
Zombie Chasing: Efficient Flash Management
Considering Dirty Data in the Buffer Cache

Youngjae Lee, Jin-Soo Kim, Member, IEEE, Sang-Won Lee, and Seungryoul Maeng

Abstract—This paper presents a novel technique, called Zombie Chasing, for efficient flash management in solid state drives (SSDs).
Due to the unique characteristics of NAND flash memory, SSDs need to accurately understand the liveness of the data stored in
themselves. Recently, the TRIM command has been introduced to notify SSDs of dead data caused by file deletions, which otherwise
could not be tracked by SSDs. This paper goes one step further and proposes a new liveness state, called the zombie state, to denote live
data that will be dead shortly due to the corresponding dirty data in the buffer cache. We also devise new zombie-aware garbage collection
algorithms which utilize the information about such zombie data inside SSDs. To evaluate Zombie Chasing, we implement zombie-aware
garbage collection algorithms in the prototype SSD and modify the Linux kernel and the Oracle DBMS to deliver the information on the
zombie data to the prototypeSSD. Through comprehensive evaluations using our in-housemicro-benchmark and the TPC-Cbenchmark,
we observe that Zombie Chasing improves SSD performance effectively by reducing garbage collection overhead. Especially, our
evaluation with the TPC-C benchmark on the Oracle DBMS shows that Zombie Chasing enhances the Transactions Per Second (TPS)
value by up to 22% with negligible overhead.

Index Terms—Solid state drive (SSD), NAND flash memory, flash translation layer (FTL), data liveness, operating systems

1 INTRODUCTION

DATA stored in the persistent storage can be categorized
into either live data or dead data. Live data is the actual

data needed by user applications, which should be preserved
at all costs. On the other hand, dead data is the one that is no
longer accessible by user applications. Any live data becomes
deadwhen anewversion of thedata iswritten into the storage
or a file containing the data is deleted. Dead data can be
discarded from the storage system at any time.

Such data liveness information makes various optimiza-
tions possible within the storage system. For example, the
on-disk data layout can be improved by collecting live data
together tominimize thenumberof seekoperations of thedisk
head [1]. Prefetching can be performed more intelligently by
caching only the live data inside the disks. Also, the secure
delete operation which makes deleted data irrecoverable is
only possible when information on data liveness is available
in storage systems [2], [3].

In particular, data liveness information plays an important
role in the performance of NAND flash-based solid state
drives (SSDs). This is because NAND flash memory has
several unique characteristics that distinguish it from rotating
magnetic platters of hard disk drives (HDDs). Most notably,

NAND flash memory does not allow in-place updates; the
previous data should be erased before another data is written
into the same area. To make matters worse, the unit of erase
operation, called the flash block, is much larger in size than the
read and write unit.

To support the traditional block device interface over
NAND flash memory, SSDs commonly employ a special
firmware layer called the flash translation layer (FTL). One of
the main functionalities of FTL is to handle write requests
efficiently, while concealing the erase operation of NAND
flash memory. For a given write request from the host, FTL
redirects the write request to a previously erased area in
NAND flash memory and maintains the mapping informa-
tion between the logical address and the physical address of
the data. As a result of the new write request, the previous
data corresponding to the logical address becomes dead and
FTL marks the physical area occupied by the dead data as
being invalid. Those invalid areas are reclaimed later by FTL
via the procedure called garbage collection (GC).

When the number of pre-erased flash blocks falls below a
certain threshold, FTL invokes the garbage collection proce-
dure. The goal of garbage collection is to generate clean flash
blocks by erasing invalid areas containing dead data. Among
theflashblocks, the garbage collectionprocedurefirst chooses
a victim block which is considered the best to be erased. If the
victim block is filled entirely with dead data, it is simply
erased and then converted to a clean flash block. Otherwise,
the live data within the victim block is copied into another
flash block before the victim block is erased. The extra copy
operation needed to prevent the live data from being erased
during garbage collection is a major source of management
overhead in FTL.

To increase the efficiency of garbage collection in SSDs, it is
essential to reduce the amount of live data as much as

• Y. Lee, J.-S. Kim and S.-W. Lee are with the College of Information and
Communication Engineering, Sungkyunkwan University, Suwon,
Gyeonggi-do 440-746, Republic of Korea.
E-mail: yjlee@csl.skku.edu, {jinsookim, swlee}@skku.edu.

• S. Maeng is with the Department of Computer Science, Korea Advanced
Institute of Science and Technology, Daejeon 305-701, Republic of Korea.
E-mail: maeng@camars.kaist.ac.kr.

Manuscript received 31Oct. 2012; revised 19Aug. 2013; accepted 04Nov. 2013.
Date of publication 19 Nov. 2013; date of current version 16 Jan. 2015.
Recommended for acceptance by R. Marculescu.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2013.218

IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015 569

0018-9340 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

possible. Unfortunately, the narrow block device interface,
such as SCSI, SAS, or SATA, makes it difficult to identify the
live data accurately. An early problem was that data which
became dead due to file deletion could not be tracked as SSDs
were not aware offile delete operations issued byfile systems.
Consequently, the data belonging to the deleted file is
wrongly considered to be alive and it is unnecessarily copied
to another flash block to survive garbage collection.

To address this problem, the TRIM command has been
recently introduced as a new standard SATA command for
SSDs. When the file system deletes a file, the TRIM command
explicitly informs SSDs of the corresponding locations of the
deleted data so that they can be treated as the dead data. The
TRIM command is known to be very effective in improving
the performance of SSDs by eliminating unnecessary copy
operations for the deleted data during garbage collection [4]-
[6]. The use of the TRIM command is an effort to pinpoint real
live data inside SSDs.

This paper goes one step further and introduces a newdata
liveness state called the zombie state. We focus on the fact that
the data produced by user applications is temporarily placed
in the buffer cache for performance reasons. The cached new
data, which is usually called the dirty data, will be written into
SSDs shortly. Assume that the dirty data is overwriting the
previous version of the data stored in SSDs. In this case, the
live data in SSDs corresponding to the dirty data will become
deadwhen the dirty data is flushed from the buffer cache.We
call such live data that is destined to be dead soon, due to the
dirty data in the buffer cache, zombie data.

In this paper, we propose a novel technique called Zombie
Chasing for efficient flash memory management in SSDs. The
key idea of Zombie Chasing is to chase the zombie data in
SSDs and to treat them differently from other live data.
Distinguishing the zombie data from the real live data opens
up new optimization opportunities for flash memory man-
agement. To the best of our knowledge, this work is the first
study to optimize SSDs by considering the dirty data in the
buffer cache.

More specifically, we present zombie-aware garbage col-
lection algorithmswhich take into account the zombie data in
twoways. First, we use the zombie data informationwhenwe
select a victimblockduringgarbage collection. Sinceweknow
that the zombie data will become dead soon, we postpone
reclamation of the flash block containing the zombie data.
Thisminimizes the extra copy operation thatmight be needed
tomigrate the soon-to-be-dead zombie data into anotherflash
block. Second, whenwe have no option other than reclaiming
a flash blockwhich has both live data and zombie data, all the
zombie data is put into a dedicated flash block to separate
zombie data from live data. The flash block filledwith zombie
datawill be cheap to reclaimasmost of the zombiedatawill be
dead in the near future.

Zombie Chasing is effective especially when there are
random updates into the same region of the storage device,
as in the OLTP (Online Transaction Processing) workload.
To quantitatively evaluate the impact of Zombie Chasing on
theperformance of real applications,we have implemented the
zombie-aware garbage collection in the prototype SSD. The
prototype SSD is based on a popular SSD controller, which is
widely used in many commercial SSDs. We have also modi-
fied the Linux kernel and the Oracle DBMS to deliver

information on zombie data to the prototype SSD. Our eval-
uation with the TPC-C benchmark on the Oracle DBMS
shows that Zombie Chasing improves the TPS (Transactions
Per Second) value by up to 22% with negligible overhead.

The rest of this paper is organized as follows. Section 2
briefly describes the technical background of SSDs. In
Section 3, we present the Zombie Chasing technique with
introducing the new zombie state and the zombie-aware
garbage collection. Section 4 explains the implementation
detail of the prototype SSD and the necessary modifications
in the Linux kernel and theOracleDBMS for applyingZombie
Chasing. Evaluation results are shown in Section 5. Section 6
discusses related work and Section 7 concludes the paper.

2 BACKGROUND

In this section, we briefly describe NAND flash memory, the
internal structure of SSDs, and the details of FTL.

2.1 NAND Flash Memory
A NAND flash memory chip consists of a number of blocks, or
flash blocks1, and each flash block, in turn, has pages.
The page is the unit of read and write operations, while the
flash block is the unit of erase operation. The size of a page or
flash block varies among flash chips.

Another interesting characteristic of NAND flash memory
is that overwrites into the same page are not allowed. The
new data can be written only into a clean page. The pages
which areno longer valid canbe converted to cleanpages after
being erased. Since the erase operation is performed on a
per-block basis, we cannot erase a page selectively. Instead,
the entire flash block containing the page should be erased
at once.

2.2 Solid State Drives (SSDs)
SSDs have been emerging as a revolutionary storage device
thanks to their attractive features compared to HDDs. In
particular, due to the absence of mechanical parts, SSDs are
faster, lighter, more robust, and more energy-efficient than
HDDs. Each SSD consists of a controller, DRAM, and several
NAND flash memory chips. The NAND flash memory chips
are connected tomultiple channels so that I/O requests can be
handled in parallel [7]. This is why SSDs exhibit much higher
read/write bandwidths or IOPS (I/OOperations Per Second)
than a single NAND flash memory chip.

The SSD controller is composed of host interface logic (e.g.,
SATA), embedded CPU(s), and other logic including ECC
(Error Correction Codes) hardware. One of the most impor-
tant roles of the controller is to emulate the block device
interface while hiding the unique characteristics of NAND
flash memory. The emulation is mainly achieved by the
sophisticated firmware, called the Flash Translation Layer
(FTL), run by the SSD controller. The performance and reli-
ability of SSDs are significantly affected by the various poli-
cies used in the FTL.

1. The “block” of NAND flash memory should not be confused with
the unit of I/O in the kernel. In this paper,weuse the term “flash block” to
denote the unit of erase operation in NAND flash memory.

570 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

2.3 Flash Translation Layer
To emulate the conventional block device interface over
NAND flash memory, FTLs use two software techniques:
address mapping and garbage collection.

2.3.1 Address Mapping
Since in-place update is not allowed in NAND flash memory,
SSDs are over-provisionedwith a certain amount of extra flash
blocks. Using these extra flash blocks, FTLs internally keep
some number of pre-erased flash blocks called update blocks to
absorb incoming write requests. For a given write request
from the host, FTLs redirect the write request into empty
pages of the update blocks and maintain the mapping infor-
mation between the logical address and the physical page
location in NAND flash memory. If the new write request is
overwriting the previous data mapped into the same logical
address, the pages containing the previous data become
invalid pages. The pages which have the up-to-date data are
called valid pages.

According to the granularity of mapping information,
FTLs are categorized as either page-mapped, block-mapped, or
hybrid FTLs. Page-mapped FTLs maintain the mapping infor-
mation on a page basis, while block-mapped FTLs organize
the mapping information on a flash block basis. Hybrid FTLs
are a mixture of these two schemes. They basically use block-
level mapping but maintain the page-level mapping informa-
tion only for a small number of flash blocks. Page-mapped
FTLs require a much larger amount of memory than block-
mapped or hybrid FTLs because they keep mapping entries
for every single page. However, page-mapped FTLs are more
flexible due to their smaller mapping unit and usually show
better performance than block-mapped or hybrid FTLs. The
prototype SSD implemented in this paper is also based on the
page-mapped FTL.

2.3.2 Garbage Collection
Agarbage collection procedure is necessary to reclaim invalid
pages. Because the erase operation is performed on a per-
block basis, the garbage collection procedure first selects an
appropriate flash block which includes a certain number of
invalidpages. The selectedflashblock is called the victim block.
Selecting the victim block is based on one of the policies that
will be described in the next subsection. Before erasing the
victim block, the garbage collection procedure copies the live
data within the victim block into empty pages of update
blocks in order to prevent it from being discarded. Then, the
victim block is changed to an update block after being erased.
The extra copy and erase operations performed during gar-
bage collection are the major overhead of FTLs in managing
NAND flash memory.

In particular, randomwrites on SSDs have the potential to
increase the overhead significantly. Since random writes
update the data across a wide range of the logical address
space, invalidated pages will be scattered over numerous
flash blocks. To generate a clean flash block, FTLs should
erase a large number of flash blocks, which results in many
copy operations on valid pages. Even if random writes are
buffered in the buffer cache, the overhead is still huge unless
incoming randomwrites are clustered into a set of sequential
writes. In this paper, we show that our Zombie Chasing

technique reduces the FTL’s overhead effectively under the
workload including lots of buffered random writes.

The overhead of garbage collection is quantitatively esti-
matedby the value called theWriteAmplification Factor (WAF).
TheWAF value is the ratio of the amount of total data written
into NAND flash memory to the amount of data written by
the host. The total written data includes not only the data
written by the host, but also the data written by copy opera-
tions performed during garbage collection. The WAF value
represents how efficiently FTL handles write requests from
the host.

2.4 Victim Block Selection Policies
When selecting a victim block, most FTLs use one of the
following two policies: greedy [8] and cost-benefit [9], [10]. The
greedy policy selects the flash block which has the largest
number of invalidpages as thevictimblock. This policy is easy
to implement and generates the maximum number of empty
pages after erasing the victim block.

The cost-benefit policy was first introduced in the log-
structured file system (LFS) [11]. The policy rates each flash
block according to the cost and benefit of reclaiming invalid
pages and chooses the flash block with the highest ratio of
benefit to cost. In general, the cost is simply thenumber of read
and write operations required to copy valid pages into the
update block. The benefit is the product of the number of
invalid pages and the age of the flash block which is repre-
sented by themost recentmodified time of theflash block. The
victim block is the flash block that maximizes the following
equation:

where is the total number of pages in each flash block and
is the number of invalid pages of the flash block. indicates
the age of the flash block. Although the cost-benefit policy
requiresmorememory and computingpower than the greedy
policy, it outperforms the greedypolicy especiallywhenwrite
requests have high locality.

3 ZOMBIE CHASING

In this section, we present a novel technique called Zombie
Chasing for efficient flash memory management. First, we
introduce a new liveness state for the zombie data that will be
dead shortly. Then, we propose enhanced garbage collection
procedures which consider such zombie data.

3.1 Zombie Data
In the current block I/O layers, the data stored in SSDs is
either liveor dead, as depicted in Fig. 1(a).When the hostwrites
somedata to SSDs, the data has a live state in the SSDs. Later if
new data is written, the previous data becomes dead in the
SSDs. When the host tells the SSDs via the TRIM command
that a file containing the data is deleted by the file system, the
data also becomes dead. The dead data can be discarded from
SSDs during garbage collection as mentioned in Section 2.3.

We note that user applications access the data stored in
SSDs through the buffer cache to increase performance.When

LEE ET AL.: EFFICIENT FLASH MANAGEMENT CONSIDERING DIRTY DATA IN THE BUFFER CACHE 571

reading a file, the buffer cache is populatedwith the data read
and/or prefetched from SSDs. When writing a file, the new
data is temporarily cached in the buffer cache instead of being
written directly into SSDs. The cached new data, or the dirty
data, isflushed toSSDs later by thevirtualmemorymanager of
the kernel. Our approach is to distinguish the live data which
has the up-to-date version in the buffer cache from the live
data which does not, and to use this information for efficient
flash memory management in SSDs.

In this paper, we propose a newdata liveness state called the
zombie state.We further divide the live state shown in Fig. 1(a)
into the (real) live state and the zombie state. The zombie data
represents data which is currently alive in SSDs, but will be
dead soon when the corresponding dirty data in the buffer
cache is written into SSDs. Fig. 1(b) illustrates the new zombie
state together with the existing states and state transitions
among them. If SSDs know that the live data is modified in
the buffer cache, its state is transitioned to zombie. How the
information on the zombie data is delivered to SSDs is de-
scribed in Section 3.3. If the corresponding dirty data is later
written into SSDs or the host trims the zombie data, it becomes
dead. When the dirty data in the buffer cache is lost due to
suddenpower failure, the zombiedata returns to the live state.

We can see that the zombie state is a transient state between
the live and dead state. The zombie data is different from the
live data in that the zombie data has a fate to die in the near
future. Also, the zombie data cannot be accessed by user
applications in the usual way since the up-to-date version is
available in the buffer cache. However, unlike the dead data,
the zombie data should not be discarded from SSDs so that
user applications can access it when SSDs are restarted.

How soon the dirty data is flushed into SSDs depends on
the policy used in the buffer cache. In the Linux kernel, the
dirty data is written to disks at least in 30 seconds by default.
In the case of the database system used in our evaluation,
more than 70% of the dirty data in the buffer cache is written
into disks in less than 20 seconds.

3.2 Zombie-Aware Garbage Collection
The garbage collection procedure is composed of three steps:
(1) selecting a victim block, (2) copying valid pages of the
victimblock to update blocks, and (3) erasing the victimblock.
Zombie Chasing improves the first two steps using the zom-
bie data information.

3.2.1 Zombie-Aware Victim Block Selection Policy
The greedy policy and the cost-benefit policy do not distin-
guish the zombie data from the live data when selecting a
victim block. The greedy policy simply selects a flash block

which contains the largest number of invalid pages regardless
of the amount of zombie data. The cost-benefit policy con-
siders only the number of invalid pages and the age of each
block when estimating the cost and benefit of reclaiming a
flash block. Therefore, the victim block selected by one of
these twopoliciesmight contain the zombie data aswell as the
live data.

When performing garbage collection, FTL should copy the
valid pages of a victim block to update blocks before erasing
the victim block. If the selected victim block contains the
zombie data, it will also be copied to the update blocks. This
is undesirable for the following two reasons. First, since the
zombie data will become dead shortly, it would be totally
unnecessary to copy the zombie data to update blocks if we
waited a little longer for the flash block before choosing it as
the victim block. Second, the copied zombie data will stay in
the update block only for a short period of time. If the zombie
data dies in the update block later, it should be reclaimed by
another garbage collection, which apparently increases the
garbage collection overhead. Therefore, copying the zombie
data into update blocks is inefficient and also wasteful of
empty pages in update blocks.

To remedy such shortcomings in the existing policies, we
propose new zombie-aware victim block selection policies.
The essential of the zombie-aware policies is to put off select-
ing a flash block which has too much zombie data as a victim
block. However, the goal of garbage collection is to make
clean pages by reclaiming the space occupied by the dead
data. This means that the zombie-aware garbage collection
policies should consider the amount of both dead data and
zombie data.

In this paper, we extend the greedy policy and the cost-
benefit policy so that they are aware of the zombie data. The
zombie-aware greedy policy, called the -greedy policy, esti-
mates the benefit of reclaiming a flash block by the following
equation:

where is the number of invalid pages in the flash block and
denotes the number of zombie pages, i.e., the pages that contain
the zombie data in the flash block. The z-greedy policy selects
the flash block that maximizes Eq. 2 as a victim block.

In the greedy policy, the benefit of reclaiming a flash block
is simply equal to the number of invalid pages. Apparently,
the greedy policy does not take into account the number of
zombie pages in theflash block.However, the z-greedy policy
considers it less beneficial to perform garbage collection on a
flash block when the flash block has some zombie pages. As
we can see in Eq. 2, the estimated benefit is lowered by the
number of zombie pageswhen the number of zombie pages is
less than half of the number of invalid pages. Otherwise, we
reduce the benefit by up to half of the number of invalid pages
in order to prevent a flash block which has too few invalid
pages from being selected as a victim block. No matter how
many zombie pages a flash block has, the estimated benefit is
limited to one-half of the number of invalid pages. Hence, the
number of invalid pages in the victim block selected by the z-
greedy policy will exceed the half of the number of invalid
pages in any other flash block.

Fig. 1. Liveness state transitions.

572 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

The rationale behind Eq. 2 is as follows. Suppose that there
are flash blocks, denoted as , , , , where only
has some zombie pages and it has the largest number of
invalid pages among the flash blocks. Let and be the
number of invalid pages and the number of zombie pages in

, respectively. Normally, the presence of zombie pages in
should postpone ’s chance of becoming a victimblock as

we expect that all the zombie pages in will be dead soon.
We realize this by reducing the benefit of reclaiming by the
amount of zombie pages, thus treating as if it had only

invalid pages. However, it is necessary to limit the
contribution of zombie pages to the estimated benefit.

Assume that some other flash block is selected as a
victim block because the benefit of reclaiming is estimated
larger than that of , i.e., > . However, if is smaller
than , contrary to our expectations, only zombie pages can
be dead after the reclamation of since a single clean page is
needed for each zombie page to become dead. This suggests
that at most (out of the total) zombie pages should
contribute to the estimated benefit of . Therefore, for
to be selected as a victim block, ’s benefit () should be
larger than ’s benefit (), i.e., > or > . In
otherwords, anyflash blockwhich has invalid pages less than
the half of invalid pages in cannot be selected as a victim
block instead of . In order to prevent such flash blocks from
being selected as a victim block, the estimated benefit of
reclaiming a flash block with zombie pages does not become
smaller than as shown in Eq. 2.

Similarly to the z-greedy policy, we define the zombie-
aware cost-benefit policy, called the -cost-benefit policy, as a
policy that chooses the flash block which maximizes the
following equation:

where the meanings of and are the same as those used in
Eq. 2. and denote the total number of pages in each flash
block and the age of the flash block, respectively. The term
() which represents the benefit in the original cost-benefit
policy (cf. Eq. 1) has been replaced with in
the z-cost-benefit policy. As the benefit of the flash block
which contains the zombie data is estimated lower, the z-cost-
benefit policy favors the flash block which has fewer zombie
pages as a victim.

The victim block selected by either the z-greedy policy or
the z-cost-benefit policywill have a smaller number of zombie
pages which certainly reduces the number of copy operations
required for the zombie data. However, now it is possible that
a flash block which does not have the maximum number of
invalid pages is selected as a victim block. In this case, the
amount of valid data that should be copied to update blocks
increases and reclaiming the victim block will produce fewer
empty pages. This appears to have adverse effects on garbage
collection efficiency. However, the zombie-aware victim
selection policies reduce the FTL’s overhead in the long term
by reducing the number of extra copy operations for the
zombie data and improving the utilization of update blocks.

Figs. 2 and 3 illustrate an example of garbage collection
performed with the greedy policy and the z-greedy policy,

respectively. We assume that there are four flash blocks and
each flash block consists of ten pages. The values (, ,)
shown in the top of each flash block represent the number of
live pages storing the (real) live data, the number of zombie
pages, and the number of dead pages in the flash block,
respectively. The number in each valid page (i.e., live page
or zombie page) indicates the logical address number (such as
the sector number) of the data stored in the valid page.

At the initial state depicted in Figs. 2(a) and 3(a), there are a
total of 19 live pages among which seven pages are zombie
pages. Note that block 4 is initially designated as the update
block. Because there remains only one clean flash block, it is
the time to reclaim dead pages by initiating the garbage
collection procedure. The greedy policy selects block 2 as a
victim block since block 2 has the largest number of invalid
pages. Meanwhile, the z-greedy policy chooses block 1 which
has no zombie pages even if it has a smaller number of invalid
pages than block 4. During the first garbage collection, the
greedy policy and the z-greedy policy require four and five
copy operations for valid pages, respectively. Figs. 2(b) and 3
(b) depict the results after the first garbage collection is
performed according to each policy.

Fig. 2. Example of the greedy policy.

LEE ET AL.: EFFICIENT FLASH MANAGEMENT CONSIDERING DIRTY DATA IN THE BUFFER CACHE 573

Figs. 2(c) and 3(c) show the status offlash blocks after some
of the dirty data corresponding to zombie pages arewritten to
SSDs. In both cases, the dirty data flushed from the buffer
cache is sequentially written into the current update block
(block 4).When the update block runs out of empty pages, the
second garbage collection is started. As Fig. 2(d) depicts, the
greedy policy selects block 1 as a victim block and five copy
operations are carried out. On the other hand, the z-greedy
policy selects block 2 as a victim block and performs only one
copy operation during the second garbage collection, as Fig. 3
(d) shows. Figs. 2(e) and 3(e) illustrate the final state when all
the dirty data are flushed from the buffer cache.

In summary, the greedy policy performs nine copy opera-
tions while the z-greedy policy does only six copy operations.
Accordingly, three more empty pages remain after all the
dirty data are flushed from the buffer cache. We can observe
that the z-greedy policy is more efficient than the greedy
policy although it requires more copy operations than the
greedy policy at times as in the first garbage collection.
Similarly, the z-cost-benefit policy shows better efficiency
than the cost-benefit policy.

3.2.2 Zombie Block
In the management of NAND flash memory, it is important
for FTLs to arrange the hot data (i.e., frequently updated data)
in the same flash block in order to reduce the overhead of
garbage collection. This is because the hot data has high
probability of being overwritten in the near future. Thus, the
flash block containing the hot data will be almost full of
invalid pages in a short time. Such flash blocks can be
reclaimed with lower cost as only a few copy operations are
required for the valid data.

There are several previous researches which aim at esti-
mating the degree of hotness for the given data in various
ways and clustering the data into several different update
blocks according to its degree of hotness [10], [12]-[14]. Most
of these approaches are based on the write access patterns of
the data in the past which inevitably have some limitation in
accuracy.

In the same spirit,we treat the zombiedata ashot data since
it will be overwritten soon. This classification is clearly more
accurate than the previous approaches as it is based on actual
write requests thatwill occur in thenear future.Toseparate the
(hot) zombie data from the other (cold) live data, the proposed
zombie-aware garbage collection procedures allocate a dedi-
cated update block called the zombie block and all the zombie
data are copied into the zombie block during garbage collec-
tion. We can expect that the zombie block will be filled with
invalid pages soon and it can be reclaimedwith lowoverhead.

3.3 Notification of the Zombie Data
In order to realize Zombie Chasing, we need a certain way to
notify SSDs of the information on the zombie data. However,
in the standard disk protocols such as SATAand SCSI, there is
no appropriate command for the notification. There are three
approaches to address this problem.

One approach is to add a new command for notification of
the zombie data, similar to the TRIM command. The main
obstacle of this approach is that it requires themodification of
the standard protocols, which involves a significant amount
of time and effort. In addition, the overall performance of
SSDs can be impaired by the non-negligible overhead of the
new command despite the benefit brought by considering the
zombie data. Even for the TRIM command which is recently
added to the SATA protocol for SSDs, several literatures have
discussed its command overhead and how to use the TRIM
commandproperly to reap the benefits it has promised [4], [5].

The second approach is to define a custom vendor-specific
command for the purpose of zombie data notification. Most
standard disk protocols including SATA and SCSI support a
generic extension mechanism by allowing a set of vendor-
defined commands to be used as desired by themanufacturer.
Such a vendor-specific command can be used as long as the
block device driver in the kernel and the storage device agree
on it, without requiring any change in the standard protocols.
However, the vendor-specific command also incurs non-neg-
ligible overhead as in the first approach.

The final approach is to piggyback the zombie data infor-
mation in the unused fields of the existing read/write com-
mands. This can be easily implemented by modifying the
block device driver of the kernel and the SSD’s firmware. The
associated overhead is very small since it does not require any

Fig. 3. Example of the z-greedy policy.

574 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

additional commands. The downside of this approach is that
the zombie data information cannot be delivered to SSDs
when the host does not issue any read/write commands to
SSDs. However, our zombie-aware garbage collection algo-
rithms described in Section 3.2 do not require full and com-
plete knowledge on the zombie data, i.e., the zombie data
information need not be transferred to SSDs instantly. Delay-
ing notification of the zombie data may make some zombie
data disguise itself as live data for a moment, but it does not
harm the correctness of the zombie-aware garbage collection.
For these reasons, we have used this approach for notification
of the zombie data. Its implementation details will be de-
scribed in the following section.

4 IMPLEMENTATION

The implementation of Zombie Chasing can be broken into
three parts. First, we have implemented our own prototype
SSDwhich receives the zombiedata information from thehost
and implements zombie-awaregarbage collectionalgorithms.
Second, we have modified the block I/O layers of the Linux
kernel to deliver the zombie data information to the prototype
SSD. Finally, at the top level, we consider two application
scenarios of Zombie Chasing; one is the virtual file system
(VFS) layer of the Linux kernel with the page cache, and the
other is the Oracle DBMS which has its own buffer cache layer.

4.1 Prototype SSD
We have implemented a prototype SSD using the develop-
ment board equipped with MLC (Multi Level Cell) NAND
flash memory, 64 MB SDRAM, and the Indilinx Barefoot
controller whose internals are publicly released by the
OpenSSDproject [15]. TheBarefoot controller has beenwidely
used in many commercial SSDs. Also, there are previous
researches which utilize the OpenSSD platform employing
the Barefoot controller [16], [17].

The prototype SSD has 16 banks of NAND flash memory.
Since the size of each bank is 8 GB, the total capacity of the
prototype SSD is 128 GB. A single bank contains two NAND
flash memory chips. Each chip has 8,192 flash blocks orga-
nized into two planes of 4,096 flash blocks. Each flash block, in
turn, consists of 128 4KB-pages.

The 16banks are connected to the controller andDRAMvia
four channels. The controller can issue different NAND flash
commands to multiple banks in parallel and each bank
handles the command independently. In addition, the con-
troller is designed in such away that two chips of a bank form
virtually a single chip as if the page size is 8KB. Each chip also
supports two-plane mode commands. If the mode is enabled,
the twoplanes of each chip operate as a single plane so that the
effective page size becomes 16KB. By combining four flash
blocks together (i.e., 1 flash block/plane * 2 planes/chip * 2
chips/bank), the effective flash block size of a bank is also
increased to 2 MB. In this way, although the page size of
each NAND flash memory chip is only 4KB, read and write
bandwidths are easily quadrupled. We enable the two-plane
mode by default.

We have modified the SATA controller’s firmware of the
prototype SSD slightly to receive the information on the
zombie data. In the SATA standard revision 2.6, the SATA

read/write command has the unused fields, or the reserved
area whose size is five bytes. As described in Section 3.3, we
use four bytes of the reserved area for specifying the sector
number of the zombie data and the remaining one byte for its
length in sectors. For a given SATA read or write command,
themodifiedfirmware in theprototype SSDextracts the sector
number and length of the zombie data from the command,
and sends the information to FTL.

Inside the prototype SSD, we have implemented a page-
mapped FTL based on DAC [10], which is one of the most
popular page-mapped FTLs. We integrate our zombie-aware
garbage collection procedures including the z-greedy and
z-cost-benefit policies into the FTL. For fair comparison, the
traditional policies, greedy and cost-benefit, are also imple-
mented. The use of the zombie block is disabledwhen the FTL
is configured to use one of the traditional policies. Also, the
FTL performs garbage collection procedures on a per-bank
basis due to performance issues. When clean flash blocks run
out in a bank, a garbage collection procedure for the bank is
performed. A victim block is selected among flash blocks in
the bank and its valid pages are copied to other flash blocks in
the same bank. When selecting a victim block, the FTL
estimates the value of the corresponding equation (i.e., Eq. 2
for the z-greedy policy and Eq. 3 for the z-cost-benefit policy)
for each flash block in a bank and searches the flash block that
maximizes the value. Therefore, the time complexity of the
zombie-aware victim block selection is O(), where is the
number of flash blocks in the bank.

4.2 Linux Kernel Modification
We have modified the block I/O layers in the Linux kernel to
process the zombie data information as follows. First,we have
added a dedicated mode in the ioctl system call for the
explicit notification of the zombie data. If some data cached in
the buffer cache becomes dirty, the corresponding sector
number and its length are passed to the generic block I/O
layer by the ioctl call. Depending on circumstances,
ioctl is called by user applications or by one of the Linux
kernel components. In the following subsection, wewill show
some use cases of the ioctl call in more detail.

The information on the zombie data is buffered in a
dedicated zombie data queue of the generic block I/O layer.
Whenever a read or write request towards the prototype SSD
is received, the generic block I/O layer inserts the information
on one of the zombie data’s locations into the request and
forwards it to the I/O scheduler queue. After the request is
dispatched from the queue, it is transformed into the SATA
read or write command by filling the reserved area with the
location of the zombie data. Finally, the SATA command is
transferred to the prototype SSD.

4.3 Applications of Zombie Chasing
In order to demonstrate the feasibility of Zombie Chasing, we
consider two typical scenarios: (1) when an application issues
randomupdates to the prototype SSD through the page cache
of the Linux kernel, and (2) when a popular commercial
DBMS, Oracle DBMS, runs the OLTP workload with its own
buffer cache. For each scenario, this subsection describes the
required kernel-level or user-level modification for applying
Zombie Chasing.

LEE ET AL.: EFFICIENT FLASH MANAGEMENT CONSIDERING DIRTY DATA IN THE BUFFER CACHE 575

4.3.1 Applying Zombie Chasing to VFS
To demonstrate that user applications can benefit from Zom-
bie Chasing transparently, we consider the case when a
user application opens a block device file of the prototype
SSD (e.g., dev sdx) and issues write requests with the
write system call. The data written by each write request
is cached in the page cache before it is actually written to the
prototype SSD2. In this circumstance, the data stored in the
prototype SSD, which will be overwritten by the correspond-
ing dirty data in the page cache, is the zombie data. To extract
the information on the zombie data, we have modified the
VFS layer of the Linux kernel.

The write system call issued by an application invokes
the vfs write routine in the kernel. We have modified
vfs write so that it notifies the prototype SSDof the zombie
data information using the ioctl call after placing the
written data in the page cache. Since the application iswriting
data to the block devicefile directly, the location of the zombie
data is identical to the location of the current write request. In
case user applications are writing the data through a file
system, the overall process is similar except that the location
of the zombie data should be obtained from the file system
after translating < file inode, file offset > into the correspond-
ing block offset.

4.3.2 Applying Zombie Chasing to Oracle DBMS
Fig. 4 depicts the overall architecture of the Oracle DBMS
extended with Zombie Chasing. If clients update some
records of a table in the database, the updated data is first
cached as dirty data in the internal buffer cache of the Oracle
DBMS. Later, the DBWR thread eventually flushes the up-
dated data to the prototype SSD.

In order to keep track of the zombie data, we have im-
plemented a daemon application which performs online
monitoring of redo-log files in the Oracle DBMS3. Before
caching the updated data in its buffer cache, theOracle DBMS
creates redo-log records corresponding to the updated data.
The redo-log records contain the meta information on the
update requests so that they can be recovered from various
emergency cases. According to the well-known WAL (write-
ahead-logging) protocol [18], the LGWR thread synchronously
flushes the cached log records to one of the redo-log files in a
separate disk (disk 2 in Fig. 4) before DBWR writes the dirty

data in the buffer cache to the prototype SSD. The location of
the zombie data can be obtained by analyzing the meta
information in the redo-log file as it contains the location
where thedirtydatawill bewritten.Whenever a new record is
appended to one of the redo-log files, our online monitoring
daemon extracts this information from the new record and
sends it to the prototype SSD using the ioctl system call.

5 EVALUATION

In this section we present the evaluation results of Zombie
Chasing. The results show that Zombie Chasing improves the
SSD’s performance effectively under theworkloads including
lots of buffered random writes.

5.1 Methodology
We have evaluated Zombie Chasing on a machine equipped
with an Intel i7 950processor (quad-core, 3.07GHz) and16GB
of main memory, running Oracle Enterprise Linux 5 with the
Linux kernel version 2.6.34. The prototype SSD is attached to
the machine via the SATA 2.0 interface. The FTL inside the
prototype SSD is a page-mapped FTL based on DAC [10],
which employs the hot-data-aware garbage collection tech-
nique. For the DAC’s hot-data clustering algorithm, the num-
ber of regions and the time threshold for state switching are
configured to three and zero, respectively4.

For ease of evaluation, we have limited the physical capac-
ity of the prototype SSD to 32 GB in the following two
configurations. The first configuration is to make the proto-
type SSD to use only four banks. In the second configuration,
the prototype SSD is set to utilize all 16 banks. Basically, if
there is no additional comment, the evaluations described in
this section were conducted on the prototype SSD of the first
configuration. The logical capacity of the prototype SSD is set
to 29.8GB.About 6%of the logical capacity is hidden from the
host and used as over-provisioned extra flash blocks. The
remaining capacity is set aside for bad block remapping and
also for storing mapping information, bad block lists, and
firmware image.

TheproposedZombieChasing technique is evaluatedwith
two benchmarks: the in-house micro-benchmark and the
TPC-C benchmark. The in-house micro-benchmark is con-
ducted to the VFS layer of the Linux kernel as described in
Section 4.3.1,while the TPC-C benchmark is performed on the
Oracle DBMS as presented in Section 4.3.2. The details of each
benchmark will be described in the following subsections.

For each benchmark, we consider four types of garbage
collection policies as shown in Table 1.GC-GD andGC-CB are

TABLE 1
The Descriptions of Four Types of Garbage Collection Policies

Fig. 4. The Oracle DBMS with Zombie Chasing.

2. In the Linux kernel, the buffer cache is integrated into the page
cache.

3. Note thatmonitoring redo-logfiles is an implementation technique
to identify dirty data in the buffer cache. If the source codes of the Oracle
DBMSare publicly available, wewouldmodify the internals of theOracle
DBMS instead of implementing the daemon application.

4. Overall, this configuration has shown the best performance in our
evaluations.

576 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

conventional garbage collection policies which do not utilize
the zombie data information. ZGC-GD and ZGC-CB are the
zombie-aware garbage collection policies which use the zom-
bie block and implement the z-greedy and z-cost-benefit
victim selection policies, respectively. Also, we have carried
out the evaluation varying the buffer cache size in order to
investigate its impact on the overall performance. As the
buffer cache size increases, the amount of zombie data avail-
able to the prototype SSD also grows and this allows for better
victim block selection.

5.2 Micro-Benchmark
5.2.1 Overview
We have implemented a micro-benchmark to generate syn-
thetic I/O workloads which contain lots of buffered random
writes. When the micro-benchmark generates the synthetic
workloads, the main consideration is the locality of write
requests. In fact, the locality of the write requests and the
buffer cache size are two main factors affecting the overall
performance of Zombie Chasing. In particular, the degree of
the locality influences the distribution of the zombie data. If
write requests have a high degree of locality,flash blockswith
lots of dead data may contain much zombie data as well. In
such a situation, the zombie-aware victim block selection
policies make better decisions since the greedy or cost-benefit
policy does not consider the zombie data at all. Thus, we
measure the I/O performance improvement under synthetic
workloads which have various degrees of locality among
write requests.

Before the micro-benchmark is executed, we first fill the
prototype SSD with 29.8 GB of dummy data. Once executed,
the micro-benchmark invokes 16 threads. Each thread opens
the block device file associated with the prototype SSD and
generates a certain number of random read/write requests
using the read write system calls. The total amount of
data towrite isfixed to 5.12GB and the total amount of data to
read varies according to the ratio of read requests to write
requests. After all read/write requests from 16 threads finish,
the micro-benchmark reports the elapsed time.

Each thread issues read/write requests as follows. The
read requests retrieve the data stored in random locations
within the entire logical address space of the prototype SSD.
In order to control the degree of locality amongwrite requests,
write requests are created according to the Pareto principle
(also known as the 80–20 rule); the ()% of write re-
quests store the data to random locationswithin the top of
the logical address space of the prototype SSD.The smaller the
value of is, the higher the degrees of both spatial and
temporal locality among write requests are. The locations of
the read/write requests are aligned to a 16KB boundary and

the data size of each request is also set to 16KB, which is the
same as the effective page size of the prototype SSD.

The impact of Zombie Chasing on the performance of the
micro-benchmark is affected by the behavior of the flush

daemon in the Linux kernel, which is in charge of flushing
dirty pages in the page cache periodically into the prototype
SSD.We have utilized the default configuration for the flush
daemon whose main parameter values are shown in Table 2.

5.2.2 The Effect of the Locality among Write Requests
and the Buffer Cache Size

First of all, we have conducted the micro-benchmark varying
the locality among write requests and the page cache size.
Figs. 5 and 6 show the evaluation results using the micro-
benchmarkwith various values of . In these figures, the ratio
of read requests towrite requests is 0.5 and the page cache size
is 4 GB and 2 GB, respectively. In order to control the size of
the page cache, we have restricted the memory size available
to the kernel by using the kernel boot option (mem).

As Figs. 5 and 6 show, the general trend is that the proto-
type SSD shows better performance with the zombie-aware
garbage collection algorithms.When the value of is between
6 and 20, ZGC-GD and ZGC-CB outperform GC-GD and
GC-CB, respectively, in terms of both the elapsed time and
theWAFvalue. In particular, when the page cache size is 4GB
and the value of is 6, the elapsed times ofZGC-GD andZGC-
CB are 29.8% and 25.3% lower than those of GC-GD and
GC-CB, respectively. The WAF value of ZGC-GD is reduced
by 47.3% as compared to that of GC-GD and the ZGC-CB ’s
WAF value is also decreased to 67.1% of the GC-CB ’s value.
We can see that the I/O performance of the prototype SSD
improves as the overhead of garbage collection decreases
when write requests have a certain degree of locality. Note
that when the value of is 3, the overhead of garbage

Fig. 5. Elapsed times andWAF values when the ratio of read requests to
write requests is 0.5 and the page cache size is 4 GB.

TABLE 2
The Flush Daemon’s Configuration

Fig. 6. Elapsed times andWAF values when the ratio of read requests to
write requests is 0.5 and the page cache size is 2 GB.

LEE ET AL.: EFFICIENT FLASH MANAGEMENT CONSIDERING DIRTY DATA IN THE BUFFER CACHE 577

collection is so low that there is no room for the performance
improvement by Zombie Chasing.

As the locality among write requests decreases or the page
cache gets smaller, the improvement gained by Zombie Chas-
ing diminishes. For instance, the elapsed times and the WAF
values ofZGC-GD andZGC-CB are improved by less than 5%
when there is no locality among write requests (i.e., when

.). Also, the overhead of garbage collection is reduced
by about 30%when the page cache is 2GBand the value of is
6 while the overhead decreases by more than 35% when the
page cache is 4 GB for the same value of .

Note that there seems to be inconsistency between the
elapsed time and the WAF value. For example, when the
page cache size is 2GBand the value of is 10,ZGC-CB takes a
longer elapsed time even if it has a smaller WAF value
compared to ZGC-GD. This is because ZGC-CB (cf. Eq. 3) has
a larger overhead in selecting a victim block among flash
blocks in each bank thanZGC-GD (cf. Eq. 2). On the prototype
SSD, ZGC-CB takes 7.65 on average to select a victim
block among flash blocks in a bank, while ZGC-GD takes
only 3.19 to do the same operation. Therefore, although
the garbage collection efficiency of ZGC-CB represented by
the WAF value is better than that of ZGC-GD, ZGC-CB has a
penalty in the elapsed time.

We have performed the same benchmark on the prototype
SSD that is configured to provide the maximum parallelism
by utilizing all 16 banks. Overall, the evaluation results are
similar to those of the prototype SSD that is configured to use
only 4 banks. As Fig. 7 depicts, Zombie Chasing enhances the
I/O performance of the prototype SSD successfully. The
overhead of garbage collection procedure is reduced by up
to 26% and the elapsed time is improved by 14.4% at the same
time.

5.2.3 The Impact of the Ratio of Read Requests to Write
Requests

In this subsection, we investigate the impact of the ratio of
read requests to write requests on the overall performance.

We vary the ratio of read requests to write requests fixing the
page cache size to 4GBand thevalueof to 6.Weexpect that if
the ratio of read requests rises, the performance improvement
achieved by Zombie Chasing increases as the zombie data
information is piggybacked to the prototype SSDmore often.
Table 3 shows the amount of zombiedatawhich theprototype
SSD is aware of and its ratio to the amount of dirty data in the
page cache. As our expectation, the higher the ratio of read
requests is, the more zombie data the prototype SSD is
conscious of.

Fig. 8 illustrates the elapsed times and the WAF values of
the above experiment. TheWAF values ofZGC-GD andZGC-
CB decreases as the ratio of read requests increases. For
example, the WAF value of ZGC-CB is 3.96 when the ratio
is 2 while it is 4.40 when the ratio is 0. However, the elapsed
time is maximally improved when the ratio is 0.2. This is
because the effect of Zombie Chasing on the overall perfor-
mance of the micro-benchmark lessens as the amount of read
requests increases.

5.2.4 The Breakdown of the Performance Improvement
The performance improvement achieved by Zombie Chasing
is due to the utilization of both the zombie-aware victim block
selectionpolicy and the zombie block. In order to analyze their
contribution to the overall performance separately, we have
additionally evaluated the zombie-aware garbage collection
procedure which only employs the zombie-aware victim
block selection policy, but not the zombie block.

Fig. 9 shows the evaluation results using various values of
, when the page cache size is 4 GB and the ratio of read

requests to write requests is 0.5. The ZGC-GD-NZ and the
ZGC-CB-NZ denote the type of garbage collection which
utilizes the z-greedy policy and the z-cost-benefit policy,
respectively, without the use of the zombie block. We can

Fig. 7. Elapsed times and WAF values when the prototype SSD is
configured to use all 16 banks.

TABLE 3
The Amount of Zombie Data Which the Prototype SSD Is

Aware of during the Experiment of Fig. 8

Fig. 8. Elapsed times andWAF values when the page cache size is 4 GB
and the value of is 6.

Fig. 9. The evaluation results of the zombie-aware garbage collection
which utilizes only the zombie-aware victim block selection policy, but not
the zombie block.

578 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

see that as the locality among write requests decreases, the
performance improvement gained by the use of the zombie
block diminishes. When the value of is 6, the WAF value of
ZGC-GD is about 18% lower than those of ZGC-GD-NZ.
However, the difference between their WAF values is less
than 3% when the value of is 20.

5.2.5 The Overhead of Zombie Data Notification
In order to investigate the overhead associated with sending
the zombie data information to the prototype SSD, we mea-
sured the elapsed times of the micro-benchmark when en-
abling and disabling the notification mechanism in the block
I/O layers. As we expect, there is no meaningful difference in
the elapsed times whether the notification is enabled or
disabled. This suggests that the overhead incurred in deliver-
ing the zombie data information to the prototype SSD is
almost negligible.

Additionally, in order to examine the feasibility of the
notification mechanism using an additional SATA command
(e.g., the first two approaches mentioned in Section 3.3), we
have measured the overhead when the prototype SSD is
notified of the zombie data information via the TRIM com-
mand with the NO_BARRIER mode. We evaluated the per-
formance of the micro-benchmark when such notification
mechanism is used. From the evaluation results, we con-
firmed that the overhead is serious. Although the zombie-
aware garbage collection is utilized, there is no improvement
on the performance of the micro-benchmark and the elapsed
time increases by more than 20% in some cases.

5.3 TPC-C Benchmark
5.3.1 Overview
The TPC-C benchmark is an Online Transaction Processing
(OLTP) benchmark for database systems, developed by the
Transaction Processing Performance Council (TPC) [19]. The
TPC-C benchmark measures the OLTP performance of data-
base systems, which is usually represented by the TPS (Trans-
actions Per Second) value. The TPS value is the number of
transactions the database system under test can process for
each second. When the TPC-C benchmark runs, the storage
system of the database system experiences lots of buffered
random writes. Also, the write requests generated by the
TPC-C benchmark have a certain degree of locality. In this
evaluation, we measure the improvement in the TPS value for
the TPC-C benchmark when the database system is extended
with Zombie Chasing.

We have used a commercial benchmark tool to generate
TPC-C workloads on the Oracle DBMS 11gR2. The Oracle
DBMS is configured to access the prototype SSD directly
without any file system. The block size of database tables is
set to 16KB, which is the same as the effective page size of the

prototype SSD. We use two configurations of the TPC-C
benchmark as described in Table 4. The number of ware-
houses in TPC-C1 and TPC-C2 is 300 and 275, respectively. In
both TPC-C configurations, the number of users is 16 and the
transaction time is 1 hour. Note that since the size of the
warehouses’ tables is smaller than the prototype SSD’s logical
space, the remaining space is used as over-provisioned extra
flash blocks additionally. Therefore, the actual amount of
extra flash blocks becomes 9.6% and 19% of the total SSD
capacity for TPC-C1 and TPC-C2, respectively.

5.3.2 Results
Fig. 10 depicts the results of TPC-C1 when the buffer cache
size of the Oracle DBMS is set to 3 GB and 4 GB. Overall,
similarly to the results of the micro-benchmark, the zombie-
aware garbage collection procedures show better perfor-
mance in all configurations. Particularly, when the buffer
cache size is 4 GB, the TPS value of ZGC-GD is 22% higher
than that ofGC-GDwhile theWAFvalue is 26%smaller. In the
case of ZGC-CB, its TPS value is improved by 14.4% and its
WAF value is reduced by 17.5%, as compared to those of
GC-CB.When the buffer cache size is 3 GB, the performance is
improved less since the amount of zombie data available to
the prototype SSD gets smaller. Note that when the buffer
cache size is 4 GB, the amount of zombie data that the
prototype SSD is aware of is about 1.28 GB on average while
the amount is only about 870MBwhen the buffer cache size is
3 GB. The ratio of the amount of zombie data in the prototype
SSD to the amount of dirty data in the buffer cache is about
70% in both cases.

Table 5 shows the internal statistics of the Oracle DBMS in
the TPC-C1 configuration. Whenever a process of the Oracle
DBMS waits for something, it is recorded using one of the
predefined wait events. By examining the wait records, users
can identify performance bottlenecks and possible causes of
the bottlenecks. Table 5 shows the top three wait events that
have the most significant percentage of wait time, along with
the average wait times of the wait events for each garbage
collection algorithm. According to the official technical docu-
ment for the Oracle DBMS [20], the top three wait events are
possibly caused by slow I/O systems, which means that the
performance bottleneck in this evaluation is the prototype
SSD. We can confirm that the I/O performance of the proto-
type SSD is improved by utilizing the zombie-aware garbage
collection so that the average wait times of the wait events are
shortened by more than 10%. Thus, the TPS value is also
raised as Fig. 10 depicts.

Fig. 10. TPS and WAF values when the configuration of the TPC-C
benchmark is TPC-C1.

TABLE 4
The Description of TPC-C Configurations

LEE ET AL.: EFFICIENT FLASH MANAGEMENT CONSIDERING DIRTY DATA IN THE BUFFER CACHE 579

We have also performed the TPC-C benchmark on the
prototype SSD that is configured to use all 16 banks. Fig. 11
illustrates the results of both TPC-C1 and TPC-C2 when the
buffer cache size is set to 4 GB. Similar to the previous
experiments with 4 banks, ZGC-GD and ZGC-CB outperform
GC-GD andGC-CB, respectively, in terms of both the TPS and
WAF values. Especially, we observe that the performance is
improved by more than 10% when the ratio of the over-
provisioned extra flash blocks is 19% in the prototype SSD.

6 RELATED WORK

Sivathanu et al. discussed data liveness at the block-level and
describedvarious storage optimization techniques that utilize
information on data liveness [2]. They formalized the notion
of data liveness in various types and presented two ap-
proaches, explicit notification and implicit detection, to im-
part the information on data liveness to storage systems.
While they classified the data into either live data or dead
data, this paper further divides the live data into (real) live
data and zombie data and proposes enhanced garbage col-
lection algorithmswhich consider zombiedata aswell as live/
dead data.

There are several previous studies on improving the per-
formance of flash storage systems with a new storage inter-
face. Saxena et al. presented solid-state cache (SSC), a flash
device which has a new interface designed for caching [21].
State information (e.g., dirty, clean, or evicted) of every data
cached inside SSC is imparted to SSC via the new interface.
The FTL inside SSC utilizes the state information in perform-
ing garbage collection. Mesnier et al. presented a new scheme
for classifying data in file systems and conveying the classifi-
cation information to storage system [22]. Then, they pro-
posed new allocation/eviction algorithms for SSD-based
cache storage, which utilize the classification information.
The classification information is piggybacked to storage sys-
tems via the Group Number field of the read/write SCSI
command. In this paper, the zombie data information is
piggybacked to the prototype SSD similarly via the reserved
areas of SATA read/write commands.

For the efficiency of garbage collection, it is important for
FTLs to identify soon-to-be-dead data (i.e., the data will be
dead soon) and to avoid unnecessary copy operations of the
soon-to-be-dead data during garbage collection. The hot-
data-aware garbage collection of previous FTLs considers hot
data (i.e., the data frequently updated in the past) as soon-to-
be-dead data [8], [10], [12]-[14]. Instead, Zombie Chasing
classifies zombie data as soon-to-be-dead data. This classifi-
cation is more accurate since it is based on the write requests

that will occur in the near future whereas the classification of
the hot-data-aware garbage collection relies on the past write
requests. Unless sudden power failure occurs, there is guar-
antee that zombie datawill be dead in the near future since all
dirty data in the buffer cache must be eventually written to
disks. However, only a part of hot data is actually soon-to-
be-dead data. Also, the hot-data-aware garbage collection
cannot deal with a situation fully when the data classified
into cold data is modified in the buffer cache. On the other
hand, ZombieChasing can recognize that the cold datawill be
dead soon. From the evaluations, we confirm that Zombie
Chasing is more effective than the hot-data-aware garbage
collection in reducing the overhead of garbage collection.

7 CONCLUSION

This paper proposes Zombie Chasing, an efficient flash man-
agement technique that considers dirty data in the buffer
cache. First of all, we introduce a new data liveness state
called the zombie state to denote live data that will be dead
soon when the corresponding dirty data in the buffer cache is
flushed into the storage system. Also, we devise enhanced
garbage collection algorithms which utilize information on
such zombie data inside SSDs. By distinguishing zombie data
from real live data, the zombie-aware garbage collection
reclaims invalid pages more efficiently than previous ap-
proaches. In order to show the feasibility of Zombie Chasing,
we have implemented a prototype SSD based on a commer-
cially-successful SSD controller and applied Zombie Chasing
to the VFS layer of the Linux Kernel and the Oracle DBMS.

Through various evaluations using the in-house micro-
benchmark and the TPC-C benchmark, we confirm that
Zombie Chasing improves the SSD’s performance effectively
by reducing the garbage collection overhead under the work-
loads including lots of buffered random writes. In particular,
our evaluation with the TPC-C benchmark shows that Zom-
bie Chasing improves the TPS value by up to 22%, reducing
the garbage collection overhead by about 26% at the same
time. Theperformance improvement gainedbyZombieChas-
ing rises as the buffer cache size increases or the degree of
locality among write requests gets higher.

As future work, we plan to apply Zombie Chasing to
popular file systems and study its impact on the performance
of the file systems.

ACKNOWLEDGMENTS

This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea Government

Fig. 11. TPS and WAF values when the prototype SSD is configured to
use all 16 banks.

TABLE 5
The Average Wait Time of the Top Three Database Events

580 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

(MSIP) (No. 2013R1A2A1A01016441). This work was also
supported by the IT R&D program of MKE/KEIT (No.
10041244, SmartTV 2.0 Software Platform).

REFERENCES

[1] C. Ruemmler and J. Wilkes, “Disk shuffling,” HP Lab., Tech. Rep.,
1991.

[2] M. Sivathanu, L. N. Bairavasundaram, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau, “Life or death at block-level,” in Proc. 6th
USENIX Symp. Oper. Syst. Des. & Implementation (OSDI), 2004,
pp. 379–394.

[3] P. Gutmann, “Secure deletion of data frommagnetic and solid-state
memory,” in Proc. 6th USENIX Security Symp. Focusing Appl.
Cryptography (SSYM), 1996, pp. 77–90.

[4] C. Hyun, J. Choi, D. Lee, and S. H. Noh, “To TRIM or not to TRIM:
Judicious triming for solid state drives,” presented at the 23rd ACM
Symp. Oper. Syst. Principles (SOSP), 2011.

[5] M. Saxena and M. M. Swift, “FlashVM: Virtual memory manage-
ment on flash,” in Proc. USENIX Annu. Tech. Conf. (ATC), 2010, pp.
187–200.

[6] J. Kim, H. Kim, S. Lee, and Y. Won, “FTL design for TRIM com-
mand,” in Proc. 5th Int. Workshop Softw. Support Portable Storage
(IWSSPS), 2010, pp. 7–12.

[7] N. Agrawal, V. Prabhakaran, T. Wobber, J.D. Davis, M. Manasse,
and R. Panigrahy, “Design tradeoffs for SSD performance,” in Proc.
USENIX Annu. Tech. Conf. (ATC), 2008, pp. 57–70.

[8] Y.-G. Lee, D. Jung, D. Kang, and J.-S. Kim, “μ-FTL: A memory-
efficient flash translation layer supporting multiple mapping gran-
ularities,” in Proc. 8th ACM Int. Conf. Embedded Softw. (EMSOFT),
2008, pp. 21–30.

[9] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: A flash translation
layer employing demand-based selective caching of page-level
address mappings,” in Proc. 14th Int. Conf. Architectural Support
Program. Languages Operat. Syst. (ASPLOS), 2009, pp. 229–240.

[10] M.-L. Chiang, P. C. H. Lee, and R.-C. Chang, “Using data clustering
to improve cleaning performance for flash memory,” Softw.—Pract.
Exp., vol. 29, pp. 267–290, 1999.

[11] M. Rosenblum and J. K. Ousterhout, “The design and implementa-
tion of a log-structured file system,” ACM Trans. Comput. Syst.,
vol. 10, no. 1, pp. 26–52, Feb. 1992.

[12] P. Dongchul and D. H. C. Du, “Hot data identification for flash-
based storage systems using multiple bloom filters,” in Proc. IEEE
27th Symp. Mass Storage Syst. Technol. (MSST), 2011.

[13] J.-W. Hsieh, T.-W. Kuo, and L.-P. Chang, “Efficient identification of
hot data for flash memory storage systems,” ACM Trans. Storage,
vol. 2, no. 1, pp. 22–40, Feb. 2006.

[14] M. Changwoo, K. Kangnyeon, C. Hyunjin, L. Sang-Won, and
E. Young Ik, “SFS: Random write considered harmful in solid state
drives,” in Proc. 10th USENIX Conf. File Storage Technol. (FAST),
2012, pp. 139–154.

[15] Computer Systems Laboratory at Sungkyunkwan University.
(2010). The OpenSSD Project [Online]. Available: http://www.
openssd-project.org.

[16] D. Tiwari, S. Boboila, S.Vazhkudai, Y.Kim,X.Ma, P.Desnoyers, and
Y. Solihin, “Active flash: Towards energy-efficient, in-situ data
analytics on extreme-scale machines,” in Proc. 11st USENIX Conf.
File Storage Technol. (FAST), 2013, pp. 119–132.

[17] M. Saxena, Y. Zhang, M. M. Swift, A. C. A. Dusseau, and
R. H. A. Dusseau, “Getting real: Lessons in transitioning research
simulations into hardware systems,” in Proc. 11th USENIXConf. File
Storage Technol. (FAST), 2013, pp. 215–228.

[18] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz,
“ARIES:A transaction recoverymethod supportingfine-granularity
locking and partial rollbacks using write-ahead logging,” ACM
Trans. Database Syst., vol. 17, no. 1, pp. 94–162, Mar. 1992.

[19] Transaction Processing Performance Council (TPC). (2010). TPC-C
[Online]. Available: http://www.tpc.org/tpcc.

[20] T. Morale, Oracle Database Reference 11g R2(11.2), Oracle, Oct. 2010.

[21] M. Saxena, M. M. Swift, and Y. Zhang, “FlashTier: A lightweight,
consistent and durable storage cache,” in Proc. 7th ACM Eur. Conf.
Comput. Syst. (EuroSys), 2012, pp. 267–280.

[22] M. P. Mesnier and J. B. Akers, “Differentiated storage services,”
SIGOPS Oper. Syst. Rev., vol. 45, no. 1, pp. 45–53, Feb. 2011.

Youngjae Lee received the BS and PhD degrees
in computer science from Korea Advanced Insti-
tute of Science and Technology (KAIST),
Daejeon, Republic of Korea, in 2005 and 2014.
He is currently a postdoctoral researcher at Sung-
kyunkwan University, Suwon, Republic of Korea.
His research interests include flashmemory, stor-
age systems, and operating systems.

Jin-Soo Kim received the BS, MS, and PhD
degrees in computer engineering from Seoul
National University, Republic of Korea, in 1991,
1993, and 1999, respectively. He is currently a
professor at Sungkyunkwan University, Suwon,
Republic of Korea. Before joining Sungkyunkwan
University, he was an associate professor at Korea
Advanced Institute of Science and Technology
(KAIST) from 2002 to 2008. He was also with the
Electronics and Telecommunications Research
Institute (ETRI) from 1999 to 2002 as a senior

member of the research staff, and with the IBM T. J. Watson Research
Center as an academic visitor from 1998 to 1999. His research interests
include embedded systems, storage systems, and operating systems.

Sang-WonLee received thePhDdegree from the
Computer Science Department of Seoul National
University, Republic of Korea, in 1999. He is an
associate professorwith theSchool of Information
andCommunicationEngineering,Sungkyunkwan
University, Suwon, Korea. Before that, he was a
research professor at Ewha Women University
and a technical staff at Oracle, Korea. His re-
search interest includes flash-based database
technology.

Seungryoul Maeng received the BS degree in
electronics engineering from Seoul National
University (SNU), Republic of Korea, in 1977, and
the MS and PhD degrees in computer science
from Korea Advanced Institute of Science and
Technology (KAIST),Daejeon,Republic of Korea,
in 1979 and 1984, respectively. Since 1984, he
has been a faculty member of the Department of
Computer Science at KAIST. From 1988 to 1989,
he was with the University of Pennsylvania as a
visiting scholar. His research interests include

micro-architecture, parallel processing, cluster computing, andembedded
systems.

▽ For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LEE ET AL.: EFFICIENT FLASH MANAGEMENT CONSIDERING DIRTY DATA IN THE BUFFER CACHE 581

