing, permission check,
memory allocation, and memory copy. In particular, most
mobile smart devices are used by a single user and each
application is executed in some form of sandbox, which is
provided by the OS framework. These techniques allow only
authorized applications to access storage devices. In other
words, some kernel components on the storage I/O path can be
eliminated or simplified. Hence, bypassing unnecessary
features in the kernel and accessing the storage device directly

in the user space is desirable for maximizing the performance
of NAND flash-based storage devices and emerging high
performance storage device in mobile smart devices. Also,
under the proposed user-space I/O framework, each application
can control the number of I/O queues flexibly according to its
own requirement, which is not possible in the existing
kernel-level I/O stack.

III. DESIGN AND IMPLEMENTATION

This paper proposes a novel user-level I/O framework called
NVMeDirect, which enable user applications to access storage
device without any kernel invention. The NVMeDirect
framework consists of a light-weight user-level file system
called NVMeDFS and basic block-level I/O mechanisms based
on polling which can be configured freely according to the
characteristics of applications. This section outlines how the
NVMeDirect framework is designed in order to obtain optimal
performance with NVMe SSD in mobile smart devices.

A. System Overview

Fig. 3 shows the overall structure of NVMeDirect I/O
Framework. This framework avoids the overhead of the kernel
I/O stack by supporting direct accesses between the user
application and the NVMe SSD on mobile smart devices to
achieve high performance with low latency. The framework is
composed of two components: NVMeDirect Library and
user-space library filesystem called NVMeDFS.

The NVMeDirect Library enables user applications to access
NVMe devices as a block storage on user-space application

0

20

40

60

80

100

120

140

160

SATA SSD NVMe SSD NVMe RAMDISK

E
la

p
se

d
T

im
e

 (
µ

s)

VFS Block layer Device Driver Others Device

30µs of 147µs

17µs of 108µs

17µs of 24µs

Fig. 2. Comparison of elapsed time of each layer on SATA SSD, NVMe SSD
and NVMe RAMDISK.

submit_bio

generic_make_request

make_request_fn

blk_queue_bio

Request Queue

blk_peek_request

scsi_request_fn

scsi_dispatch_cmd

nvme_make_request

nvme_submit_bio_queue

write cmd to SQ

ring SQ doorbell

end I/O
dispatch command to
lower level driver

SATA SSD NVMe SSD

Fig. 1. High-level representation of I/O software stack for SATA SSD and
NVMe SSD.

N
V

M
eD

ir
e

ct
 L

ib
ra

ry

NVMe Controller

I/
O

 H
a

n
d

le
s

I/
O

 Q
u

e
u

e
s

Block Cache

I/O Scheduler

I/O Completion
Thread

Handle Handle

Admin Tool

U
se

r
K

e
rn

el
H

W

N
V

M
e

D
riv

er

D
ef

au
lt

Q
ue

ue
s

U
se

r C
re

at
ed

Q

ue
ue

s

NVMeDirect Filesystem (NVMeDFS) API

NVMeDirect Management & Block I/O API

Block
Mgmt.

Metadata Mgmt.
(Key value store)

L
IB

F
S File descriptor

Mgmt.

Fig. 3. The overall structure of NVMeDirect I/O Framework for accessing
NVMe SSDs directly from user-level applications.

30 IEEE Transactions on Consumer Electronics, Vol. 63, No. 1, February 2017

without kernel I/O stacks such as block device layer. In
addition, The NVMeDirect Library supports several I/O
features to perform various I/O policies as performed in the
kernel. Because many applications in consumer devices are
designed and implemented based on the file-level interface,
filesystem is essential for accessing storage using the file
abstraction instead of the simple block device abstraction.

NVMeDFS is a light-weight library filesystem for
performing I/Os on NVMeDirect using conventional file-level
APIs. This library file system enables user-space application to
see the NVMe device as a file-level storage. Applications can
request file I/Os to NVMeDFS with provided APIs and
NVMeDFS uses NVMeDirect library APIs internally for
performing I/Os on NVMe devices.

B. NVMeDirect Library

The NVMeDirect library is designed to fully utilize the
performance of NVMe SSDs while meeting the diverse
requirements from user applications. The library exports
NVMe storage device to user application directly as a
block-level storage. Fig. 3 illustrates the overall architecture of
the NVMeDirect I/O framework and components of the
NVMeDirect library. The library consists of three components:
Management I/O, Basic I/O and Extended I/O.

The management I/O component is composed of Admin tool
and kernel module. Admin tool controls the kernel module with
the root privilege to manage the access permission of I/O
queues with ioctl(). When an application requests to create a
queue, the kernel module checks whether the application is
allowed to perform user-level I/Os. And then it creates the
required NVMe I/O queue pairs, and maps their memory
regions and the associated doorbell registers to the user-space
memory region of the application. After creating queues and
mapping memory region is completed, the application can issue
I/O commands directly to the NVMe SSD using Basic I/O
component of NVMeDirect without any hardware modification
or help from the kernel I/O stack.

The Basic I/O components consists of I/O handles and I/O
queues. I/O queues are memory-mapped address space for
NVMe I/O queues, which is created in the kernel address space.
NVMeDirect library offers the notion of I/O handles to send
I/O requests to NVMe queues. I/O handle can be configured to
use different features such as caching, I/O scheduling, and I/O
completion according to the characteristics of the I/O requests.
As shown in Fig. 4, a thread can create one or more I/O handles
to access the queues and each handle can be bound to a
dedicated queue or a shared queue. For example, Applications

can share a single queue of NVMeDirect with multiple handles
for asynchronous I/Os and dedicate a single queue with a
handles for synchronous I/Os. These mapping of handles and
queues provide an efficient and fast I/O service to synchronous
I/O requests which make applications wait for I/O to complete.

The last component of the NVMeDirect library is Extended
I/O component which provides various I/O helper functions
such as block cache, I/O scheduler, and I/O completion thread.
As mentioned in the Basic I/O component, applications can use
these components depending on the characteristics of I/O.
Block cache is similar to the page cache in the kernel, which
manages the cache memory in 4KB unit size. The NVMe
interface uses the physical memory addresses for I/O
commands. Thus, Block cache maintains pre-translated
physical addresses for each memory unit to avoid address
translation overhead during the actual I/Os. I/O scheduler
issues I/O commands for asynchronous I/O operations or when
an I/O request is dispatched from the Block cache. The I/O
completion thread is implemented as a standalone thread to
check the completion status of the I/Os using polling. Since the
interrupt-based I/O completion incurs context switching and
additional software overhead, it is not suitable for high
performance and low latency I/O devices [18]. Polling
mechanism is especially suitable for mobile smart devices,
because the mobile smart devices occur user interaction
frequently and the majority of file accesses is known as small
random I/Os.

However, when fewer storage I/Os are requested from
application, the polling mechanism wastes most of CPU cycles
in busy waiting. In particular, polling is not efficient in a large
sequential access such as reading or writing multimedia files,
which is sensitive to bandwidth rather than latency. To address
this problem, the NVMeDirect library utilizes a dedicated
polling thread with dynamic polling period control based on the
number of I/O requests and the size of I/O request to avoid
unnecessary CPU usage.

The NVMeDirect library exposes various APIs such as
nvmed_read(), nvmed_write(), nvmed_flush(),
nvmed_discard(), etc. that can be used by any user applications.
These APIs interact with various components of the library and
eventually issue NVMe commands such as read, write, flush,
and discard that correspond to each API. Also, the NVMeDirect
framework supports APIs for managing queues and handles
such as nvmed_create_queue(), nvmed_create_handle(), and
nvmed_set_param().

C. NVMeDirect File System (NVMeDFS)

NVMeDirect File System, called NVMeDFS, is designed to
enable file-level I/Os on high performance NVMe devices. The
existing user-level I/O libraries (including the previous version
of NVMeDirect) lack the support for file systems. They merely
present a storage device as a block device (i.e. an array of
fixed-size blocks) to applications. This makes it very difficult
for most applications in mobile smart devices to take advantage
of user-level I/O libraries without extensive modifications to
applications and and/or execution framework. To resolve this
problem, NVMeDFS is developed in the form of a lightweight

I/
O

H

an
d

le
s

I/
O

Q

u
eu

es

Handle Handle Handle

1:1 N:1

Fig. 4. An example of I/O queues and I/O handles binding. I/O handles and I/O
queues can map flexible for utilizing I/O framework effeciency.

H.-J. Kim and J.-S. Kim: A User-space Storage I/O Framework for NVMe SSDs in Mobile Smart Devices 31

shared library which provides POSIX-like interfaces to any
applications at the user level.

The internal architecture of NVMeDFS is illustrated in Fig. 5.
NVMeDFS divides the storage device into two regions:
metadata region and data block region. Filesystem metadata
such as superblock, block bitmaps and inodes are managed
using an embedded key-value store with an index structure
called HB+Trie [22]. Because the key-value store maintains
data using logging and checkpoint, it can guarantee durability
and consistency of metadata effectively without any additional
journaling mechanism. Since the key-value store itself is
initially designed to run on a file system, we have modified the
storage engine of the key-value store so that it operates on top
of NVMeDirect library. Due to the nature of log-structured
design, the original key-value store requires periodic
compaction to reclaim the space occupied by deleted or updated
data. In order to remove additional I/O overhead incurred
during compaction, NVMeDFS reuses invalid blocks without
making free space thorough compaction. In addition,
NVMeDFS uses fixed-size metadata to reduce internal
fragmentation while blocks are reused.

Traditional filesystem accesses data blocks by pathname
traversal though several metadata and data blocks such as
directory entry and inodes blocks. This conventional structures
occurs a significant amount of storage I/O operations and
becomes overhead on accessing file data. Unlike the traditional
filesystem, NVMeDFS maintains this information using a
key-value pair, where key is the full pathname and value is the
corresponding inode number. Whenever a file is created, this
information is inserted into the key-value store. This scheme
enables applications to access metadata and data blocks of the
file with low latency.

(KEY) Pathname → (VALUE) size, timestamp, etc…

Because of the common prefix pathname such as parent
directory, indexing based on the full pathname may incur storage
space overhead. However, the key-value store in NVMeDFS
uses the HB+Trie structure which provides common prefix
compression. Using this feature, NVMeDFS avoids storage
overhead by duplicated parts of the pathname (Fig 6).

Each file is broken up into data blocks of fixed size. The data
block size is 4KB and the contiguous blocks can be represented
by a single extent as in the Ext4 filesystem.

NVMeDFS supports POSIX-like APIs with nvmedfs prefix.
Applications can access files using APIs such as
nvmedfs_open(), nvmedfs_read(), and nvmedfs_write(). Every
function of filesystem uses NVMeDirect library functions
internally to perform I/Os on NVMe SSDs. NVMeDFS
supports various options for file I/O including sync / async, and
direct / buffered I/O as in the kernel I/O. These options use the
features of the I/O handles in the NVMeDirect library. This
approach enables applications to efficiently utilize the NVMe
storage devices according to the characteristics of each I/O.

IV. EVALUATION

The performance of the proposed NVMeDirect framework
has been evaluated using several micro-benchmarks and
real-world mobile workloads on a commercial NVMe SSD. In
the experiments, we compare the performance of the proposed
framework with that of the legacy kernel I/O stack.

A. Baseline I/O Performance

First, we use a micro-benchmark to measure the baseline
performance of the NVMeDirect framework. Fig. 5 depicts the
baseline performance of sequential I/O (Fig. 5a) and random
I/O (Fig. 5b) on NVMeDirect and Kernel I/O, respectively. For
measuring sequential read or write performance, the
micro-benchmark issues I/O requests of 128KB to the storage
device using a single thread. When performing sequential read
or write on the NVMe SSD, the performance meets or exceeds
the maximum performance of the device on both NVMeDirect
and Kernel I/O regardless. Because the performance is high
enough to meet the requirement of mobile applications, such as
storing or streaming 4K or higher-quality video, NVMe SSDs
are effective in providing high user experience on mobile smart
devices.

Fig. 5b shows the random read and write performance on
NVMeDirect and Kernel I/O. In term of user responsiveness on
mobile smart devices, random I/O performance is more
important than sequential I/O performance. For measuring
random I/O performance, the micro-benchmark issues I/O
requests of 4KB to the storage device with the queue depth of
32. Because the majority of mobile devices has at least
quad-core CPUs, the test is repeated not only for a single
thread, but also for four threads. When the number of I/O
requests is enough, the performance of random reads and writes

0

200

400

600

800

1,000

1,200

1,400

NVMeDirect Kernel NVMeDirect Kernel

Sequential Read Sequential Write

B
an

dw
id

th
 (

M
B

/s
)

(a) Sequential I/O performance comparison

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

NVMeDirect
(1 thread)

Kernel
(1 thread)

NVMeDirect
(4 thread)

Kernel
(4 thread)

NVMeDirect
(1 thread)

Kernel
(1 thread)

NVMeDirect
(4 thread)

Kernel
(4 thread)

Random Read Random Write

IO
P

S

(b) Random I/O performance comparison

Fig. 5. Comparison of the baseline performance of NVMeDirect framework and Kernel I/O.

32 IEEE Transactions on Consumer Electronics, Vol. 63, No. 1, February 2017

meets the performance specification of the device as shown in
the result of four threads. However, NVMeDirect achieves
higher IOPS compared to Kernel I/O on the single thread test in
both reads and writes. This is because NVMeDirect avoids the
overhead of the kernel I/O stack by supporting direct accesses
between the user application and the NVMe SSD. On the single
thread test, NVMeDirect framework records 23% higher read
IOPS and 5% higher write IOPS than kernel I/O.

B. Key-value Store Performance

Key-value store is a widely-used data storage, which is
designed for storing, retrieving, and managing unstructured
data. In comparison to the RDBMS, which was used as a data
repository for structured data, key-value store is easier to use
and provides higher performance on unstructured data.
Key-value store is being widely used in mobile smart devices as
well, as the storage for storing various types of data generated
from the applications.

To measure the performance of the key-value store on the
NVMeDirect framework, a synthetic micro-benchmark is used
whose key size and value size follow the zipf distribution. The
average key size and the average value size of the workload is
set to 32 bytes and 512 bytes, respectively. Initially, one million
key-value pairs are created and each reader and writer threads
perform Get() or Put() operations for 10 minutes. To compare
the results from the existing kernel-based I/O stack, the
benchmark is performed both on the raw block device and on
the ext4 filesystem.

Fig. 7 illustrates the operations per second in Ext4, raw block
device, and NVMeDirect while running the micro-benchmark.
As shown in Fig. 7, key-value store on the NVMeDirect
framework outperforms the other cases with Ext4 and raw
block device. The Ext4 filesystem and the raw block device
show almost similar results, even though the Ext4 filesystem
includes software overhead, such as block allocation, metadata
management, and journaling. Because the micro-benchmark
performs on a single large file, the overhead of the Ext4

filesystem is negligible. Compared to the kernel-based I/O
stack, the NVMeDirect framework improves the throughput by
about 12% on Get() operations and by 17% on Put() operations.
This is because NVMeDirect reduces the latency by
eliminating the software overhead of the kernel.

Most smart device users are sensitive to the latency of the
read operations because they usually sit idle while the result is
delivered. Therefore, a longer delay time than a certain
threshold results in degraded user experience on mobile smart
devices. TABLE I shows the tail latency of Get() operations at
the 90th, 95th, and 99th percentile while performing the
micro-benchmark. For the 99th percentile latency, performing a
Get() operation on the Ext4 filesystem or on the raw block
device shows about 18~20x higher latency than the 90th
percentile latency, while the NVMeDirect framework shows
only 2.6x higher latency. We can see that the NVMeDirect
framework shows more stable performance, being very
effective in reducing the tail latency.

C. Filesystem Performance

According to our analysis on mobile smartphones, about
50% of files in mobile storage are less than or equal to 4KB in
size. In other words, the filesystem performance for small files
is very important on mobile smart devices. Based on these
observation, we have conducted an experiment for measuring
the filesystem performance especially for small files. Our
synthetic micro-benchmark measures the elapsed time of
creating, deleting, reading, and writing operation over a large
number of small files. The micro-benchmark performs 5
million operations on one million files. Each operation is
randomly chosen from create, delete, read, and append
operations. The file sizes range from 4KB to 16KB, and the
data size of each operation is set to 4KB. We compare the
performance of our NVMeDFS with that of Ext4, which is one
of the most widely-used filesystems in mobile smart devices.

Fig. 8 shows the total elapsed time of performing the entire
micro-benchmark (denoted by bars) and the amount of bytes
written (denoted by lines) on each filesystem. As shown in the
line graphs in Fig. 8, the amount of bytes written is reduced by
23% when we use NVMeDFS. Because the Ext4 filesystem
uses journaling for metadata consistency and crash recovery,
metadata is written twice in the filesystem, which requires more
time and space than actually needed. However, NVMeDFS can
avoid duplicated write for consistency of filesystem metadata,
because NVMeDFS uses the logging scheme of the underlying
key-value store for ensuring filesystem metadata consistency.
This leads to a significant reduction in the total elapsed time. As
shown in the bar graphs in Fig. 8, NVMeDFS is 12.5% faster
than the Ext4 filesystem by 12.5% on small file accesses.

0

50,000

100,000

150,000

200,000

250,000

Get Put

op
s

/
se

c

Ext4 Raw block device NVMeDirect

Fig. 7. Performance comparison of key-value store on Ext4, Raw block device
and NVMeDirect framework.

TABLE I
TAIL LATENCY OF GET OPERATION BY STORAGE ENGINE

Percentile
Ext4

Filesystem
Raw Block

Device
NVMeDirect
Framework

90 24 ㎲ 23㎲ 23㎲

95 74㎲ 75㎲ 25㎲

99 438㎲ 473㎲ 59㎲

HB+Trie

DB Data DOC DOC DOC

Filesystem Metadata Region Data Block Region

{Super Block, Data bitmap, Inodes}
in Key-Value store

Managed in 4KB Block Unit

Fig. 6. The overall structure of NVMeDirect File System. Filesystem manage
its metadata using key-value store to minimize the management overhead.

H.-J. Kim and J.-S. Kim: A User-space Storage I/O Framework for NVMe SSDs in Mobile Smart Devices 33

D. Real-World Mobile Workload Performance

The last experiment evaluates the performance of three
different mobile applications by replaying the database query
traces. These traces are collected by a mobile embedded
database on real mobile smart devices with running popular
mobile applications for about a week. The messenger trace was
obtained from a well-known smartphone messenger application
that sends and receives a lot of text messages. The social
network service (SNS) trace was collected by reading news
feeds and writing comments on those feeds. Finally, the mail
trace is obtained by smartphone mail client application that
sends and receives a lot of mails. Because each of these
applications stores and reads most of data on the embedded
database, the collected workloads represent the entire storage
I/O of the application and the reduction in the execution time
means the increased storage performance for the application.

These real-world workloads are fed to the the mobile
embedded database which works on Ext4 or on NVMeDFS
with the NVMeDirect framework. Fig. 9 shows the execution
time of each workload on Ext4 and NVMeDFS. The execution
time is normalized to the execution time on the Ext4 filesystem.
Compared to the Ext4 filesystem, the execution time is reduced
by up to 20% on NVMeDFS. Note that NVMeDFS avoids
storage space overhead needed by journaling by using
key-value stores for metadata consistency. However, as shown
in the previous study [12], journaling on the Ext4 filesystem
incurs a lot of storage I/O requests. Table II compares the
difference in the number of write requests issued for each
workload. From Fig. 9 and Table II, we can see that the
performance gain of NVMeDFS mainly comes from reducing
the number of write requests and the fast processing of those
requests by bypassing the kernel I/O stack.

V. RELATED WORK

There have been several studies for improving the storage
performance of mobile smart devices. This section briefly
describes the related work.

Kim et al. [14] presents the evidence that storage
performance indeed affects application performance on smart
devices and suggests several solutions for improving
application performance, such as RAIDs, log-structured file
system, and application modification. Jeong et al. [12]
investigates the relationship between embedded database
systems and filesystem journaling, highlighting the “journaling
of journaling (JoJ)” problem. Shen et al. [13] also focused on
the JoJ problem and suggests an adaptive journaling mode for
resolving the problem. Ngyen et al. [11] investigates the I/O
behavior on smartphones and proposes the SmartIO approach
to minimize application I/O delay. Jeong et al. [16] studies the
effectiveness of asynchronous I/O on mobile devices and
suggested QASIO scheme to reduce the latency some important
asynchronous I/O requests. These works are focused on
resolving abnormal behavior between OS and application or
optimizing the kernel I/O path on mobile smart devices.

In order to improve the performance of mobile devices, some
researchers suggest employing NVM in mobile devices. Kim et
al. [7] proposes a database engine, which reduces the number of
synchronous writes by using NVM as a dedicated logging area.
Oh et al. [8] also suggests a database engine of mobile devices
to gain the advantages of NVM. Kim et al. [10] proposes the
delta journaling scheme that reduces the journaling overhead of
the filesystem layer using a small-sized NVM. Lin et al. [5]
proposes a page cache replacement policy based on hierarchical
memory structure. However, prior work is inefficient because
employing NVM is restricted to page cache or logging area of
filesystem or database. Also, adopting NVM in consumer
devices is not cost-effective and extends time-to-market.

Caufield et al. [17] proposes a flexible file-system
architecture that exposes the storage-class memory to user
applications to access storage without kernel interaction. This
approach is somewhat related to the proposed NVMeDirect
framework. However, their studies require special hardware
while the NVMeDirect framework can be utilized on any
consumer devices equipped with commercial NVMe SSDs.

VI. CONCLUSION

In mobile devices, storage device plays an important role in
providing better user experience, as applications become more
complex and I/O-intensive. According to these trends,
researchers have strived to improve the storage performance of
smart consumer devices. However, the previous approaches are

100,000

110,000

120,000

130,000

140,000

150,000

160,000

170,000

180,000

190,000

200,000

 1,250

 1,300

 1,350

 1,400

 1,450

 1,500

 1,550

 1,600

Ext4 Filesystem NVMeDFS
(NVMeDirect Filesystem)

W
rit

e
 S

iz
e

(K
B

)

E
la

ps
ed

 T
im

e
 (

s)

Fig. 8. Filesystem performance comparison of Ext4 vs. NVMeDFS. Bar graph
denotes elapsed time, and line graph denotes write size.

TABLE II
THE NUMBER OF STORAGE WRITE REQUESTS

Workload
Ext4

Filesystem
NVMeDFS Difference

Messenger 22,987 18,492 24%

SNS 13,666 12,549 9%

Mail 147,263 121,419 21%

0

0.2

0.4

0.6

0.8

1

1.2

Messenger SNS MailN
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

(s
)

Ext4 NVMeDFS

Fig. 9. Normalized execution time of real-world mobile application database
workloads on Ext4 and NVMeDFS

34 IEEE Transactions on Consumer Electronics, Vol. 63, No. 1, February 2017

limited to specific application or kernel layer and practically
unacceptable on consumer smart devices.

In order to improve the performance of mobile smart devices,
this paper suggests the new NVMeDirect framework, which
makes the application access to the NVMe storage directly in
user space without any hardware modification. The framework
achieves 23% higher random read IOPS and 5% higher random
write IOPS on the NVMe SSD compared to the existing kernel
I/O. This paper also proposes a light-weight user-space library
filesystem, called NVMeDFS, which manages metadata
consistency and durability using the key-value store. This
filesystem makes it easy to port existing applications over the
NVMeDirect framework. Evaluation results on NVMeDFS
confirm that NVMeDFS and NVMeDirect framework
improves small file I/O performance by 12.5%, and real-world
mobile workload by up to 20% over the existing Ext4
filesystem and kernel I/O.

REFERENCES
[1] S. Mittal, and J. S. Vetter, “A survey of software techniques for using

non-volatile memories for storage and main memory systems,” IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 5, pp. 1537-1550, May 2016.

[2] K. Bailey, L. Ceze, S. D. Gribble, and H. M. Levy, “Operating system
implications of fast, cheap, non-volatile memory,” in Proc. USENIX
Conference Hot Topics in Operating Systems, April 2011, pp. 2:1-2:5.

[3] H. G. Lee and S. Ryu, “High-performance NAND and PRAM hybrid
storage design for consumer electronics,” IEEE Transactions on
Consumer Electronics, vol. 56, no. 1, pp. 112-118, Feb. 2010.

[4] K. Zhong, T. Wang, X. Zhu, L. Long, D. Liu, W. Liu, Z. Shao and
E.-H.-M. Sha, “Building high-performance smartphones via nonvolatile
memory: the swap approach,” in Proc. ACM International Conference on
Embedded Software, New Delhi, India, pp. 1-10, Oct. 2014.

[5] Y.-J. Lin, C.-L. Yang, H.-p. Li, and C.-Y. M. Wang, “A buffer cache
architecture for smartphones with hybrid DRAM/PCM memory,” in
Proc. IEEE Non-Volatile Memory System and Applications Symposium,
Hong Kong, China, pp. 1-6, Aug. 2015.

[6] J. Park, E. Lee, and H. Bahn, “DABC-NV: A buffer cache architecture for
mobile systems with heterogeneous flash memories,” IEEE Transactions
on Consumer Electronics, vol. 58, no. 4, pp. 1237-1245, Nov. 2012.

[7] D. Kim, E. Lee, S. Ahn, and H. Bahn, “Improving the storage
performance of smartphones through journaling in non-volatile memory,”
IEEE Transactions on Consumer Electronics, vol. 59, no. 3, pp. 556-561,
Aug. 2013.

[8] G. Oh, S. Kim, S.-W. Lee, and B. Moon, “SQLite optimization with phase
change memory for mobile applications,” in Proc. International
Conference on Very Large Database, Kohala Coast, Hawaii, pp. 1454-
1465, Aug. 2015.

[9] H. Luo, L. Tian, and H. Jiang, “qNVRAM: Quasi non-volatile RAM for
low overhead persistency enforcement in smartphones,” in Proc. USENIX
Workshop on Hot Topics in Storage and File Systems, Philadelphia, USA,
pp. 1-5, Jun. 2014.

[10] J. Kim, C. Min, and Y. I. Eom, “Reducing excessive journaling overhead
with small-sized NVRAM for mobile devices,” IEEE Transactions on
Consumer Electronics, vol. 60, no. 2, pp. 217-224, May 2014.

[11] D. T. Nguyen, G. Zhou, G. Xing, X. Qi, Z. Hao, G. Peng, and Q. Yang,
“Reducing smartphone application delay through read/write isolation,” in
Proc. ACM Annual International Conference on Mobile Systems,
Applications, and Services, Florence, Italy, pp. 287-300, May 2015.

[12] S. Jeong, K. Lee, S. Lee, S. Son, and Y. Won, “I/O stack optimization for
smartphones,” in Proc. USENIX Annual Technical Conference, San Jose,
USA, pp. 309-320, Jun. 2013.

[13] K. Shen, S. Park, and M. Zhu, “Journaling of journal is (almost) free,” in
Proc. USENIX Conference on File and Storage Technologies, Santa
Clara, USA, pp. 287-293, Feb. 2014.

[14] H. Kim, N. Agrawal, and C. Ungureanu, “Revisiting storage for
smartphones,” in Proc. USENIX Conference on File and Storage
Technologies, Santa Clara, USA, pp. 1-14, Feb. 2012

[15] C. Lee, D. Sim, J.-Y. Hwang, and S. Cho, “F2FS: A new file system for
flash storage,” In Proc. USENIX Conference on File and Storage
Technologies, Santa Clara, USA, pp. 273-286, Feb. 2015.

[16] D. Jeong, Y. Lee, and J.-S. Kim, “Boosting quasi-asynchronous I/O for
better responsiveness in mobile devices,” in Proc. USENIX Conference
on File and Storage Technologies, Santa Clara, USA, pp. 191-202, Feb.
2015.

[17] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De, J. Coburn, and S.
Swanson, "Providing safe, user space access to fast, solid state disks," In
Proc. international conference on Architectural Support for
Programming Languages and Operating Systems, New York, NY, USA,
pp. 387-400, Mar. 2012.

[18] J. Yang, D.B. Minturn, and F. Hady, “When poll is better than interrupt,”
in Proc. USENIX Conference on File and Storage Technologies, Santa
Clara, USA, pp. 1-7, Feb. 2015.

[19] W. Shin, Q. Chen, M. Oh, H. Eom, and H. Y. Yeom, “OS I/O path
optimizations for flash solid-state drives,” in Proc, USENIX Annual
Technical Conference, Philadelphia, USA, pp. 483-488, Jun. 2014.

[20] Y. J. Yu, D. I. Shin, W. Shin, N. Y. Song, J. W. Choi, H. S. Kim, and H.
Y. Yeom, “Optimizing the block I/O subsystem for fast storage devices,”
ACM Transactions on Computer Systems, vol. 32 no. 2, pp. 6:1-6:48, June
2014.

[21] H.-J. Kim, Y. S. Lee, J.-S. Kim, “NVMeDirect: A User-space I/O
Framework for Application-specific Optimization on NVMe SSDs,” In
Proc. USENIX Workshop on Hot Topics in Storage and File Systems,
Denver, USA, pp. 1-5, Jun. 2016.

[22] J. S. Ahn, C. Seo, R. Mayuram, R. Yaseen, J.-S. Kim, and S. Maeng
“ForestDB: A Fast Key-Value Storage System for Variable-Length String
Keys,” IEEE Transactions on Computers, vol. 65, no. 3, pp. 902-915.
2016.

Hyeong-Jun Kim received the B.S. degree
in Electrical and Computer Engineering
from Sungkyunkwan University (SKKU),
Korea in 2010 and M.S. degree in
Electrical Computer Engineering from
SKKU in 2012. He is currently a Ph.D.
candidate in the Department of IT
Convergence at SKKU.

His current research interests include
storage systems, and operating systems and embedded systems.

Jin-Soo Kim (M’89) received the B.S.,
M.S., and Ph.D. degrees in computer
engineering from Seoul National
University, Korea, in 1991, 1993, and
1999, respectively. He is currently a
professor in Sungkyunkwan University
(SKKU).

Before joining SKKU, he was an
associate professor at Korea Advanced

Institute of Science and Technology (KAIST) from 2002 to
2008. He was also with the Electronics and
Telecommunications Research Institute (ETRI) from 1999 to
2002 as a senior member of research staff, and with the IBM T.
J. Watson Research Center as an academic visitor from 1998 to
1999. His research interests include embedded systems, storage
systems, and operating systems.

Prof. Kim is a member of the IEEE and the IEEE Computer
Society.

H.-J. Kim and J.-S. Kim: A User-space Storage I/O Framework for NVMe SSDs in Mobile Smart Devices 35

