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Abstract—Indexing key-value data on persistent storage is an important factor for NoSQL databases. Most key-value storage engines

use tree-like structures for data indexing, but their performance and space overhead rapidly get worse as the key length becomes

longer. This also affects the merge or compaction cost which is critical to the overall throughput. In this paper, we present ForestDB,

a key-value storage engine for a single node of large-scale NoSQL databases. ForestDB uses a new hybrid indexing scheme called

HBþ-trie, which is a disk-based trie-like structure combined with Bþ-trees. It allows for efficient indexing and retrieval of arbitrary length

string keys with relatively low disk accesses over tree-like structures, even though the keys are very long and randomly distributed in

the key space. Our evaluation results show that ForestDB significantly outperforms the current key-value storage engine of Couchbase

Server [1], LevelDB [2], and RocksDB [3], in terms of both the number of operations per second and the amount of disk writes per

update operation.

Index Terms—Key-value storage system, NoSQL, index structures, B+-tree
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1 INTRODUCTION

FOR the past few years, application trends for data man-
aging and indexing have been changing rapidly and

dramatically. As we can observe in social networking serv-
ices such as Facebook and Twitter, the number of concur-
rent users and the amount of data to be processed keep
getting larger and larger, while the data itself is becoming
progressively unstructured for flexible analysis by applica-
tions. Unfortunately, using relational databases are strug-
gling to deal with these issues due to their scalability and
strict data model. For this reason, many companies are
using NoSQL technology [4] as a viable alternative to rela-
tional databases.

Although there are various NoSQL technologies for high-
level sharding, data replication, and distributed caching,
their back-end persistent storage modules are not much dif-
ferent from each other. Each single node in NoSQL typically
uses a key-value store for indexing or retrieving data in a
schema-less way, where the key and value are commonly
variable-length strings.1 Since key-value stores directly
interact with persistent block devices such as hard disk
drives (HDDs) and solid-state drives (SSDs), their through-
put and latency dominate the overall performance of the
entire system.

The throughput and latency of key-value storage is
bounded by the storage access time, which is mainly
affected by two factors: the number of accessed blocks per
key-value operation and the block access pattern. The for-
mer is basically related to the characteristics and logical
design of index structures, while the latter is determined by
how the indexing-related data including a key-value pair is
actually read from or written to the storage.

There are two popular index structures used for single-
node key-value stores: Bþ-tree [5] and Log-structured
merge-tree (LSM-tree) [6]. Bþ-tree is one of the most pop-
ular index structures and has been widely used in tradi-
tional databases, due to its ability to minimize the
number of I/O operations. Modern key-value databases
such as BerkeleyDB [7], Couchbase [1], InnoDB [8], and
MongoDB [9] use Bþ-trees for their back-end storage. In
contrast, LSM-tree consists of a set of layered Bþ-trees (or
similar Bþ-tree-like structures), aimed at improving the
write performance by sacrificing the read performance
compared to the original Bþ-tree. Many recent systems
such as LevelDB [2], RocksDB [3], SQLite4 [10], Cassandra
[11], and BigTable [12] use LSM-tree or its variant for
their key-value indexing.

Although those tree-like structures have been successful
so far, they perform poorly when they use variable-length
strings as their keys instead of fixed-size primitive types. As
the key length gets longer, the fanout degree (i.e., the num-
ber of key-pointer pairs in a node) decreases if the node size
is fixed, and accordingly the tree height should grow up to
maintain the same capacity. On the other hand, if the size of
each node is enlarged to retain the same fanout, the number
of blocks to be read or written for each node access has to be
increased proportionally. Unfortunately, since both the
average number of disk accesses and the space occupied by
the tree are directly influenced by the both tree height and
node size, the overall indexing performance degrades as the
key length becomes longer.

1. The value can be semi-structured data such as JSON document in
some key-value stores, but still it can be treated as a string.
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To address this issue, BerkeleyDB and LevelDB use a
prefix compression technique, which is similar to Prefix
Bþ-tree [13] and front-coding [14]. However, this scheme
is largely affected by the pattern of keys. If keys are ran-
domly distributed on the key space, the remaining uncom-
pressed parts of keys are still sufficiently long so that the
benefit of the prefix compression becomes quite limited.
We need to devise a more efficient way to index variable-
length string keys.

Meanwhile, the block access pattern is another crucial
factor in designing key-value stores. The order between
blocks to be written and their address distribution can
highly affect the I/O performance in both HDDs and
SSDs, though the number of blocks to be transferred
remains same. The basic update-in-place scheme pro-
vides superior read performance but tends to experience
the worst case write latency, thus it is unacceptable for
the recent write-intensive key-value workloads. For this
reason, a lot of databases use an append-only or write-
ahead logging (WAL) style to write blocks in a sequential
order.

Such designs can achieve high write throughput but suf-
fer from merge or compaction (i.e., garbage collection) over-
head. The amount of this overhead is closely related to both
the average number of block accesses per index operation
and the overall space occupied by the index structure
because a number of merging operations are performed
during the compaction process. Hence, the overhead also
gets even worse when long keys lessen the fanout of an
index structure. Since these compaction mechanisms have
to be triggered periodically and involve a large number of
I/O operations, their overhead is critical to the overall per-
formance of the system.

This paper proposes ForestDB, a per-node key-value
storage system for the next-generation Couchbase Server.
For indexing variable-length string keys in a space- and
time-efficient manner even though the key length can be
long and their distribution can be random, we suggest a
novel disk-based index structure called Hierarchical Bþ-tree-
based trie (HBþ-trie), which is used as a primary index for
ForestDB. The logical structure of HBþ-trie is basically a
variant of patricia trie [15], but it is optimized for
reducing the number of block accesses on persistent storage
using Bþ-trees. To achieve high throughput for both read
and write operations, and to support highly-concurrent
accesses, index updates are written into storage in an
append-only manner. This also eases on-disk structures to
implement a multi-version concurrency control (MVCC)
model [16].

We have implemented ForestDB as a stand-alone key-
value store library. Our evaluation results using real data-
sets show that the average throughput of ForestDB is signif-
icantly higher than LevelDB, RocksDB, and Couchstore, the
current key-value storage module for Couchbase Server, in
terms of the number of operations per second.

The rest of the paper is organized as follows. Section 2
overviews Bþ-trees, Prefix Bþ-trees, LSM-trees, and the
internal structures of the current Couchstore. Section 3
describes the overall design of ForestDB. Section 4 presents
the evaluation results, and Section 5 describes the related
work. Section 6 concludes the paper.

2 BACKGROUND

2.1 Bþ-Tree and Prefix Bþ-Tree
Bþ-tree is one of the most popular index structures for man-
aging a large number of records on block devices. There are
two different types of nodes in Bþ-tree: leaf nodes and index
(non-leaf) nodes. Unlike B-tree or other binary search trees,
the key-value records are stored only in leaf nodes while
index nodes contain pointers to their child nodes. There are
more than two key-value (or key-pointer) pairs in a Bþ-tree
node; the number of key-value pairs in a node is called fan-
out. Generally the fanout of Bþ-tree is configured to a large
value in order to fit a single node into one or multiple
blocks. In this way, Bþ-tree can minimize the number of
block I/Os per key-value retrieval.

However, the fanout is greatly influenced by the length
of the keys as we previously mentioned. To moderate this
overhead, Prefix Bþ-tree [13] has been proposed. The main
idea of Prefix Bþ-tree is to store only distinguishable sub-
strings instead of the entire keys so as to save space and
increase the overall fanout. Index nodes accommodate only
minimal prefixes of keys that can distinguish their child
nodes, while leaf nodes skip the common prefixes among
the keys stored in the same node.

Fig. 1 illustrates an example of Bþ-tree and the corre-
sponding Prefix Bþ-tree. In Prefix Bþ-tree, the root (and
also index) node stores the string c instead of the entire
key car, because it is a minimal sub-string that is lexico-
graphically greater than band, bingo, and black, and
equal to or less than car, chalk, and diary. However,
we cannot use d instead of dime since d cannot be used
as a pivot for the comparison of diary and dime. In this
case, Prefix Bþ-tree uses dim, which is a minimal sub-
string of dime that can be lexicographically ordered
between diary and dime.

In leaf nodes, band, bingo, and black in the leftmost
node share the common prefix b, while dime, diary, and
dog in the rightmost node share the common prefix d. Pre-
fix Bþ-tree keeps these common prefixes somewhere in the
meta-section of each node, and only stores the portion of
the strings excluding the common prefixes. This prefix com-
pression scheme efficiently reduces the overall space if a
large number of keys share a common prefix.

2.2 Log-Structured Merge-Tree (LSM-Tree)

Although Bþ-tree can minimize the number of block
accesses for indexing a given number of records, one may
experience poor performance due to random block accesses.
When Bþ-tree is sufficiently aged, its nodes are randomly

Fig. 1. Examples of Bþ-tree and Prefix Bþ-tree.
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scattered on a disk. This causes random block accesses for
each tree traversal so that the overall performance greatly
degrades. Note that the random read performance of other
tree-like structures can hardly be better than Bþ-tree due to
its ability to minimize the number of block accesses, while
we can still improve the write performance by arranging
disk write patterns.

To improve the random write performance over
Bþ-tree, LSM-tree [6] has been suggested. A number of
Bþ-trees or Bþ-tree-like structures hierarchically organize
a single LSM-tree, as illustrated in Fig. 2. There is a small
in-memory tree on top of LSM-tree, called C0 tree. All
incoming updates are appended into a sequential log,
and each entry in the log is indexed by the C0 tree for effi-
cient retrieval. If the size of C0 tree exceeds a certain
threshold, a continuous range of entries in the log are
merged into C1 tree. In the same manner, a set of continu-
ous entries are merged from C1 to C2, if the size of C1 tree
reaches a certain limit. Merge operations always occur
between the Ci tree and Ciþ1 tree, and generally the
capacity of the tree grows exponentially as i increases.

Since disk writes are performed sequentially for both
appending into the log and merge operations, the write per-
formance of LSM-tree is much better than that of the origi-
nal Bþ-tree. However, to retrieve a key-value pair, we have
to traverse all trees starting from C0 in a cascaded manner
until the target record is found, and consequently the over-
all read performance of LSM-tree becomes inferior to that of
Bþ-tree. In order to avoid those unnecessary traversals, and
to reduce the overall read amplification, LSM-tree com-
monly uses Bloom filters.

Note that the problem described in Section 1 also occurs
in LSM-tree if the key length gets longer. Smaller fanout
lessens the capacities of each tree so that merge operations
between trees occur more frequently. Since merge opera-
tions involve a large number of disk I/Os, the overall per-
formance degrades rapidly.

2.3 Couchstore

Couchstore is a per-node storage engine of Couchbase
Server [1], whose overall architecture inherits from the
storage model of Apache CouchDB [17], [18]. The key
space is evenly divided into the user-defined number of
key ranges, called vBuckets (or partitions), and each
vBucket has its own DB file. Each DB file stores key-value
pairs belonging to the vBucket, where a key is a string
with an arbitrary length and a value is a JSON document.
To retrieve the location of a document in the file, there is
a Bþ-tree for each vBucket to store the tuples of the key
and the byte offset where the corresponding document
is written. Hence, every single DB file contains both

documents and Bþ-tree nodes, which are interleaved with
each other in the file.

Note that all updates in Couchstore are appended at the
end of the DB file as illustrated in Fig. 3. A, B, and C denote
Bþ-tree nodes, while D1, D2, and D3 in rounded boxes rep-
resent documents. If the document D1 is updated, then the
new document D1’ is written at the end of the file without
erasing or modifying the original document D1. Since the
location of the document is changed, the node B has to be
updated to the node B’ and also appended at the end of the
file. This update is propagated to the root node A so that
finally the new root node A’ is written after the node B’.

Compared to update-in-place schemes, the append-only
Bþ-tree can achieve very high write throughput because all
disk write operations occur in a sequential order. Further-
more, we do not need to sacrifice the read performance
because the retrieval procedure is identical to the original
Bþ-tree. However, the space occupied by the DB file
increases with more updates, thus we have to periodically
reclaim the space occupied by the stale data. Couchstore
triggers this compaction process when the proportion of the
stale data size to the total file size exceeds a configured
threshold. All live documents in the target DB file are
moved to a new DB file, and the old DB file is removed after
the compaction is done. During the compaction process, all
write operations to the target DB file are blocked while read
operations are allowed. Note that the compaction is per-
formed on one DB file at a time.

Same as the original Bþ-tree dealing with string keys, if
the key length gets longer, the tree height should grow up
to maintain the same capacity. It can be even worse in this
append-only design because the amount of data to be
appended for each write operation is proportional to the
height of the tree. As a result, compaction is triggered more
frequently, and the overall performance becomes worse and
worse. We need a more compact and efficient index for vari-
able-length string keys.

3 FORESTDB DESIGN

For effective indexing of variable-length keys, we suggest
ForestDB, which is a back-end key-value storage engine for
a single node of distributed NoSQL systems. ForestDB is
designed as a replacement of Couchstore so that the high-
level architecture of both schemes is similar. The major

Fig. 2. The overview of LSM-tree.

Fig. 3. The overview of Couchstore.
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differences between the two schemes are that (1) ForestDB
uses a new hybrid index structure, called HBþ-trie, which is
efficient for variable-length keys compared to the original
Bþ-tree, and (2) the write throughput of ForestDB is
improved further by using a log-structured write buffer.
The basic concept of the log-structured write buffer is simi-
lar to that of C0 tree and sequential log in LSM-tree, but any
further merge operations from the write buffer into the
main DB section is not necessary.

Fig. 4 depicts the overall architecture of ForestDB. Same
as in Couchstore, there is a single ForestDB instance for
each vBucket. Each ForestDB instance consists of an in-
memory write buffer index (WB index) and an HBþ-trie. All
incoming document updates are appended at the end of the
DB file, and the write buffer index keeps track of the disk
locations of the documents in memory. When the number
of entries in the write buffer index exceeds a certain
threshold, the entries are flushed into the HBþ-trie and
stored in the DB file permanently. The detailed mecha-
nism will be described in Section 3.3. The compaction
process in ForestDB is the same as in Couchstore. It is
triggered when the stale data size becomes larger than a
given threshold, and all live documents are moved to a
new DB file during compaction.

3.1 HBþ-Trie
The main index structure of ForestDB, HBþ-trie, is a variant
of patricia trie whose nodes are Bþ-trees. The basic idea of
HBþ-trie has originated from our prior work [19], and
generalized for append-only storage design. All leaf
nodes of each Bþ-tree store disk locations (i.e., byte off-
sets) of the root nodes of other Bþ-trees (sub-trees) or
documents. Both Bþ-tree nodes and documents are writ-
ten into DB files in an append-only manner so that they
are interleaved with each other in a file, and maintained
in an MVCC model as in Couchstore. There is the root
Bþ-tree on top of HBþ-trie, and other sub-trees are created
on-demand as new nodes are created in the patricia trie.
Fig. 5a presents a logical layout of HBþ-trie, and Fig. 5b
illustrates how the trie nodes are actually stored in the
disk based on the MVCC model.

HBþ-trie splits the input key into fixed-size chunks. The
chunk size is configurable, for example, 4 or 8 bytes, and
each chunk is used as a key for each level of Bþ-tree consec-
utively. Searching a document starts from retrieving the
root Bþ-tree with the first (leftmost) chunk as a key. After

we obtain a byte offset corresponding to the first chunk
from the root Bþ-tree, the search terminates if a document is
stored at this location. Otherwise, when the root node of
another sub-tree is written at the byte offset, we continue
the search at the sub-tree using the next chunk recursively
until the target document is found.

Since the key size of each Bþ-tree is fixed to the chunk
size, which is smaller than the length of the input key string,
the fanout of each Bþ-tree node can be larger than the origi-
nal Bþ-tree so that we can shorten the height of each tree.
Moreover, in the same way as the original patricia trie, a
common branch among keys sharing a common prefix is
skipped and compressed. A sub-tree is created only when
there are at least two branches passing through the tree. All
documents are indexed and retrieved using the minimum
set of chunks necessary for distinguishing the document
from the others.

Fig. 6 presents insertion examples. Suppose that the
chunk size is one byte (i.e., one character), and each triangle
represents a single Bþ-tree as a node of an HBþ-trie. The
text in each Bþ-tree indicates (1) the chunk number used as
a key for the tree, and (2) the skipped common prefix of the
tree. Fig. 6a shows the initial state in which the index stores
only one key aaaa. Even though there are four chunks in

Fig. 4. The overall architecture of ForestDB.

Fig. 5. The hierarchical organization of HBþ-trie.

Fig. 6. HBþ-trie insertion examples: (a) initial state, (b) after inserting
aaab, and (c) after inserting aabb.
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the key aaaa, the document is indexed by the root Bþ-tree
using the first chunk a because the key aaaa is the unique
key starting with the chunk a. We can ensure that if the first
chunk of the input key is a, the only key corresponding to
the input key is aaaa. As a result, the subsequent tree tra-
versals for the remaining chunks can be avoided.

When a new key aaab is inserted into the HBþ-trie, a
new sub-tree is created, as the key aaab also starts with the
first chunk a (cf., Fig. 6b). Since the longest common prefix
between aaaa and aaab is aaa, the new sub-tree uses the
fourth chunk as its key, and stores aa, which is the skipped
prefix between the parent tree (i.e., the root Bþ-tree) and the
new sub-tree. Fig. 6c depicts the situation when another key
aabb is inserted. Although the key aabb also starts with
the chunk a, it does not match the skipped prefix aa. Hence,
a new tree is created between the root and the existing sub-
tree. The new tree uses the third chunk as a key because the
longest common prefix between aabb and the existing com-
mon prefix aaa is aa. The skipped prefix a is stored in the
new tree, and the existing prefix kept in the fourth chunk
tree is erased because there is no skipped prefix between
the two trees.

It is obvious that there are lots of benefits from HBþ-trie
when the shared common prefix is sufficiently long. Further-
more, we can also obtain a lot of benefit even though their
distribution is uniform and there is no common prefix. Fig. 7
shows an example of random keys when the chunk size is
two bytes. Since there is no common prefix among the keys,
they can be distinguished by the first chunk. In this case, the
HBþ-trie contains only one Bþ-tree and we do not need to
create any sub-trees to compare the next chunks. Suppose
that the chunk size is n bits and the key distribution is uni-
formly random, then up to 2n keys can be indexed by storing
only their first chunks in the root Bþ-tree. Compared to the
original Bþ-tree, this can remarkably reduce the entire space
occupied by the index structure, by an order of magnitude.

In conclusion, HBþ-trie can efficiently reduce the disk
accesses caused by redundant tree traversals both when (1)
keys are sufficiently long and share a common prefix, and
(2) when their distribution is random so that there is no
common prefix.

3.2 Optimizations for Avoiding Skew in HBþ-Trie
3.2.1 Overview

Since a trie is basically not a balanced structure, HBþ-trie
could be unnecessarily skewed under specific key patterns,
as in the original trie. Fig. 8 depicts two typical examples of
the skewed HBþ-tries whose chunk size is one byte. If we
insert a set of keys where the same chunk is repeated over
and over, such as b, bb, and bbb, HBþ-trie gets skewed as

illustrated in Fig. 8a. As a result, the number of disk
accesses along the skewed branch largely increases.

Fig. 8b represents another example of a skewed HBþ-trie.
If the key pattern consists of all permutations of two charac-
ters 0 and 1, then each chunk has only two branches so that
all Bþ-trees would contain only two key-value pairs. Since
the fanout of the Bþ-tree node is much higher than two, the
overall block utilization becomes very low so that a large
number of near-empty blocks will be created. Accordingly,
both the space overhead and the number of disk accesses
will be very large compared to the original Bþ-tree.

Note that the use of the longer chunk size lessens the pos-
sibility of HBþ-trie skew. If we set the chunk size to 8 bytes

in Fig. 8b, each chunk has 28 ¼ 256 branches and the Bþ-tree
nodes will be reasonably utilized. However, the overall per-
formance degrades as the chunk size becomes longer due to
the contraction of the fanout in each node.

To address this issue, we add an optimization scheme.
First we define leaf Bþ-tree as Bþ-tree that has no child sub-
tree, except for the root Bþ-tree. Instead of a fixed-size
chunk, the key of leaf Bþ-tree consists of a variable-sized
string which is a postfix right after the chunk used for its
parent Bþ-tree. Fig. 9 depicts how such leaf Bþ-trees are
organized. The white triangles and gray triangles indicate

Fig. 7. An example of random key indexing using HBþ-trie.

Fig. 8. Skewed HBþ-trie examples.

Fig. 9. Examples of optimization for avoiding skew.
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non-leaf Bþ-trees and leaf Bþ-trees, respectively. Non-leaf
Bþ-trees including the root Bþ-tree index documents or sub-
trees using the corresponding chunk as before, while leaf
Bþ-trees use the rest of sub-strings as their keys. For exam-
ple, the left leaf Bþ-tree in Fig. 9a indexes documents aaaa,
aaabc, and aabb using sub-strings starting from the sec-
ond chunk aaa, aabc, and abb, respectively. In this man-
ner, even though we insert the key patterns that would
trigger skew, no more sub-trees are created and the redun-
dant tree traversals are avoided.

3.2.2 Leaf Bþ-Tree Extension

This data structure, however, inherits almost all of the prob-
lems of the original Bþ-tree. To avoid this, we extend leaf
Bþ-trees when the total number of keys accommodated in
the leaf Bþ-tree exceeds a certain threshold. For this exten-
sion, we first investigate the longest common prefix among
the keys stored in the target leaf Bþ-tree. A new non-leaf
Bþ-tree for the first different chunk is created, and the docu-
ments are re-indexed by using the chunk. If there are more
than one keys sharing the same chunk, then we create a
new leaf Bþ-tree using the rest of the sub-strings right after
the chunk as its key.

Fig. 9b illustrates an example of extending the left leaf
Bþ-tree in Fig. 9a. Since the longest common prefix among
aaaa, aaabc, and aabb is aa, a new non-leaf Bþ-tree for
the third chunk is created, and the document aabb is sim-
ply indexed by its third chunk b. However, documents
aaaa and aaabc share the same third chunk a, thus we cre-
ate a new leaf Bþ-tree and index those documents using the
rest of sub-strings a and bc, respectively.

This scheme provides a way to categorize the key
space into two types of regions: skew region and normal
region. The skew region means a set of keys that is
indexed by leaf Bþ-trees, while the normal region denotes
the rest of keys. Since the naive HBþ-trie is very ineffi-
cient at indexing the aforementioned skewed key pattern,
we have to carefully set the extension threshold to pre-
vent the skewed key patterns from being included in nor-
mal regions.

3.2.3 Extension Threshold Analysis

To examine the best extension threshold, which is the break-
even point of trie-like indexing costs versus tree-like index-
ing costs for the given key patterns, we mathematically ana-
lyze the costs of each indexing. The basic intuition is that
the height and space occupation (i.e., the number of nodes)
of trie-like structure are greatly influenced by the number of
unique branches for each chunk, while only the key length
has the most critical impact on those of tree-like structure.
Hence, we can derive the point that both the height and
space of trie become smaller than those of tree, by using the
length of keys and the number of branches for each chunk
of the given key patterns.

Table 1 summarizes the notation used in our analysis.
Suppose that n documents are indexed by a leaf Bþ-tree
and each Bþ-tree node is exactly fit into a single block,
whose size is B. All keys have the same length k so that
the length k is at least equal to or greater than cdlog bne,
where c and b denote the chunk size in HBþ-trie and the

number of branches in each chunk, respectively. We can
simply obtain the fanout of each leaf Bþ-tree node, fL, as
follows:

fL ¼
�

B

kþ v

�
; (1)

where v is the size of a byte offset or a pointer. For the given
n documents, we can derive the overall space occupied by
the leaf Bþ-tree,2 s, and the height of the leaf Bþ-tree, h, as
follows:

s ’
�
n

fL

�
B; (2)

h ¼ dlog fL
ne: (3)

After extension, b new leaf Bþ-trees are created since each
chunk has b branches. A new non-leaf Bþ-tree is also created
and b leaf Bþ-trees are pointed to by the non-leaf Bþ-tree.3

Recall that the new leaf Bþ-trees use the rest of the sub-
string right after the chunk used as the key of its parent
non-leaf Bþ-tree,4 thus the fanout of the new leaf Bþ-tree,
fnewL , can be represented as follows:

fnewL ¼
�

B

ðk� cÞ þ v

�
: (4)

Since the non-leaf Bþ-tree uses a single chunk as key, the
fanout of the non-leaf Bþ-tree, fN , can be derived as follows:

fN ¼
�

B

cþ v

�
: (5)

By using fN and fnewL , we can obtain the space overhead and
the height of the new combined data structure, denoted as

TABLE 1
Summary of Notation

Symbols Definitions

n the number of documents
B the size of a block
k the length of keys used in leaf Bþ-tree
c the length of an HBþ-trie chunk
v the size of a value (i.e., byte offset) or a pointer
fN the fanout of a node of non-leaf Bþ-tree
fL the fanout of a node of leaf Bþ-tree
fnewL the fanout of a node of new leaf Bþ-trees after

extension
s the space occupied by leaf Bþ-tree
snew the space occupied by the new combined data

structure after extension
h the height of leaf Bþ-tree
hnew the height of the new combined data structure after

extension
b the number of unique branches for each chunk of

the given key patterns

2. For the sake of simplicity, we ignore the space occupied by index
nodes of leaf Bþ-tree because it takes a very small portion compared to
that by leaf nodes.

3. We assume the worst case where there is no document directly
pointed to by the non-leaf Bþ-tree.

4. We assume that there is no skipped prefix by the non-leaf Bþ-tree.
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snew and hnew, respectively, as follows:

snew ’
��

b

fN

�
þ b

�
n

b � fnew
L

��
B; (6)

hnew ¼ dlog fN
be þ

�
log fnew

L

n

b

�
: (7)

Fig. 10a illustrates the variation of snew normalized to the
value of s, when b is 2, 8, 64, and 256. We set the parameter
values as follows: B ¼ 4; 096, k ¼ 64, c ¼ 8, and v ¼ 8, and
accordingly the values of fL, fN , and fnewL are calculated as
56, 256, and 64, respectively. As b gets larger, the space over-
head increases. This is because the extension procedure cre-
ates b new leaf Bþ-trees. Since a single Bþ-tree occupies at
least one block, the b new leaf Bþ-trees occupy at least b

blocks, whereas
�

n
fL

	
blocks are occupied by the previous

leaf Bþ-tree. The value of snew gets smaller than s when
b < n

fL
, n > b � fL, which is the point that the number of

blocks occupied by the new leaf Bþ-trees becomes smaller
than the block occupation before extension.

However, although the space overhead shrinks, the over-
all height would increase after extension. Fig. 10b represents
the average height of the combined data structure after
extension, hnew, varying the value of b. The height is normal-
ized to the value of h, which is the height of the leaf Bþ-tree
before extension. When b is greater than the fanout of the
previous leaf Bþ-tree fL, the new height hnew gets shorter
than the previous height h because the number of branches
in the non-leaf Bþ-tree after extension becomes greater than
the fanout of the leaf Bþ-tree before extension.

After considering all of these factors, we extend the leaf
Bþ-tree when (1) n > b � fL, and (2) b � fL. Note that we
need to scan all keys in the leaf Bþ-tree to get the exact val-
ues of k and b, which triggers a large amount of disk I/O.
To avoid this overhead, we only scan the root node of the
leaf Bþ-tree. The root node contains a set of keys at near-reg-
ular intervals on the entire list of keys, thus we can estimate
the approximate values. Since the root node is already
cached by the previous tree operation, no additional disk I/
O is necessary.

3.3 Log-Structured Write Buffer

Although HBþ-trie can reduce the tree height and the
overall space overhead, more than one Bþ-tree node can

still be appended into the DB file for every write opera-
tion. To lessen the amount of appended data per write
operation, ForestDB uses a log-structured write buffer. It
is quite similar to the C0 tree and sequential log in LSM-
tree, but the documents inserted in the write buffer sec-
tion do not need to be merged into the main DB section,
since the main DB itself is also based on the log-struc-
tured design.

Fig. 11a depicts an example. Docs in the white boxes
indicates a set of contiguous disk blocks used for docu-
ments, while Index nodes in the gray boxes denotes blocks
used for Bþ-tree nodes organizing the HBþ-trie. For every
commit operation, a single block containing the DB header
information is appended at the end of the file, which is illus-
trated as H in the dark gray boxes.

All incoming document updates are simply appended at
the end of the file, while updates on the HBþ-trie are post-
poned. There is an in-memory index called write buffer index
(WB index), which points to the locations of the documents
that are stored in the file but not yet reflected on HBþ-trie.
When a query request for a document arrives, ForestDB
looks it up in the write buffer index first, and continues to
look it up in HBþ-trie next if the request does not hit the
write buffer index.

The entries in the write buffer index are flushed and
atomically reflected in the HBþ-trie when a commit opera-
tion is performed if and only if the cumulative size of the
committed logs exceeds a configured threshold (e.g., 1,024
documents). After flushing write buffer, the updated index
nodes corresponding to the documents in the write buffer
are appended at the end of the file, as shown in Fig. 11b. As
we aforementioned, the documents themselves do not need
to be moved or merged but just need to be linked by the
updated index nodes, since ForestDB already uses a log-
structured design. This greatly reduces the overall costs
required to flush write buffer.

If a crash occurs in the write buffer index before the flush,
we scan each block reversely from the end of the file until
the last valid DB header written right after index nodes.
Once the DB header is found, then ForestDB reconstructs
the write buffer index entries for the documents written
after the header. We also maintain a 32-bit CRC value for
each document to detect a corruption, thus only documents
stored normally are recovered.

Fig. 10. The variation of (a) the space overhead and (b) the height of the
data structure resulting from leaf Bþ-tree extension, normalized to those
values before the extension.

Fig. 11. Write buffer examples.
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By using the log-structured write buffer, a number of
index updates are batched so that the amount of disk I/O
per document update can be greatly reduced. This makes
the write performance of ForestDB comparable to or even
better than that of LSM-tree-based approaches.

4 EVALUATION

In this section, we present evaluation results that show
the key features of ForestDB. ForestDB is implemented as
a stand-alone key-value store library pluggable to Couch-
base Server. The evaluation was performed on a 64-bit
machine running Linux 3.8.0-29, equipped with Intel
Core i7-3770 @ 3.40 GHz CPU (4 cores, 8 threads), 32 GB
RAM, and Western Digital Caviar Blue 1TB HDD,5 where
the disk is formatted using the Ext4 file system. The
chunk size of HBþ-trie is set to 8 bytes for all evaluations,
and we implemented each leaf Bþ-tree in HBþ-trie as a
Prefix Bþ-tree.

4.1 Comparison of Index Structures

First, we investigate the overall space overhead and the
average traversal path length of HBþ-trie compared to those
of the original Bþ-tree and Prefix Bþ-tree. As an initializa-
tion, one million documents are artificially synthesized and
then the corresponding one million keys with 8-byte byte
offsets for the document location are inserted into each
index. To verify the optimization schemes for avoiding
skew, we used four key patterns as described in Table 2:
random, worst, small, and 2-level. Each Bþ-tree node is
aligned to 4 KB block size, and all indexes including HBþ-
trie are written into the storage in an update-in-place man-
ner for exact estimation of the live index size.

Fig. 12a shows the disk space occupied by each index
structures after initialization using the random key pattern,

with the key length varying from 8 to 256 bytes. The space
overhead of Bþ-tree and Prefix Bþ-tree increases linearly as
the key length gets longer, while that of HBþ-trie remains
constant. This is because all keys can be indexed by only
their first chunks so that the key length does not influence
the space overhead of HBþ-trie.

To evaluate the average length of traversal path from the
root to the leaf, we randomly read key-value pairs and
observe the time elapsed for disk accesses during the tree
operations. As disk I/O operation is skipped if the request
hits the OS page cache, we enable the O_DIRECT flag in
order to make all tree node reads incur actual disk accesses.
Fig. 12b depicts the results. The disk latency of HBþ-trie is
nearly steady even though the key length increases, while
the disk latency of the Bþ-tree increases rapidly due to the
tree height growth caused by the decreased fanout degree.
Note that Prefix Bþ-tree also displays nearly steady disk
latency when the key length is less than 256 bytes. This is
because the random keys have no (or few) common pre-
fixes, thus the minimal sub-strings stored in index nodes
become shorter so that the fanout of each index node
becomes larger. Although the small fanout of the leaf nodes
enlarges the space overhead, the large fanout of the index
nodes can shorten the height of the tree.

Next we repeat the same evaluations using the worst,
small, and 2-level key patterns. Fig. 13 illustrates the space
overhead and the average disk latency of each index struc-
ture. Note that HBþ-trie w/o opt denotes HBþ-trie without
optimizations for avoiding skew, while HBþ-trie w/ opt rep-
resents HBþ-trie that enables such optimizations.

In the worst pattern, the space overhead of Prefix Bþ-tree
is largely reduced compared to that of Bþ-tree, since there
are a lot of common prefixes and their lengths are suffi-
ciently long. In contrast, the unoptimized HBþ-trie occupies
even more space than Bþ-tree because the key pattern leads
to the trie skew so that the overall block utilization becomes
very low. Even worse, the disk latency of the unoptimized

TABLE 2
The Characteristics of Key Patterns

Name Description Key Length

random Keys are randomly generated so
that there is no global common
prefix. This is the best case for
HBþ-trie.

8–256 bytes

worst There are 20 levels of nested
prefixes where each level has only
two branches. The average prefix
size for each level is 10 bytes. This
is the worst case for HBþ-trie.

Avg. 198 bytes

small There are 100 randomly generated
prefixes so that each 10,000 keys
share a common prefix. The aver-
age prefix size is 10 bytes, and the
rest of the key string is randomly
generated.

Avg. 65 bytes

2-level There are two levels of nested
prefixes where each level has 192
branches. The average prefix size
for each level is 10 bytes, and the
rest of the key string is randomly
generated.

Avg. 64 bytes

Fig. 12. Comparison of Bþ-tree, Prefix Bþ-tree, and HBþ-trie using the
random key pattern.

Fig. 13. Comparison of Bþ-tree, Prefix Bþ-tree, and HBþ-trie using
worst, small, and 2-level key patterns.5. WD10EALX, maximum data transfer rate: 126 MB/s.
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HBþ-trie is larger than those of Bþ-tree and prefix Bþ-tree by
2.8x and 3.4x, respectively. However, the HBþ-trie with
optimizations effectively reduces the overhead by using leaf
Bþ-trees. Both the space overhead and the disk latency of
HBþ-trie become similar to those of Prefix Bþ-tree, as each
leaf Bþ-tree in HBþ-trie is implemented as a Prefix Bþ-tree.

Unlike the worst pattern, there are a number of
branches in each chunk of the small pattern, hence trie-
like indexing is more advantageous than tree-like index-
ing. As shown in Fig. 13, the space overhead and the disk
latency of HBþ-trie without any optimizations are already
better than those of Bþ-tree and Prefix Bþ-tree. Note that
HBþ-trie with optimizations also displays a similar per-
formance, because the leaf Bþ-trees are well extended so
that the overall shape of the data structure becomes
almost the same as the naive HBþ-trie.

Since the 2-level pattern also has a lot of branches for
each chunk, the average disk latency of HBþ-trie without
optimizations can be better than that of Bþ-tree and
Prefix Bþ-tree. However, every third chunk has only

1; 000; 000=1922 ’ 27 branches on average, which is much
smaller than the maximum fanout of the non-leaf Bþ-tree
node (i.e., 256 in this evaluation). As a result, plenty of near-
empty blocks are created so that the space overhead of the
naive HBþ-trie becomes larger than that of Bþ-tree and Pre-
fix Bþ-tree. As we mentioned in Section 3.2.3, the optimiza-
tion scheme handles this situation well and prevents leaf
Bþ-trees from being extended. Consequently, the space
occupation of HBþ-trie with optimizations becomes similar
to that of Prefix Bþ-tree.

4.2 Full System Performance

We next evaluate the full system performance of ForestDB
compared with that of Couchstore 2.2.0, LevelDB 1.18, and
RocksDB 3.5 using the storage operations of Couchbase
Server. For fair comparison, API-wrapping layers for Lev-
elDB, RocksDB, and ForestDB are used to convert Couch-
store operations into their own operations. The document
compression using Snappy [20] in both LevelDB and
RocksDB is enabled, but we randomly generate each docu-
ment body so that only key part is compressible. In Couch-
store and ForestDB, compaction is triggered when the size
of the stale data becomes larger than 30 percent of the entire
data size, while LevelDB and RocksDB continuously per-
form compaction in the background using separate threads.
The write buffer threshold of ForestDB is configured to
4,096 documents by default, and the O_DIRECT flag is dis-
abled in all full system performance evaluations. To reduce
read amplification for both LevelDB and RocksDB, we add
Bloom filters where the number of bits per key is set to 10.
We set each module’s custom block cache size to 8 GB,
except for Couchstore which does not support its own cach-
ing functionality.

Each module is initialized using 200 million keys with the
corresponding documents whose size is 1,024 bytes (exclud-
ing the key size). The total working set size ranges from 190
to 200 GB, which is almost 6x larger than the RAM capacity.
For all evaluations, keys are generated based on the 2-level
key pattern. Since HDD is too slow (less than 100 ops/sec-
ond) to initialize each module and to get meaningful results,

we instead use a Samsung 850 Pro 512 GB SSD6 for full
system evaluations. We have confirmed that the overall rela-
tive results among the schemes on an SSD are similar to those
on anHDD.

4.2.1 Key Length

First, we investigate the overall performance with key
lengths varying from 16 to 1,024 bytes. In order to see the
effect of the key length clearly, keys are randomly generated
and the document size is set to 512 bytes in this evaluation.
A number of read and update operations are randomly per-
formed where the ratio of updates is 20 percent of the total.
Multiple updates are applied together using a synchronous
write, and we randomly select the batch size from 10 to 100
documents. Since Couchstore does not work correctly when
the key length is longer than 512 bytes, we use 512-byte key
in Couchstore instead of 1,024-byte key.

Fig. 14a illustrates the overall throughput in terms of the
number of operations per second. As the key length gets
longer, the overall throughput of Couchstore, LevelDB, and
RocksDB decreases by 3x–11.3x, while that of ForestDB is
reduced by only 37 percent due to the use of HBþ-trie. Note
that although HBþ-trie is hardly influenced by the key
length, the throughput of ForestDB slightly decreases as the
key length gets longer due to an increase in the document
size, where the entire key string is included in the document
as its metadata.

Since all of these schemes use an out-of-place update, the
space occupation increases with more updates. Fig. 14b
shows the average write amplification including the over-
head of compaction. Couchstore, LevelDB, and RocksDB
require more disk writes as the key length gets longer,
whereas the amount of disk writes in ForestDB is almost
consistent. Note that the amount of disk writes in LevelDB
is especially large compared to other schemes, since Lev-
elDB is based on LSM-tree where a number of merge and
compaction operations are triggered during the updates.
Although RocksDB is also based on the same LSM-tree
structure, it reduces the overall write amplification by using
various optimizations.

4.2.2 Read/Write Ratio

In order to study the performance characteristics according
to the proportion of read and write operations, we evaluate

Fig. 14. Performance comparison according to various key lengths.

6. MZ-7KE512B, max. seq read: 550 MB/sec, seq write: 520 MB/sec,
random read: 100,000 IOPS, randomwrite: 90,000 IOPS.
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the overall throughput by varying the ratio of update opera-
tions from 0 to 100 percent. The key length is fixed to
32 bytes, and the operations are randomly performed in the
key space. We use synchronous writes as in the previous
evaluations.

Fig. 15a presents the results. The overall throughputs of
LevelDB, RocksDB, and ForestDB get better as the update
ratio becomes higher, since they use the log-structured app-
roach. All incoming updates are sequentially logged with-
out retrieving or updating the main index, thus the total
number of sequential disk accesses increases in proportion
to the update ratio. In contrast, the throughput of Couch-
store is almost steady regardless of the update ratio because
all updates are immediately reflected in Bþ-tree. Although
Couchstore is also based on an append-only design, updat-
ing and appending new Bþ-tree nodes require the old ver-
sion of the nodes to be read. Since the old nodes are
randomly scattered over the disk, the random reads inter-
mixed with the sequential updates cancel the benefits from
the append-only logging.

Note that although HBþ-trie in ForestDB is hierarchically
organized by several Bþ-trees, the read performance of For-
estDB is better than those of LevelDB and RocksDB with
Bloom filters. This is because the overall index size in For-
estDB is relatively compact, since each level of Bþ-tree in
HBþ-trie only stores the corresponding chunks instead of
the entire key strings. Consequently, it increases the hit ratio
of both the OS page cache and DB module’s own cache so
that the average number of actual disk accesses required for
a single retrieval operation becomes low.

When the workloads become read-only, the overall per-
formance of each scheme becomes slightly better than when
the workloads include a few update operations. If there is
no update operation, no compaction or merge operations
are performed and we can save the overhead of additional
disk I/Os triggered by compaction.

4.2.3 Concurrent Read/Write Operation

As both ForestDB and Couchstore are based on the MVCC
model, concurrent read and write operations do not block
each other. To investigate the multi-threaded performance,
we create a writer thread that continuously performs ran-
dom write operations at 2,000 ops/sec throughput, and also
create concurrent reader threads that invoke random read
operations at their maximum capacity.

Fig. 15b depicts the total read throughput according to
the number of concurrent reader threads. When there is a

single reader thread, the overall read throughput of Lev-
elDB and RocksDB is much slower than that in Fig. 15a.
This is because write operations and additional merge or
compaction operations triggered by the write operations
obstruct the concurrent read operations. In contrast, For-
estDB and Couchstore show even better performance than
the single-threaded results,7 since reader threads are hardly
affected by the concurrent writer thread.

As the number of concurrent reader threads increases, the
read throughputs of all schemes get better. This means that
concurrent read operations in all schemes do not block them-
selves. Note that the read throughput is saturated at some
point, because the operations are bounded by disk I/O.

4.2.4 Range Scan

One of the main benefits of LSM-tree-based approaches is
high range scan performance, as all tree-like components
except for C0 logs are maintained in a sorted order. In con-
trast, append-only approaches such as ForestDB and Couch-
store suffer from range scan, since incoming updates are just
appended at the end of the DB file so that consecutive docu-
ments in the key space may not be adjacent on the physical
disk. However, during the compaction process, documents
aremigrated to the newfile in a sorted order so that the range
scan performance can bemuch better than before.

In order to evaluate the range scan performance, we ran-
domly pick a document and sequentially scan 100 or 1,000
consecutive documents. Fig. 16 shows the results. Note that
Couchstore (c) and ForestDB (c) denote Couchstore and
ForestDB right after the compaction is done. In both cases,
LevelDB shows the best throughput. The range scan perfor-
mance of Couchstore and ForestDB before compaction is
not much different from the random read performance,
while ForestDB after compaction has almost the same
throughput as LevelDB. Note that Couchstore shows poor
range scan performance even after the compaction. This is
because Couchstore does not maintain its own block cache
so that it alternately visits documents and Bþ-tree nodes
that are not physically adjacent on disk.

4.2.5 The Effect of Write Buffer and HBþ-Trie
We next observe the separate effect of write buffer and HBþ-
trie in ForestDB. Fig. 17 illustrates the overall throughput
and write amplification of ForestDB with various indexing
options. HBþ-trie denotes ForestDB without write buffer,
whereas Bþ-tree indicates ForestDB without write buffer

Fig. 15. Performance comparison with various (a) the update ratios and
(b) the number of concurrent reader threads.

Fig. 16. Range scan performance.

7. Since results in Fig. 15b excludes the throughput of the writer
thread which is 2,000 ops/sec, the overall throughput with a single
reader thread is higher than that in Fig. 15a.
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using naive Bþ-tree as an index structure instead of HBþ-
trie. Bþ-tree + WB means ForestDB with write buffer using
naive Bþ-tree, and HBþ-trie + WB represents the original
ForestDB.

With HBþ-trie, the overall throughput for both read and
write operation gets better due to the reduced number of
disk accesses per document retrieval. Fig. 17b reveals that
write buffer efficiently lessens the write amplification by
buffering the duplicated index node updates, for both Bþ-
tree and HBþ-trie. Note that the write amplification of
Couchstore is slightly better than that of Bþ-tree. This is
because ForestDB writes more data in each document’s
meta section, compared to Couchstore.

4.2.6 Locality

To assess the performance variation according to different
types of localities, we perform read and update operations
based on the Zipf’s distribution [21] instead of uniformly
random selection. Suppose that there are N elements, the
frequency function for the pth element in the Zipf’s distribu-

tion is given by fðp; s;NÞ ¼ 1
ps =

PN
n¼1

1
ns, where s is a param-

eter value that determines the characteristics of the
distribution. The element with p ¼ 1 has the highest fre-
quency, and the frequency gradually decreases as the value
of p increases. The series of the frequency becomes similar
to a uniform distribution as the s value gets closer to zero,
whereas the frequency differences among the elements
becomes greater with a larger s value.

We organize 10,000 randomly selected documents into
one document group; hence there are total 20,000 document
groups for 200 million documents. Next we generate 20,000

frequencies using the Zipf’s distribution with N ¼ 20; 000,
where each frequency is mapped one-to-one to a randomly
selected document group. For performing read and update
operations, (1) an arbitrary document group is selected
based on the frequencies, and (2) we choose a random docu-
ment in the group.

Fig. 18a plots the cumulative distribution functions of the
number of accesses to each document with various values
of s. We can control the locality of the workload by varying
the value of s; the locality increases as the value of s

increases. In the case of s ¼ 1, for example, approximately
80 percent of the accesses are concentrated to 10 percent of
the total documents.

The overall performance comparison results according to
the different types of localities are illustrated in Fig. 18b.
The throughput of each scheme improves as the locality
becomes higher, since the higher locality makes the hit ratio
in the OS page cache better so that the total number of disk
accesses for retrieval operations decreases. The increasing
rate for the performance of ForestDB according to the local-
ity is much higher than those of the others. This is because
the average index size per document in ForestDB is much
smaller compared to the other schemes, thus more index
data can be kept with the same amount of RAM.

4.2.7 Real Dataset Results

We finally evaluate the overall performance of each scheme
using real datasets obtained from an on-line music stream-
ing service and a web spam collection. Table 3 describes the

Fig. 17. The characteristics of ForestDB with various indexing
configurations.

Fig. 18. Performance comparison according to the value of s in Zipf’s
distribution.

TABLE 3
The Characteristics of Real Datasets

Name Description Avg. Key
Length

Avg. Doc
Size

# Docs Working
Set Size

profile Indexes user profile information such as name, e-mail, and
password hash value using the corresponding user ID number.

33 bytes 230 bytes 4,839,099 1.7 GB

playlist Maps playlist ID number to detailed information for the
corresponding playlist such as the ID number of the owner user,
the name of the playlist, the timestamp when it is created or
updated, etc.

39 bytes 1,008 bytes 592,935 700 MB

history Stores user activity logs such as timestamp and the corresponding
activity ID number when they update playlist or play the music.

29 bytes 2,772 bytes 1,694,980 4.7 GB

status Indexes the current status information of users using their e-mail
or ID number.

23 bytes 21 bytes 1,125,352 200 MB

url URLs inWEBSPAM-UK2007 [22], the collection of web spam
datasets. URLs are used as keys, while each document body is
randomly generated.

111 bytes 1,024 bytes 105,896,555 112 GB
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characteristics of each dataset. Each scheme is initialized
using the datasets and we perform uniformly random read
and synchronous update operations. The ratio of update
operations to the total number of operations is set to 20 per-
cent which is the same as the previous evaluations. Since
the working set size of profile, playlist, history, and status is
fit into RAM, the overall throughput of those datasets is
much faster than that of url. This is because the entire DB
files are maintained in the OS page cache so that no disk I/
O is triggered during the read operations.

Fig. 19 represents the evaluation results. The overall per-
formance of Couchstore is almost steady regardless of the
characteristics of the datasets. In contrast, both LevelDB and
RocksDB display better performance as the total size of the
document (i.e., the sum of the key length and the document
body size) gets smaller. This is because every level of the
sorted table in such schemes also stores the body of the doc-
ument so that the document body size influences the overall
merge or compaction overhead. In url, RocksDB outper-
forms LevelDB due to its optimizations for I/O bounded
workloads.

In all datasets, the overall performance of ForestDB is
better than those of the other schemes. As HBþ-trie reduces
both the length of traversal path from the root to the leaf
and the overall index size, the cost of index retrieval
decreases not only for I/O bounded workloads but also in-
memory datasets.

5 RELATED WORK

Key-value stores for a single node can be categorized into
two types: (1) in-memory key-value indexes using storage
for durability, and (2) general purpose key-value storage
engines. In the former case, the key-value store maintains
the key-value pairs on storage for durability, but all or most
of index data always reside in memory. The main objective
of this type of key-value stores is to cache the locations of
key-value data in the durable storage as many as possible
by reducing the size of the memory footprints in terms of
bytes/key.

Masstree [23] is an in-memory key-value store based on a
trie-like concatenation of multiple Bþ-trees. To minimize
the DRAM fetch time which is a crucial factor for in-mem-
ory queries, Masstree chooses the fanout of Bþ-trees consid-
ering cache lines shared among multiple cores. Incoming
updates are logged on a persistent disk for a backup pur-
pose, while all index nodes are maintained in memory only.
Although the high-level design of Masstree is similar to
HBþ-trie, there are significant differences between them.
First, Masstree mainly targets workloads that all key-value

pairs are fit into RAM, thus it does not need to consider
how to organize and write index nodes into disk, which is
the most tricky issue for the performance improvement of
storage system. Second, Masstree does not provide any
solution for balancing skewed trie, as it deals with relatively
short and uniformly distributed keys. Since the trie skew
issue becomes a major obstacle not only to tree traversals
but also to space overhead, it needs to be solved to serve
generic workloads.

Lim et al. have proposed SILT [24], which is a partial in-
memory key-value store system that is organized by a
three-tier indexing model: LogStore, HashStore, and Sorted-
Store. The average size of the memory footprints per docu-
ment increases from LogStore to HashStore to SortedStore,
while the capacity increases in reverse order. All incoming
updates are stored in LogStore first, and flushed into Hash-
Store next. When the number of entries in HashStore
exceeds a given threshold, the entries are merged into Sor-
tedStore, which is based on a trie structure. Note that it is
impossible to partially update an entry in SortedStore, thus
the merge operation from HashStore to SortedStore always
involves a full revision of the entire index.

FlashStore [25] and SkimpyStash [26] have been sug-
gested for key-value indexing in flash memory. The key-
value pairs are sequentially logged in storage, and the in-
memory hash table points to the location of the key-value
logs. The main difference between the two schemes is the
amount of memory usage. FlashStore maintains a single
hash entry for each key-value log, while several key-value
logs organize a linked list in flash memory and a single
hash entry is dedicated for each linked list in SkimpyStash.
This can be represented as a trade-off between the size of
the memory footprint per key-value pair and the number of
disk accesses per retrieval.

Note that all aforementioned systems keep their index
data in memory, thus recovery after system crash requires a
tremendous amount of disk I/Os due to scanning of all logs
in storage. Furthermore, shutting down or re-booting the
system also involves a number of disk accesses because all
of the in-memory index data has to be written back to the
disk. This overhead is hardly acceptable for the general-pur-
pose use in the single node storage engine of distributed
NoSQL systems.

Recall that another type of key-value stores is a general-
purpose back-end engine that embedded into other systems
or applications which require key-value indexing functional-
ities. Generally their overall performance can be worse than
the former key-value stores because both the key-value data
and the corresponding index data are written into storage
for each update operation. However, they can cope with the
various kinds of crashes or failures better and commonly
show reasonable responses with very little RAMusage.

BerkeleyDB [7] is one of the most popular key-value
stores that provides the core back-end key-value store func-
tionalities. It basically uses Bþ-tree-based indexing, but
other indexing methods such as hashing can be used. Vari-
ous types of transactional features such as full ACID (Atom-
icity, Consistency, Isolation, Durability) [27] and WAL are
also supported. It is known that BerkeleyDB delivers a good
performance with a relatively lightweight footprints for var-
ious types of applications.

Fig. 19. The overall throughput for randomly ordered operations with 20
percent update ratio, using real datasets.
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LevelDB [2] is another persistent key-value store, whose
main concept is borrowed from Google’s BigTable [12]. Lev-
elDB organizes the on-disk data as a variant of LSM-tree,
where each component of the LSM-tree is called level in Lev-
elDB. Riak [28], a NoSQL DB based on Amazon’s Dynamo
[29], has embraced LevelDB as one of its storage engine.
Facebook has introduced RocksDB [3], which is an exten-
sion of LevelDB. It adopts various optimizations to improve
a wide range of system factors such as disk utilization, read
amplification, and compaction overheads.

Sears and Ramakrishnan have suggested bLSM [30],
which is designed to be a viable backing storage for PNUTS
[31], Yahoo’s distributed key-value store system, and Wal-
nut [32], Yahoo’s next-generation elastic cloud storage sys-
tem. bLSM improves the overall read performance of LSM-
trees by adopting Bloom filters and suggests a new compac-
tion scheduler called spring and gear, to bound the write
latency without impacting the overall throughput.

6 CONCLUSIONS AND FUTURE WORK

This paper presents ForestDB, a per-node key-value storage
engine for indexing variable-length string key-value pairs.
ForestDB uses HBþ-trie as an index structure on persistent
storage, which is a combination of a patricia trie and Bþ-
trees. HBþ-trie has a low disk access time and small space
overhead compared to the tree-like index structures. How-
ever, the index can be skewed under rarely-occurring spe-
cific input patterns because a trie is basically not a balanced
structure. To address this problem, we additionally suggest
optimization schemes for avoiding the trie skew. Moreover,
ForestDB uses a log-structured write buffer to further
reduce the amount of disk writes per document update. We
observe that ForestDB achieves significantly faster through-
put compared to the other key-value store schemes, in terms
of the number of operations per second.

Since ForestDB currently runs on top of traditional file
systems, the duplicated overhead of retrieving an index or
updating metadata in both the file system and ForestDB is
inevitable. To avoid this issue, we plan to propose a volume
management layer, which allows ForestDB to access the
block devices directly bypassing the file system layer. We
believe the overall performance can be greatly improved by
performing raw block I/O operations.
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