
System-Wide Cooperative Optimization for
NAND Flash-Based Mobile Systems

Hyotaek Shim, Jin-Soo Kim, and Seungryoul Maeng

Abstract—NAND flash memory has become an essential storage medium for various mobile devices, but it has some idiosyncrasies,
such as out-of-place updates and bulk erase operations, which impair the I/O performance of those devices. In particular, the randomwrite
performance is strongly influenced by the overhead of a Flash Translation Layer (FTL) that hides the idiosyncrasies of NAND flash
memory. To reduce the FTL overhead, operating systems need to be adapted for FTL, but widely used mobile operating systems still
mainly adopt algorithms designed for traditional hard disk drives. Although there have been recent studies on rearranging write patterns
into a sequential form in the operating system, these approaches fail to produce sequential write patterns under complicated workloads,
and FTL still suffers from significant garbage collection overhead. If the operating systemcan bemadeaware of thewrite patterns that FTL
requires, the overhead can be alleviated even under random write workloads. In this paper, we propose a system-wide cooperative
optimizationscheme,where theoperatingsystemcommunicateswith theunderlyingFTLandgenerateswrite patterns thatFTLcanexploit
to reduce the overhead. The proposed scheme was implemented on a real mobile device, and the experimental results show that the
proposed scheme constantly improves performance under diverse workloads.

Index Terms—NAND flash memory, flash translation layer, page cache, I/O scheduler, mobile system

1 INTRODUCTION

IN recent years, mobile computing has rapidly expanded its
influence through evolving mobile operating systems and

applications. As diverse mobile applications are demanding
complicated I/O workloads, the I/O performance has
become a critical performance bottleneck for user applications
that require more storage capabilities [1]. NAND flash mem-
ory [2] has been widely adopted as an essential storage
medium in various mobile devices, such as smartphones and
tablet PCs. In particular, NAND flash memory has inherent
characteristics useful for mobile consumer devices, such as
shock resistance, noiselessness, low power consumption, and
small form factor.

However, the performance of NAND flash-based storage
devices has been impaired by the idiosyncrasies of NAND
flash memory, such as the different unit sizes of write and
erase operations, and asymmetric read/write latency. The
Flash Translation Layer (FTL) that hides and controls such
idiosyncrasies is a key component to determine the I/O
performance. FTL provides logical-to-physical address map-
ping for block-orientedfile systems by transparently perform-
ing garbage collection that copies valid pages before erasing a

block. Many recent studies have tried to develop more effi-
cient FTL algorithms that reduce garbage collection overhead
and memory consumption [3]–[7].

Improving the operating system (OS) and making the
device buffer management policy more advantageous to the
underlying FTL have been another interesting research issue.
These approaches have also been attempted for magnetic
disks: 1) prefetching in the file system and page cache, 2)
arranging the file system metadata on each cylinder group,
3)merging several I/O requests into a large sequential request
in the I/O scheduler and device buffer, and 4) elevator-based
I/O scheduling [8]–[11]. These works focused on reducing
seek latency by considering such characteristics of magnetic
disks as higher sequential I/O performance, cylinder group
size, and seek distance.

In a similarway, there havebeenmany studies on adapting
the operating systems or the device write buffer for flash
storage devices [12]–[18] by employing the parameters of
flash storage devices, such as the flash page/block size and
FTL type. Most of the studies have focused on tuning the
policies of the device write buffer and I/O scheduler to select
large and cold data as a victim in the expectation that evicting
large data can generate sequential write patterns, which are
favorable to the FTL performance [3], [4]. However, with
complicated workloads, the existing approaches fail to pro-
duce sequentialwrite patterns. In addition, it is difficult for the
previous studies to determine which write requests can mini-
mize the garbage collection overhead as they do not consider
the internal state of the underlying FTL. In magnetic disks,
only considering current head position can be enough to
optimize the performance, whereas the performance of FTLs
is influenced by the internal state of FTLs that is too intricate to
be tracked.

• H. Shim and S. Maeng are with the Computer Science Department, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon, Republic
of Korea. E-mail: {htshim, maeng}@calab.kaist.ac.kr.

• J.-S. Kim is with the School of Information andCommunication Engineering,
Sungkyunkwan University (SKKU), Suwon, Republic of Korea.
E-mail: jinsookim@skku.edu.

Manuscript received 10Aug. 2012; revised 13 Feb. 2013; accepted 13Mar. 2013.
Date of publication 26 Mar. 2013; date of current version 15 July 2014.
Recommended for acceptance by M. Guo.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2013.74

2052 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 8, AUGUST 2014

0018-9340 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

To break through the limitations of existing studies, this
paper presents a system-wide cooperative optimization
scheme to enhance the performance of NAND flash-based
mobile storage systems under diverse workloads. In the
proposed approach, the operating systemcommunicateswith
the underlying FTL and generates write requests that FTL can
utilize to reduce the garbage collection overhead. To the best
of our knowledge, we are the first to devise a cooperative
approach between the operating system andFTL.Ourwork is
divided into three parts. First, we determine the performance
bottleneck of I/O operations in existing hybrid FTLs. Second,
we investigate how the bottleneck could be addressed by the
cooperative optimization with the operating systems that are
capable of inquiring into the internal states of FTLs. We also
investigate what information is needed for the operating
systems. For the proposed scheme, we are required to define
the cooperation interface, which should be low-cost and
compatible across different FTLs. Finally, we apply the pro-
posed scheme to a real flash-based mobile system. The exper-
imental results show that the proposed scheme achieves
significant improvement in the I/O performance. In the
results of the SysBench benchmark, the throughput of the
proposed scheme has been improved by 93.3% on average,
compared with that of the existing Android system.

The remaining sections of this paper are organized as
follows. Section 2 contains brief descriptions of NAND flash
memory, the overall architecture of a flash-based mobile
device, and representative FTL algorithms. Section 3 explains
related work. Section 4 gives an explanation of the limitation
of the existing studies. Section 5 describes the algorithms of
the proposed scheme in detail. Section 6 explains the experi-
mental environment and analyzes evaluation results. Finally,
Section 7 summarizes and concludes this paper.

1.1 Characteristics of NAND Flash Memory
NAND flash memory logically consists of an array of erase
blocks, each of which contains a fixed number of pages. A
page is the unit of read andwrite operations, and a block is the
unit of erase operations. As previously mentioned, NAND
flash memory has some idiosyncrasies. Write operations take
several times longer than read operations. Thewrite latency is
further increased by the erase-before-write feature where
write operations can be allowed only on previously-erased
pages. The discord between the units of write and erase
operations necessitates garbage collection that copies valid
pages distributed in old blocks to previously-erased blocks
before erasing the old blocks. The amount of garbage collec-
tion overhead is a key factor of determining the overall
performance of flash-based storage systems.

As another restriction, the number of erase operations on a
block is strictly limited from 3,000 to 100,000 [2]. If the erase
count of a block exceeds beyond the limit, the block is likely to
be worn out and is not recommended to be written anymore.
Therefore, erase operations need to be evenly distributed over
all blocks to achieve wear-leveling. In consideration of this
restriction, decreasing the number of write and erase opera-
tions is strongly required, not only to enhance the perfor-
mance, but also to extend the lifetime of flash-based mobile
devices.

2 BACKGROUND

2.1 Architecture of Flash-Based Mobile Devices
Fig. 1 illustrates the overall architecture of a typical flash-
based mobile device, which contains one or more mobile
processors, mobile DRAM, and flash storage. The applica-
tions and operating system are operated in themobile device,
whereas FTL is executed inside the flash storage, controlling
address mapping, garbage collection, Error Correction Code
(ECC), and wear-leveling.

There are several types of flash storage, such as Embedded
Multi-Media Card (eMMC) and Micro Secure Digital Card
(microSD) [1]. eMMC is widely used as an internal flash
storage, and microSD optionally as an external storage. Such
flash storage is connected to the mobile device by using the
standard block-oriented interfaces based on the eMMC com-
mand set or a variant of it [19], [20]. Through these block
interfaces, mobile operating systems can transparently use
traditional file systems, such as Ext3 and Ext4.

Commonly in both eMMC and microSD, the internal
architecture consists of the embedded processor(s), small-
sized SRAM, flash memory controller, and multiple NAND
flash packages. The flash memory controller inside the flash
storage manages multiple flash packages. Each flash package
consists of one or more dies, and each die is composed of one
or more planes. A plane contains a number of erase blocks.
The operations on different packages can also be interleaved
for improving parallelism. In this way, the flash storage
augments sequential I/O performance although the band-
width of only one single plane is strictly confined.

2.2 Flash Translation Layer
The main role of FTL is to make the flash storage emulate one
of traditional block devices, hiding the idiosyncrasies of
NAND flash memory. An important design trade-off of FTLs
is reducing the garbage collection overhead for better perfor-
mance versus reducing the consumption of memory and
computing resources. According to the design trade-off,
existing FTLs are categorized into three groups: block-level,
page-level, and hybrid FTLs.

The block-level FTLs have the smallest memory consump-
tion, but involve much overhead [21]. Whenever a part of a
block is updated, the remaining part is also copied to a new
block in companywith the updated part. This is because all of
the logical pages within a logical block should be located

DRAM
Controller

Mobile Processor(s)

Mobile
DRAM

Peripheral
Devices

Peripheral
Controllers

Embedded
Processor(s) ECC

Wear-leveling

FTL

Flash Memory
Controller

NAND Flash
Packages

SRAM

Host Interface Logic

Flash Storage
(e.g., eMMC, microSD)

Mobile Device
(e.g., Smartphone, Tablet PC)

Block Interface (e.g., eMMC, microSD Commands)

eMMC/microSD Controller

Fig. 1. Overall architecture of a flash-based mobile device.

SHIM ET AL.: SYSTEM-WIDE COOPERATIVE OPTIMIZATION FOR NAND FLASH-BASED MOBILE SYSTEMS 2053

alwayson thedesignatedpageoffset in aphysical blockdue to
coarse-grained block-level mapping.

In contrast, the page-level FTLs [5] show the best perfor-
mance among the three groups, since logical pages can be
located on any physical block without restricting the page
offset due to fine-grained page-level mapping. However, the
applicable systems of page-level FTLs are limited by a large
memory footprint.

The hybrid FTLs balance the trade-off between the block-
level and page-level FTLs. The hybrid FTLs manage most of
the blocks (called data blocks) with block-level mapping, and
a small number of blocks (called log blocks) with page-level
mapping. Log blocks are used for storing page updates on
data blocks. Less frequently-written data are stored in data
blocks, whereasmore frequently-written data can be updated
in log blocks. Based on temporal locality, the performance of
hybrid FTLs can approximate that of page-level FTLs with a
small amount of memory. The flash storage that is described
in the previous subsection usually adopts hybrid FTLs [1] due
to the limited memory resources within a controller chip.
Therefore, we focus on hybrid FTLs in this paper. Several
variants of hybrid FTLs have been developed, which have
different associativities between data blocks and log blocks.
We briefly explain two representative hybrid FTLs.

2.2.1 Block-Associative Sector Translation (BAST)
The Block-Associative Sector Translation (BAST) FTL [3]
adopts the one-to-one association between data blocks and
log blocks. A page update on a data block is appended in the
corresponding log block. When all the free pages of the log
block are consumed, or when the log block is requested for
another data block, the log block ismergedwith its data block.
There are three types of merge operations: a switch merge,
partial merge, and full merge.

If a log block to be merged was fully and sequentially
writtenwith thepages of the sameblock address, the log block
is simply changed to a new data block, and the old data block
is erased with all the invalid data. This merge operation is
most efficient, and is called a switch merge. If a log block was
partly written from the first page in the right offset, the data
block can be reclaimed after the remaining free pages of the
log block are filled with the valid pages from the data block.
This merge is called a partial merge. If a log blockwaswritten
in a non-sequential manner, all the valid pages distributed in
the data block and the associated log block should be sequen-
tially copied into a separate free block, which eventually
becomes a new data block. Ultimately, the log block and the
old data block are erased. This is called a full merge. Under
non-sequential write patterns, the full and partial merges that
involve the expensive page copies occupy a major portion of
the garbage collection overhead.

2.2.2 Fully-Associative Sector Translation (FAST)
The Fully Associative Sector Translation (FAST) FTL [4] is
based on the many-to-many association between data blocks
and log blocks. Since log blocks are shared by all data blocks,
any update of a data block can be written to any of log blocks
calledRWlogblocks. Because of this policy, RW logblocks are
fully utilized, andmerge operations can occur less frequently.
In addition, if the write pattern exhibits high temporal

locality, the log pages of RW log blocks can be repeatedly
invalidated, and the merge overhead can be more reduced.

However, sharing all RW log blocks among different data
blocks hinders producing lightweight switch merges if there
are multiple write threads. To alleviate this problem, FAST
stores sequentialwrites to the separate log block called the SW
log block. Nevertheless, sorting out the sequential writes is
one of the most challenging issues. FAST roughly distin-
guishes the sequential writes, as follows. If the first offset of
awrite request is zero (thefirst page in a block) and the SW log
block is empty, or if thewrite request is continued fromthe last
page written in the SW log block, the write request is consid-
ered as a sequential write and iswritten into the SW log block.
In this way, the SW log block is sequentially written with the
pages of the same block address. In other cases, write requests
are written into the RW log blocks, which are considered as
random writes.

Similar to BAST, there are three types of merge operations.
If the SW log block is fully written, it is reclaimed by a switch
merge. If thefirst offset of awrite request is zerobut the SWlog
block is not empty, the SW log block is reclaimed by a partial
merge. Such misprediction of sequential writes can trigger
numerous partial merges. Whenever there are no free log
blocks, FAST reclaims one of the written RW log blocks in a
round-robin fashion. To reclaimaRWlog block, FASTmerges
all associated data blocks that contain valid pages within the
RW log block. To merge the associated data block, FAST
copies all the valid pages of the associated data block into a
free block. The valid pages may be distributed among several
RW log blocks. Thereafter, the fully-written block becomes a
new data block, and the associated data block is erased. This
full merge is repeated until all the associated data blocks are
merged into new data blocks, and the victim RW log block is
finally erased. These full merges that occur in bulk have a
negative effect on operational latency. Also in FAST, the full
and partial merges are major obstacles in improving the
performance.

3 RELATED WORKS

Recently, several studies have tried to change the write
pattern issued from the internal device buffer to alleviate the
cost of full merges in hybrid FTLs. The Flash-Aware Buffer
(FAB) management scheme [14] was proposed to increase the
chance of switch merges by changing the buffer management
policy. In FAB, all of the buffer pages that belong to the same
logical block are considered as a victim unit, and they are
sequentially flushed at the same time. The logical block that
contains the largest number of valid pages in the LRU list is
selected as a victim block.

InspiredbyFAB, sortingout large and coldblocks asvictim
blocks has receivedmuch interest in several studies, such as the
Cold and Largest Cluster (CLC) policy [16], the Expectation-
based LRU (ExLRU) policy [17], and the Write-Buffer-Cache
aware LRU (WBC-LRU) policy [18]. CLC partitions the
device buffer into two levels: the size-independent LRU
cluster list (block-level LRU) as the upper level and the
size-dependent LRU cluster list (FAB-like) as the lower level.
From this structure, CLC prevents hot blocks from being
evicted due to the large size. ExLRU also uses partitioned

2054 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 8, AUGUST 2014

regions (the work region and eviction region) to give large
blocks a higher priority of eviction with the consideration of
hotness. A victim block is selected from the eviction region by
using a heuristic based on several parameters of buffer blocks,
such as the average hit count, size, and age. Similarly, WBC-
LRU divides buffer blocks into small and large groups to
allow the buffer blocks of the small group to get a second
chance to grow larger. In particular, WBC-LRU modified the
virtualmemory of the operating system to preferentially evict
a virtual page that is clean or belongs to the buffer blocks in
order to enlarge the size of the buffer blocks. In a similar
context, the Individual Read Bundled Write FIFO (IRBW-
FIFO) [12] tuned the I/O scheduling algorithm to issue all
the write requests that belong to the same logical block in
bulk.

Block Padding Least RecentlyUsed (BPLRU) [15] is another
kind of buffer management scheme based on hybrid FTLs.
BPLRU selects a victim block in the block-level LRU order.
Before a victim block is evicted, all the omitted pages of the
victim block are filled by reading them fromFTL. Accordingly,
victim blocks are always flushed in the form of complete
blocks. BPLRU thoroughly eliminates full merges and always
brings switchmerges in theunderlying FTL.Under sequential
write patterns, this scheme can be effective in diminishing the
cost of merge operations with few log blocks.

Commonly in all of those studies, they adopt the block-
level eviction that batches victim pages within the same
logical block and try to select cold and large blocks as a victim
in the internal device buffer or in the I/O queue. They expect
that evicting those blocks is beneficial in reducing costly full
merges in hybrid FTLs. Under sequential write patterns, such
an approach could be effective in producing complete block
flushes that are likely to trigger lightweight switch merges.
However, under complicated write patterns, even such an
approach cannot help producing unfavorable write patterns
to the hybrid FTLs.

In the next subsection, we explore how effectively the
previous approach can perform under complicated I/O pat-
terns. Most of the studies assumed an internal device buffer
that has dozens of MB capacity [14]–[18], [22], but typical
mobile-based flash storage shown in Fig. 1 has only a small
amount of the internal buffer that can hold only just several
pages, differently from high-performance storage devices
with enough buffers like Solid State Drives (SSDs). Accord-
ingly, those studies based on such large internal buffer cannot
be easily applied for the mobile devices equipped with the
flash storage. In this environment, we need to pay more
attention to OS-level assistance. As a representative example
of the preceding studies, we first examine the effectiveness of
IRBW-FIFO [12] that aims at reducing merge costs by adapt-
ing the I/O scheduler to flash storage devices.

4 MOTIVATION

To evaluate the effectiveness of the block-level batching and
eviction in IRBW-FIFO [12], wemeasuremerge costs with the
DBench benchmark. The details of the DBench benchmark
and the evaluation environment are explained in Section 6,
but here we just emphasize that the workload becomes more
complicated as the number of threads increases in the bench-
mark. In this measurement, we run DBench with 4 threads.

For comparison, we used two different policies: Baseline and
IRBW. Baseline means an unmodified Android kernel, and
IRBWmeans IRBW-FIFO that modifies the NOOP-based I/O
scheduler, where write requests that belong to the same
logical block are batched and sequentially issued in bulk. We
did not consider the victim selection policy for the device
buffer, because we assumed mobile devices that have no
internal device buffer. Fig. 2 shows the breakdown of merge
costs in Baseline and IRBW. Each merge cost is normalized to
the cost of original operations that exclude merge operations.
Compared with Baseline, IRBW slightly reduced full merge
costs. However, the summed cost of full and partial merges is
more than 120% of the original operation cost, and they are
still major performance bottlenecks.

In hybrid FTLs, there is a critical limitation in the perspec-
tive of the merge algorithm. If a log block is written at least
once in non-sequential order, the log block should involve
expensive full merges. In BAST, the randomly-written log
blocks are reclaimed by full merges regardless of subsequent
write patterns, even with the sequential updates falling into
the same block. In FAST, the randomly-written RW log blocks
cannot avoid full merges unless they are thoroughly invali-
dated by following updates. Accordingly, under random
write patterns, only batching write requests in the block level
is not sufficient to reduce full and partial merges.

For this reason, although the existing approaches reprodu-
cing write patterns into sequential form can be somewhat
effective in creating more chances for switch merges, they
cannot overcome the performance bottlenecks under random
write patterns. This limitation of the previous studies inspired
us to devise a new approach that can improve I/O perfor-
mance even under complicated write patterns. Unlike the
previous studies based on one-sided optimization in the
operating system, our approach is based on the cooperative
optimization between the operating system and FTL. In the
following section, we investigate how the operating system
and FTL can cooperatively work to handle the performance
bottlenecks of costly full and partial merges.

5 COOPERATIVE OPTIMIZATION

To reduce expensive full and partial merges, we propose a
system-wide cooperative optimization (COOP) scheme
between the operating system and FTL. Based on this coop-
eration, we devise a novel merge algorithm that replaces

Full Merge Partial Merge Switch Merge

 0

 0.5

 1

 1.5

 2

 2.5

Baseline IRBW

N
or

m
al

iz
ed

 M
er

ge
 C

os
ts

 0

 0.5

 1

 1.5

 2

 2.5

Baseline IRBW

N
or

m
al

iz
ed

 M
er

ge
 C

os
ts

(a) BAST (b) FAST

Fig. 2. Breakdown of merge costs normalized to the cost of original
operations.

SHIM ET AL.: SYSTEM-WIDE COOPERATIVE OPTIMIZATION FOR NAND FLASH-BASED MOBILE SYSTEMS 2055

expensive full and partial merges with switch merges in
hybrid FTLs. This merge algorithm ensures less overhead,
even under randomwrite patterns, whichwill be explained in
the following subsection.

The proposed cooperation is based on the Android mobile
platform, which is a representative open-source mobile plat-
form. Fig. 3 represents the overall system hierarchy that
includes three major components on which the proposed
scheme is implemented: a page cache, I/O scheduler, and
FTLmodule. In the remaining parts, the OS components refer
to the page cache and the I/O scheduler.

The OS components adjust write patterns in cooperation
with FTL to make FTL avoid expensive merges. The cooper-
ation proceeds briefly as follows. From the I/O scheduler,
write requests that belong to the same logical block are
issued together in a sequential manner, which we call a
block issue. The OS components inform FTL of the para-
meters of each block issue in advance, and FTL returns the
logical block numbers (merge blocks) to bemerged by full or
partial merges due to the block issue. Through this commu-
nication, the OS components give higher eviction priority to
the dirty pages that belong to the merge blocks. Ultimately,
those preferentially-initiated block issues (called preferential
block issues) are exploited by the proposed merge algorithm
(called a cooperative switch merge or CSM) in FTL. In the
following subsections, we explain detailed algorithms and
considerations for each OS component, and the cooperation
interface.

5.1 Cooperation Interface between OS and FTL
In practice, the internals of FTLs are quite intricate and also
unpredictable since the detailed implementation of FTLs
could be different according to the flash storage manufac-
turers. Moreover, only with the existing block interface, FTL
cannot foresee howmany pageswithin the same logical block
will be issued, which is indispensable information for the
proposed merge algorithm. For the cooperation between the
OS components andFTL,weneed todefine anew interface set
that complements the existing block interface.

Table 1 describes the cooperation interface that consists of
four commands and their parameters in detail. The flash
page/block numbers indicate logical addresses in FTL. First,

COOP_Query(FPN, nPages) is used for checkingwhether any
full or partial merges will be caused by a block issue to FTL;
FPN is the first flash page number of the block issue, and
nPages is the number of flash pages. Before initiating block
issues, the I/O scheduler delivers the parameters of the block
issues to FTL. If any of full or partial merges are anticipated,
FTL returns a set of logical block numbers to be merged.
COOP_Issue(FBN) and COOP_Complete(FBN) notify FTL of
the start and the end of the preferential block issue, respec-
tively. Finally, the logical block/page size of FTL used for the
cooperation is obtained by COOP_GetSize(). The detailed
algorithms of the cooperation interface are explained in
Section 5.4.

As shown in Fig. 3, the cooperation interface is co-located
in the same level as the existing block I/O interface. In this
paper, we assume the mobile devices equippedwith the flash
storage, such as eMMCandmicroSD [1]. Although theseflash
storage devices use only the standard block interfaces [19],
[20], we believe that the proposed scheme could still be
applied to those devices by using vendor-specific or obsolete
commands. The proposed interface is simple and generic
enough to be combined with the existing interface, and can
be compatibly used by the OS components for different
hybrid FTLs, such as BAST and FAST.

5.2 Cooperative Switch Merge
As a key algorithmof the cooperative optimization,we devise
an advanced merge algorithm that prevents the full or partial
merge in hybrid FTLs, which is called a Cooperative Switch
Merge (CSM). In CSM, if full or partial merges are anticipated
in a blockwhere a block issue arrives, the block issue iswritten
fully in a separate free block as FTL internally copies the
omitted pages of the issue. The fully-written block becomes a
new data block, and then the old pages in log and data blocks
are all invalidated. In thisway, the old log anddata blocks can
be easily reclaimed without full or partial merges. If full or
partial merges are not anticipated, block issues are written in
normal log blocks without additional overhead in order to
minimize the cost of internal copies.

Fig. 4 depicts the procedures of handling an incoming
block issue (Page1 3) with and without CSM in the FAST
FTL. In the example of Fig. 4(a) without CSM, the front pages
of the block issue (Page1 2) are first written in the remaining
free pages in the Log Block1 (Fig. 4(a)). Since there are no
more free pages in the log blocks (Log Block0 1), some of the
log blocks should be reclaimed to accommodate the remain-
ing page write of the block issue (Page3). Since the log blocks

Virtual File System

Page Cache

File System

I/O Scheduler

Flash Translation Layer

NAND Flash Memory

Cooperation Interface

Applications, Services

Block I/O Interface

Fig. 3. Overall system hierarchy.

TABLE 1
Prototype of the Cooperation Interface

2056 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 8, AUGUST 2014

werewritten in a non-sequentialmanner, a costly fullmerge is
inevitable. After the full merge is finished (Fig. 4(a)), the last
page of the block issue (Page3) is written in the newly-
allocated log block, invalidating the new data block again
(Fig. 4(a)).

However, as shown in Fig. 4(b), the full merge can be
replacedwith the lightweightCSM. If an incoming block issue
corresponds to the merge blocks, FTL can utilize the block
issue (Page1 3) instead of valid page copies while reclaiming
merge blocks. FTL redirects the block issue to a separate free
block as internally copying the omitted page (Page0), and
creates a new data block (Fig. 4(b)). The start and end of a
block issue on the merge block (Block0) are notified by the
COOP_Issue and COOP_Complete commands, respectively.
The fully-invalidated Data Block0 and Log Block0 1 can be
simply erased (Fig. 4(b)). In this way, the expensive full
merge is prevented, and the two empty log blocks are
obtained (Fig. 4(b)).

The advantages of CSM are threefold. First, the expensive
merges that involve numerous valid page copies are pre-
vented. CSM can reclaim log and data blocks with less
overhead, even under random write patterns. Second, block
reclamation and block issues can occur concurrently, so that
the write latency can be reduced. Without CSM, handling
block issues should be delayed until costly merges are
finished, in which case the write latency is significantly
increased. Third, reclaimed log blocks remain completely
empty, and following merge operations are further delayed.

In the existing hybrid FTLs, the log blocks always remain
partly-written after receiving a block issue that involves full or
partial merge operations.

Algorithm 1 Cooperative Switch Merge

1: //FBN: Flash block number

2: //RPN: Requested logical page number

3: //CSM_Log: A log block used for CSM

4: procedure COOP_ISSUE(FBN)

5: if CSM_Log is not allocated then

6: Allocate CSM_Log for the FBN data block;

7: end if

8: end procedure

9:

10: procedure FTL_WRITE(RPN)

11: if Block # of then

12: Page offset of RPN in the block;

13: Next free page offset in CSM_Log;

14: while < do

15: Internal valid copy to the NPO log page;

16: NPO ;

17: end while

18: Write the RPN page to the NPO log page;

19: NPO ;

20: else

21: Write the RPN page in the existing ways;

22: end if

23: end procedure

24:

25: procedure COOP_COMPLETE(FBN)

26: while < # of pages per block do

27: Internal valid copy to the NPO log page;

28: NPO ;

29: end while

30: Change CSM_Log to a new data block;
31: Erase the old data and log blocks;

32: end procedure

Algorithm 1 describes the detailed algorithm of COOP_
Issue, FTL_Write, and COOP_Complete routines used in CSM,
in which the page/block number indicates the flash page/
block number in FTL. The word in parenthesis means the
input of the command, and this notation is also used in the
following algorithms. Before carrying out CSM, FTL receives
the flash block number (FBN) from the COOP_Issue com-
mand, and then a separate log block (CSM_Log) is allocated.
After this time, all thewrite requests of the block issue on FBN
are redirected toCSM_Log in the right pageoffset.Otherwrite
requests beyond FBN arewritten in normal log blocks and are

Page Write

Invalid

Empty

Valid

0

1

2

3

0

0

1

1

2

2

Data
Block0

Log
Block0

Log
Block1

Initial State

0

1

2

3

New Data
Block0

After a Full Merge2

3

New Log
Block0

Page
Write

Page Writes1

0

1

2

3

0

0

1

1

2

2

1

2

Data
Block0

Log
Block0

Log
Block1

New Log
Block1

3 Page State

(a) Without CSM

0

1

2

3

0

0

1

1

2

2

Data
Block0

Log
Block0

Log
Block1

Initial State

0

1

2

3

Internal
Copy

New Data
Block0

CSM1

0

1

2

3

0

0

1

1

2

2

Data
Block0

Log
Block0

Log
Block1

Invalidate2 After CSM3

New Log
Block0

New Log
Block1

0

1

2

3

New Data
Block0

COOP_Issue
(Block0)

COOP_Complete
(Block0)

(b) With CSM

Fig. 4. Proceduresof handlingablock issue (Page1 3)with/withoutCSM
in the FAST FTL.

SHIM ET AL.: SYSTEM-WIDE COOPERATIVE OPTIMIZATION FOR NAND FLASH-BASED MOBILE SYSTEMS 2057

handled in the existing ways. The omitted pages between
write requests are filled by internal copies in FTL, and can be
detected by comparing the next free page offset of CSM_Log
and the first page offset of eachwrite.When the block issue on
FBN is finished, which is notified by the COOP_Complete
command, the remaining omitted pages are internally copied
andfilled if exist. Finally, the fully-writtenCSM_Log becomes
a new data block, and the invalidated old data and log blocks
can be simply erased.

An important requirement to make the best use of the
lightweight CSM is that the log blocks to be reclaimed by full
or partial merges should be given priority of receiving block
issues. For this requirement, FTL should foresee the para-
meters of block issues and adjust the order of block issues
from the OS components by using the cooperation interface
defined in Table 1.

5.3 Cooperation of the OS Components

5.3.1 Block-Level Flush and Issue
In the Linux kernel used in the Android system, the page
cache and I/O scheduler adopt the inode-level flush and
request-level issue policies, respectively. In the page cache,
when an inode is synchronized, all the dirty pages within the
inode are flushed. The dirty pages flushed from the page
cache are temporarily queued in the I/O scheduler in the form

of multiple write requests each of which represents continu-
ous logical pages in FTL. These policies themselves can be
advantageous to hybrid FTLswhen largefiles are sequentially
written because the I/O scheduler usually merges adjacent
requests into a large sequential request. However, with many
small files or with randomly-written large files, these policies
inevitably generate random write patterns according to the
order of synchronizing inodes in spite of the inherent request-
merging policy in the I/O scheduler.

To alleviate the complexity of write patterns under
random writes, the block-level flush and issue polices need
to be adopted in the page cache and I/O scheduler, re-
spectively. There are three reasons why the proposed
scheme uses the block-level flush/issue (eviction) policies
in the OS components for hybrid FTLs. First, the block-level
eviction can create more chances to make switch merges, as
mentioned in Section 4. Second, the block-level eviction can
increase log block utilization in the BAST FTL, and de-
crease merge latency by reducing the number of associated
blocks within a RW log block in the FAST FTL. Third, the
proposed CSM necessitates block-level eviction to antici-
pate full and partial merges, and to reduce the amount of
internal copies.

In the existing page cache, when an inode is synchronized,
the dirty pages are flushed in file index order regardless of the
location in the storage system. In the cooperative page cache,
the dirty pages of the same blockwithin the inode are flushed
together as the flush unit; the flash block size can be obtained
by the COOP_GetSize command. To avoid frequent page
flushes, the flush unit excludes the other dirty pages of the
same block from different inodes.

In the existing I/Oscheduler (e.g.,NOOP), a victim request
is selected among read and write requests in the FIFO order.
Likewise, in the cooperative I/O scheduler, the oldest request
is selected as a victim in the I/O queue. If the victim is a read
request, it is simply issuedwithout being batched. Otherwise,
all the write requests within the same logical block of the
victim request are batched into a victim block, and they are
issued together in a sequential manner.

5.3.2 Cooperative Optimization
Based upon the block-level eviction in the page cache and
I/O scheduler, both of the OS components cooperatively

Fig. 5. Communications for the cooperation between the I/O Scheduler
and FTL.

Block0

4

1

2kcolB1kcolB

COOP_Issue (Block1)

U.Q

Unqueued

Q

Queued
Page2 Page3 Page4Page0 Page1

Q U.QU.Q Q U.Q

COOP_Query (Page1, 2)
{Block1, Block2}

U.Q

Page7

Q

Page5

Q

Page6

U.Q

Page8 Page9

U.Q

Page12Page10 Page11 Page13 Page14

Q U.QU.Q Q Q

Issue only write-back pages of Block0

Page2 Page3 Page4Page0 Page1

W.B DC W.B D C

Page7

W.B

Page5

W.B

Page6

D

Page8 Page9

D

Page12Page10 Page11 Page13 Page14

W.B DD W.B W.B C

D

W.B

Clean

Dirty

Write-Back

2kcolB1kcolB0kcolB

Cooperative Page Cache

Cooperative I/O Scheduler

2
Issue write-back and dirty
pages of Block1

Victim
Block

COOP_Complete (Block1)

COOP_Issue (Block2)

3
Issue write-back and dirty
pages of Block2

COOP_Complete (Block2)

Fig. 6. Operations of the OS components: the page cache and I/O scheduler.

2058 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 8, AUGUST 2014

work with FTL to meet the requirement of CSM as ex-
plained in Section 5.2. In the proposed scheme, the I/O
scheduler communicates with FTL by using the coopera-
tion interface as the final stage before the flushed dirty
pages reach the flash storage. Fig. 5 illustrates the commu-
nication procedure for the cooperation between the I/O
scheduler and FTL. The communication procedure is
comprised of giving prior notice to FTL about the para-
meters of a block issue and preferentially issuing merge
blocks according to the response from FTL. The adjusted
order of block issues from the I/O scheduler helps FTL
to utilize the proposed CSM. Finally, the original victim
block is issued from the I/O scheduler, which can be
simply appended in normal log blocks without merge
operations in FTL.

Fig. 6 depicts an example of performing block issues in
the cooperative page cache and I/O scheduler, based on
the communication procedure explained in Fig. 5. Note that
there are five kinds of page states: clean, dirty, write-back,
queued, and unqueued. The write-back state represents
that the dirty pages are queued and being waited to be
issued in the I/O queue. After a page is synchronized, the
page state is changed from write-back to clean. As shown
in Fig. 6 , Block0 is selected as a victim, and the I/O
scheduler makes a query to FTL with the first flash page
number (Page1) and the number of flash pages (2). Since
two merge blocks (Block1 2) are indicated by FTL, the
I/O scheduler preferentially performs two block issues
(Block1 2) with notices at the start and end of each block
issue (Fig. 6 –). The cost of the preferential block issues is
offset because the page writes substitute for valid page
copieswhileCSM is performed. Therefore, those block issues
do not need to be limited within the write-back pages in the
I/O scheduler, but include all the dirty pages that stay in the
page cache. We call this the issue range extension. The prefer-
ential block issues (Block1 2) include the dirty pages in the
page cache (Page8, Page9 and Page10, Page14, respectively).
In this way, the state of these dirty pages is changed to clean,
and the page cache can reduce the following synchronization
overhead by flushing the dirty pages that belong to the
merge blocks in advance. Finally, only the write-back pages
of the original victim block (Block0) are issued without any
notice (Fig. 6).

The cooperative OS components usually evict write-back
and dirty pages in the block level, while enhance the eviction
priority and provide the issue range extension for the merge
blocks. This cooperation of the OS components creates many
opportunities for FTL to perform CSMs with little overhead,
and reduces the cost of synchronizing inodes.

Algorithm 2 describes the detailed algorithm of the
cooperative I/O scheduler. Before issuing a write request
(Req), the I/O scheduler makes a query to FTL by using the
COOP_Query command with the parameters of the block
issue: the first flash page number (FPN) and the number of
flash pages (nPages). By using the parameters, FTL can
anticipate whether any full or partial merges will occur
when the victim block is issued. The detailed algorithms of
the anticipation are explained in Section 5.4. If FTL returns
the merge block numbers (MBS), the I/O scheduler pref-
erentially initiates the block issues that belong to the merge
blocks. As explained in the above section, the preferential

block issues (MPS) include all the write-back (MQPS) and
dirty pages (MDPS) of the merge blocks, and are handled
by lightweight CSMs instead of expensive full and partial
merges in FTL. The CSMs are conducted with the COO-
P_Issue, FTL_Write, and COOP_Complete commands. The
algorithms of these commands were explained in Algo-
rithm 1. Ultimately, the I/O scheduler issues the original
request (Req) unless the block number of the request was
contained in the merge blocks. If there is no dirty and
write-back page of the merge blocks in the page cache and
I/O queue, the original victim request is handled in the
existing ways without preferential block issues.

Algorithm 2 Cooperative I/O Scheduler

1: //Req: A request to be issued from the I/O queue

2: //MBS: Set of block numbers to be merged in FTL

3: procedure ISSUE_REQUEST(Req)

4: if Req type is read then

5: Read request is handled in the existing ways;

6: else if Req type is write then

7: First flash page # of Req;

8: # of flash pages in Req;

9: COOP_Query(FPN, nPages);

10: while do

11: Set of thewrite-back pages of
in the I/O queue;

12: Set of thedirty pages of in the
page cache;

13: ;

14: if MPS is not empty then

15: COOP_Issue();

16: FTL_Write(MPS);

17: COOP_Complete();

18: end if

19: end while

20: if Block # of then

21: FTL_Write(Write-back pages of Req);

22: end if

23: end if

24: end procedure

5.4 Cooperation of the Hybrid FTLs
In the proposed scheme, FTL takes a vital role in the coopera-
tion. FTL provides the cooperation interface for the operating
system, and is also in charge of determining the order of block
issues for CSM according to its current internal state. In this
section, we explain the implementation of the cooperation
interface in the two representative hybrid FTLs shown in
Table 1.

SHIM ET AL.: SYSTEM-WIDE COOPERATIVE OPTIMIZATION FOR NAND FLASH-BASED MOBILE SYSTEMS 2059

Algorithm 3 COOP_Query Command for BAST

1: procedure COOP_QUERY(FPN, nPages)

2: Logical block # of FPN;

3: Log block of FBN;

4: # of the remaining free pages of Log;

5: if Log was allocated then

6: if < then

7: ;

8: else if Log was sequentially-written and the
block issue fits into the free pages then

9: ;

10: else if > then

11: ;

12: end if

13: else if There are no free log blocks then

14: Logical block #s of victim log blocks;

15: end if

16: return MBS;

17: end procedure

Algorithm 4 COOP_Query Command for FAST

1: //CSM_TH: Threshold of whether to trigger CSM

2: procedure COOP_QUERY(FPN, nPages)

3: Logical block # of FPN;

4: if then

5: if < # of remaining free pages then

6: ;

7: else

8: Set of associatedblocknumbers of the
victim RW log blocks;

9: end if

10: else

11: ;

12: end if

13: return MBS;

14: end procedure

Algorithm 3 and 4 describe the detailed algorithms of
the COOP_Query command in BAST and FAST, respectively.
The COOP_Issue and COOP_Complete commands were pre-
viously explained in Algorithm 1, and the COOP_GetSize
command can be straightforwardly implemented both in
BAST and FAST. In Algorithm 3 and Algorithm 4, the
page/block number indicates the flash page/block number
in FTL, and the input/output parameters of theCOOP_Query
command were previously described in Table 1.

The COOP_Query interface is implemented in BAST as
follows. For a given block issue (FPN, nPages), if the number
of the remaining free pages of the corresponding log block
(nRFP) is more than the number of pages to be issued
(<), nomerge operation is expected. If the block
issue completely fits into the remaining free pages in the right
offset, which can be identified by the parameters of the block
issue, a switchmergewill occur. For those two cases, FTLdoes
not need to returnmerge blocks ()without incurring
any overhead.

If the free pages of the corresponding log block (nRFP) are
insufficient to store the block issue (>), a full
merge is anticipated on the log block (). Particu-
larly in this case, themerge overhead is significantly increased
without CSM, because the full merge is triggered after a part
of the block issue is written to the remaining free pages, and
then the remaining part of the block issue partly occupies the
new log block after the reclamation. Finally, if the log block is
not allocated and there is no free log block, some of the pre-
allocated log blocks should be reclaimed (Logical
block #s of the victim log blocks). In those two cases, FTL
returns the logical block numbers to be merged (MBS), on
which FTL requires to enhance the eviction priority in the OS
components, and CSM can be performed.

In FAST, if the free pages in the RW log blocks are enough
to accommodate the block issue (< # of remaining free
pages), FTLdoes not return anymerge blocks (), and
then the block issue is simply appended. If the free pages are
not enough, FTL returns the associated block numbers of the
full merges that are anticipated when reclaiming the victim
RW log blocks (Set of associated block numbers of the
victim RW log blocks).

In addition, through the cooperation interface, FAST can
adopt an efficient policy of sorting out sequentialwrites. Since
FTL can foresee the exact number of pages for each block issue
(nPages), if the number is larger than the predefined threshold
(>), FTL considers the block issue as sequen-
tial writes and handles the block issue with CSM. In this way,
frequent partialmerges caused bymisprediction of sequential
writes can be considerably reduced.

6 EVALUATION

6.1 Implementation
The proposed scheme was implemented in the real mobile
experimental device (ODROID-T) [23] based on the Android
2.2 platform (Froyo) running the Linux kernel 2.6.32.9. The
device contains ARM Cortex-A8 CPU, 512 MB Mobile DDR
SDRAM, 512 MB OneNAND flash memory, and the external
MicroSD card. To implement the proposed scheme, wemodi-
fied the Linux kernel including the page cache and I/O
scheduler. As it is not supported to modify the FTL firmware
in a real eMMC chip, eMMC is emulated by loading the
modified FTL modules as device drivers on top of the One-
NAND flashmemory. Storage benchmarks were executed on
this emulated flash storage, while the Android system was
operated separately on the MicroSD card without interfering
with the emulated storage.

In the OneNAND flash memory, the page size is 4KB and
the block size is 256KB. The portion of log blocks was

2060 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 8, AUGUST 2014

configured to 5% of the total capacity. In the hybrid FTLs
including BAST and FAST, victim log blocks are selected in
the LRU order. In FAST, we configured the threshold
(CSM_TH) as half the number of pages in a block. The
proposed cooperation interface in Table 1 was implemented
in the Memory Technology Device (MTD) layer.

The Linux kernel of the Android system has some disk-
based I/O schedulers, such as NOOP, Deadline, and
Completely Fair Queuing (CFQ). We selected NOOP as the
default I/O scheduler because NOOP is known to be appro-
priate for the NAND flash storage [13], [24]. The NOOP
scheduler merges adjacent requests in the I/O queue and
evicts victim requests simply in the FIFO order. For conve-
nience of implementing the block-level eviction in the I/O
scheduler, we modified the request merge policy to merge
write requests within the flash block boundary, and the
maximum size of a request was modified to the flash block
size.

In the cooperative page cache, the global cache tree was
devised for efficiently searching all of the dirty pages in the
page cache, and was implemented by using the radix tree
structure for fast indexing. The memory and computing
overhead of the global cache tree were reflected in the overall
performance. For the convenience of implementing the global
cache tree, delayed allocation was disabled in the Ext4 file
system.

6.2 Evaluation Methodology
The performance of the proposed schemewas comparedwith
the unmodified Linux kernel (Baseline), the block-level evic-
tion policy (IRBW) [12], and the page padding policy (Pad-
ding) [15]. The block-level eviction policy is widely used in
recent studies [12], [14]–[18] on designing the I/O scheduler
and device buffer management policy, as explained in
Section 4. Representatively, the IRBW policy adopts the
block-level eviction of write requests in the I/O scheduler.
Enhancing the eviction priority of read requests (IRBW-FIFO-
RP) was not considered because it is orthogonal with the
proposed scheme, and the benchmarks generate write-
intensiveworkloads. The Padding policy additionally applies
page padding [15] for IRBW. Based upon the different poli-
cies, we evaluated the performance of the proposed scheme
with four widely-used storage benchmarks: PostMark [25],

SysBench [26], FileBench [27], and DBench [28], which offer
diverse workload scenarios.

6.3 PostMark
This experiment compares the performance of each policy
under small random writes. Especially, this workload is
known to be quite painful for hybrid FTLs. The execution of
the PostMark benchmark is divided into three phases: crea-
tion, transaction, and deletion. During the creation phase, the
benchmark creates a fixed number of files from 8 to 128 in the
root directory, varying the file size from 128KB to 2 MB. For
each transaction during the transaction phase, a new file is
created, or a randomly-selected file is deleted or appended
with the randomly-selected amount of data. As the file size is
small, the amount of appended data for each transaction is
also small. After each append operation, the file is synchro-
nized to generate random write patterns. The number of
transactions is configured to 1536. Lastly, during the deletion
phase, all of the created files are deleted. We executed the
PostMark benchmark four times for each configuration with
BAST and FAST. The first run is used for aging the flash
storage, and the experimental results are taken from the
average value of the other runs.

Fig. 7 shows the average throughput (MB/sec) and its
standard deviation, varying the file size under the different
schemes. To find out the reason for performance improve-
ment, we also obtained the cost of merge operations during
the same execution, as shown in Fig. 8. There are five types of
merge operations, such as full merge (FM), partial merge
(PM), switch merge (SM), padded switch merge (PSM), and
the proposed CSM. The cost of PSM includes the padding
overhead, and the cost of CSM reflects the overhead of
internal copies. Each merge cost of Fig. 8 is normalized to
the overall cost of the original operations.

The results of Baseline and IRBW are almost the same
because these policies bring similar access patterns to FTL
due to the synchronous append operations. In this workload,
the block-level eviction of IRBW is ineffective to reduce full
and partial merges, and Padding rather considerably impairs
the throughputdue to the largepaddingoverheadas shown in
Fig 8. Compared with Baseline, the throughput of COOP is
improved by 10.4% (BAST) and 8.3% (FAST) on average,

 0

 1

 2

 3

 4

 5

128 256 512 1024 2048

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

File Size (KB)

Baseline

IRBW

Padding

COOP

 0

 1

 2

 3

 4

 5

128 256 512 1024 2048

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

File Size (KB)

Baseline

IRBW

Padding

COOP

(a) BAST (b) FAST

Fig. 7. Comparison of I/O throughputs in the PostMark benchmark.

FM PM SM PSM CSM

 0

 1

 2

 3

 4

 5

 6

 7

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

N
or

m
al

iz
ed

 M
er

ge
 C

os
ts

File Size (KB)

128 256 512 1024 2048

26.5 18.5 10.8

 0

 1

 2

 3

 4

 5

 6

 7

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

N
or

m
al

iz
ed

 M
er

ge
 C

os
ts

File Size (KB)

128 256 512 1024 2048

26.5 18.5 10.8

(a) BAST (b) FAST

Fig. 8. Breakdown of merge costs in the PostMark benchmark.

SHIM ET AL.: SYSTEM-WIDE COOPERATIVE OPTIMIZATION FOR NAND FLASH-BASED MOBILE SYSTEMS 2061

and by 24.6% (BAST) and 14.6% (FAST) in the best case. The
performance enhancement that the proposed scheme
achieved indicates that the cooperation can be effective in
reducing full andpartialmerges, evenunder suchsevere small
random writes. As the file size increases, the proposed
scheme achieves better performance because the overhead of
internal copies can bemore diminishedwith the large request
size.

6.4 SysBench
In this evaluationwith the SysBench benchmark, we compare
the performance of each policy under asynchronous random
writes. This benchmark creates a large file (32 MB) and writes
data into a random position with the predefined request size.
Thefile is synchronized every time the amount ofwritten data
becomes 4 MB. The benchmark runs 100000 requests after
aging the flash storage for 30 seconds, and the maximum
execution time is configured to 180 seconds.

Figs. 9 and 10 present the throughput (MB/sec) and the
breakdown of merge operations, respectively, varying the
request size from4KB to 64KB.Also in thisworkload, Baseline
and IRBW show similar throughputs. Although the perfor-
mance ofPadding is somewhat increased than that of Padding
in the PostMark benchmark due to the large-sized block

issues, the padding overhead is still several times larger than
the original operation cost. The throughput of COOP is
increased more than that of Baseline by 166.7% (BAST) and
19.9% (FAST) on average, and by 262.5% (BAST) and 26%
(FAST) in the best case.

Especially, the reason why the throughput is significantly
raised in BAST is that large and randomwrite patterns create
many cases where the free pages of the corresponding log
blocks are insufficient to accommodate block issues. These
cases would involve expensive full merges without CSM, but
the proposed scheme can have more opportunities to reduce
the merge overhead by replacing these cases with efficient
CSMs as shown in Fig. 10(a). In all the evaluation results,
the proposed scheme achieves the lowest amount of merge
costs.

6.5 FileBench
In this evaluation, we further investigate the random write
performance of the proposed scheme with different working
set sizes. The FileBench benchmark creates a 256 MB file, and
performs 8KB asynchronous random write operations for
60 seconds for each run. The file is synchronized whenever
the amount of written data becomes the predefined working
set size. We ran the benchmark six times, and obtained the
average results for the last five times.

 0

 1

 2

 3

 4

 5

 6

4 8 16 32 64

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Request Size (KB)

Baseline

IRBW

Padding

COOP

 0

 1

 2

 3

 4

 5

 6

4 8 16 32 64

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Request Size (KB)

Baseline

IRBW

Padding

COOP

(a) BAST (b) FAST

Fig. 9. Comparison of I/O throughputs in the SysBench benchmark.

FM PM SM PSM CSM

 0

 2

 4

 6

 8

 10

 12

 14

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

N
or

m
al

iz
ed

 M
er

ge
 C

os
ts

Request Size (KB)
4 8 16 32 64

 0

 2

 4

 6

 8

 10

 12

 14

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

N
or

m
al

iz
ed

 M
er

ge
 C

os
ts

Request Size (KB)
4 8 16 32 64

(a) BAST (b) FAST

Fig. 10. Breakdown of merge costs in the SysBench benchmark.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200

4 8 16 32 64

O
pe

ra
tio

ns
 p

er
 S

ec
on

d
(o

ps
/s

ec
)

Working Set Size (MB)

Baseline

IRBW

Padding

COOP

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200

4 8 16 32 64

O
pe

ra
tio

ns
 p

er
 S

ec
on

d
(o

ps
/s

ec
)

Working Set Size (MB)

Baseline

IRBW

Padding

COOP

(a) BAST (b) FAST

Fig. 11. Comparison of operations per second in the FileBench
benchmark.

FM PM SM PSM CSM

 0

 1

 2

 3

 4

 5

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

N
or

m
al

iz
ed

 M
er

ge
 C

os
ts

Working Set Size (MB)
4 8 16 32 64

 0

 1

 2

 3

 4

 5

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

N
or

m
al

iz
ed

 M
er

ge
 C

os
ts

Working Set Size (MB)
4 8 16 32 64

TSAF)b(TSAB)a(

Fig. 12. Breakdown of merge costs in the FileBench benchmark.

2062 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 8, AUGUST 2014

Figs. 11 and 12 show the operations per second (OPS) and
the breakdown of merge costs, varying the working set size
from 4 MB to 64 MB. The OPS of COOP is larger than that of
Baseline by 37.8% (BAST) and 17.7% on average. In the result
of Fig. 11, there is a small performance improvement with the
proposed schemewhen theworking set size is 64MB,which is
larger than the total amount of log blocks (25.8 MB). In this
situation, victim log blocks exhibit a large working set size,
and have fewwrite-back and dirty pages only with the single
file regularly synchronized, so that there are small chances of
performing CSMs as shown in Fig. 12(a). From this evalua-
tion, we confirm that the proposed scheme can enhance the
I/O performance with sufficient log blocks even under
random write workloads.

6.6 DBench
In this evaluation with the DBench benchmark, we measure
the performance of each policy under complicatedworkloads
with mixed sequential and random writes. The DBench
benchmark is used to stress a storage system with a different
number of threads, each of which performs file creation,
deletion, renaming, reading, writing, and flushing out data.
The benchmark is performed for 72 seconds, including the
aging period for 12 seconds, with the different number of
benchmark threads. As the number of threads increases, the

amount of requested data increases, and the access pattern
becomes more complicated.

Figs. 13 and 14 present the throughput (MB/sec) and the
breakdown of merge costs, respectively, varying the number
of threads from one to nine. In this workload, the block-level
eviction of IRBW is less effective in reducing the expensive full
andpartialmerges, andPadding raises themerge cost because
of the padding overhead. The throughput of COOP is in-
creased more than that of Baseline by 21% (BAST) and 61.2%
(FAST) on average. By using the cooperation, a large portion
of full and partial merges are redirected to the efficient CSMs.
Especially, in the results with FAST, COOP eliminated all of
the partial merges because sequential writes were effectively
sorted out by the proposed cooperation. The performance
results indicate that the proposed scheme can achieve the best
performance with complicated workloads.

Fig. 15 illustrates the latency of write operations when the
number of threads is four, and each pointmeans the latency of
a single page write operation. The average latencies (msec) of
Baseline andCOOPare 1.02 and0.6 inBAST, and1.02 and0.56
in FAST, respectively. Comparedwith Baseline, the proposed
scheme removed a number of significantly-delayed writes,
since alleviating the expensivemerge cost leads to the smaller
write latency. As explained in Section 5.2, in the existing
system, write operations that involve the expensive merges
should wait until the merges are completed, whereas the

 0

 5

 10

 15

 20

 25

 30

 35

1 3 5 7 9

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Number of Threads

Baseline

IRBW

Padding

COOP

 0

 5

 10

 15

 20

 25

 30

 35

1 3 5 7 9

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Number of Threads

Baseline

IRBW

Padding

COOP

(a) BAST (b) FAST

Fig. 13. Comparison of I/O throughputs in the DBench benchmark.

FM PM SM PSM CSM

 0

 0.5

 1

 1.5

 2

 2.5

 3

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

N
or

m
al

iz
ed

 M
er

ge
 C

os
ts

Number of Threads
1 3 5 7 9

11.8 5.1 3.3

 0

 0.5

 1

 1.5

 2

 2.5

 3

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

B
as

el
in

e
IR

B
W

P
ad

di
ng

C
O

O
P

N
or

m
al

iz
ed

 M
er

ge
 C

os
ts

Number of Threads
1 3 5 7 9

12.5 4.3 3.2

(a) BAST (b) FAST

Fig. 14. Breakdown of merge costs in the DBench benchmark.

Fig. 15. Comparison of write latency in the DBench benchmark.

Fig. 16. Memory overhead used for maintaining the global cache tree in
the DBench benchmark.

SHIM ET AL.: SYSTEM-WIDE COOPERATIVE OPTIMIZATION FOR NAND FLASH-BASED MOBILE SYSTEMS 2063

cooperation scheme can concurrently handlewrite andmerge
operations through CSM, reducing the write latency. From
this achievement, we envision that the proposed scheme can
provide a short response time for interactive user applications
in NAND flash-based mobile devices.

To examine thememory overhead needed for maintaining
the global cache tree, wemeasured thememory size allocated
for radix tree nodes in the Android kernel with the DBench
benchmark. Fig. 16 shows the variation of the memory usage
when the number of threads is five. In the COOP scheme, the
memory usage is increased by 26.5% on average, compared
with that of Baseline, but the amount of the increasedmemory
usage is negligible compared to the available memory size.

7 CONCLUSION

In this paper, we present a system-wide cooperative optimi-
zation scheme to enhance the performance of NAND flash-
basedmobile storage systems.Weapply theproposed scheme
to the threemajor components of the real mobile system, such
as the page cache, I/O scheduler, and FTL. For each compo-
nent,wedevise a general cooperative algorithm. Inparticular,
we propose the cooperative switch merge (CSM) as an effi-
cient merge algorithm, which substitutes for costly full and
partial merges in hybrid FTLs. For the cooperation, we also
suggest the cooperation interface that is compatible across
different hybrid FTLs.

In the evaluation with widely-used benchmarks, such as
PostMark, SysBench, FileBench and DBench, the proposed
scheme results in a significant performance enhancement and
also reduces the write latency, compared with several recent
studies. In particular, in the results of the SysBench bench-
mark, the throughput of the proposed scheme has been
improved than that of the existing Android system by
93.3% on average.

Basedupon the evaluation results,wedemonstrate that the
proposed system-wide cooperation can alleviate the perfor-
mance bottleneck (full and partial merges) under diverse
write patterns. Although we assumed that the cooperation
interface can be combined with the standard block interface
by exploiting vendor-specific commands, we believe the
performance enhancement that we achieved provides a rea-
sonable basis formanufacturers to consider publicly adopting
the proposed interface into the standard interfaces for the
flash storage.

ACKNOWLEDGMENT

This research was supported by the SW Computing R&D
Program of KEIT (2012-10041313, UX-oriented Mobile SW
Platform) funded by the Ministry of Knowledge Economy.

REFERENCES

[1] H. Kim, N. Agrawal, and C. Ungureanu, “Revisiting storage for
smartphones,” in Proc. 10th USENIX Conf. File Storage Technol.
(FAST’12), San Jose, CA, Feb. 2012, pp. 209–222.

[2] 1G x 8 Bit/2G x 8 Bit/4G x 8 Bit NANDFlashMemory (K9XXG08UXM)
Data Sheets, Samsung Electronics, Nov. 2005.

[3] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho, “A space-
efficient flash translation layer for compactflash systems,” IEEE
Trans. Consum. Electron., vol. 48, no. 2, pp. 366–375, May 2002.

[4] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, andH.-J. Song,
“A log buffer-based flash translation layer using fully-associative
sector translation,”ACMTrans. Embedded Comput. Syst., vol. 6, no. 3,
article 18, Jul. 2007.

[5] M.-L. Chiang, P. C. H. Lee, and R.-C. Chang, “Using data clustering
to improve cleaning performance for flash memory,” Softw.—Pract.
Exp., vol. 29, no. 3, pp. 267–290, Mar. 1999.

[6] J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee, “A superblock-based flash
translation layer for NAND flash memory,” in Proc. 6th ACM Int.
Conf. Embedded Softw. (EMSOFT’06), Seoul, Republic of Korea, Oct.
2006, pp. 161–170.

[7] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: A flash translation
layer employing demand-based selective caching of page-level
address mappings,” in Proc. 14th Int. Conf. Architectural Support
Program. Languages Oper. Syst. (ASPLOS’09), Washington, DC,Mar.
2009, pp. 229–240.

[8] E. Shriver, C. Small, and K. A. Smith, “Why does file system
prefetching work?” in Proc. USENIX Annu. Tech. Conf. (USENIX
ATC’99), Monterey, CA, Jun. 1999, pp. 71–84.

[9] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry, “A fast
file system for UNIX,” ACM Trans. Comput. Syst., vol. 2, no. 3,
pp. 181–197, 1984.

[10] X. Ding, S. Jiang, and F. Chen, “A buffer cachemanagement scheme
exploiting both temporal and spatial localities,”ACMTrans. Storage,
vol. 3, no. 2, article 5, Jun. 2007.

[11] M. Seltzer, P. Chen, and J. Ousterhout, “Disk scheduling revisited,”
in Proc. Winter USENIX Tech. Conf., Washington, DC, Jan. 1990,
pp. 313–323.

[12] J. Kim,Y.Oh, E.Kim, J. Choi,D. Lee, andS.H.Noh, “Disk schedulers
for solid state drives,” in Proc. 9th ACM Int. Conf. Embedded Softw.
(EMSOFT’09), Grenoble, France, Oct. 2009, pp. 295–304.

[13] J. Kim, S. Seo, D. Jung, J.-S. Kim, and J. Huh, “Parameter-aware I/O
management for solid state disks (SSDs),” IEEE Trans.Comput., vol.
61, no. 5, pp. 636–649, May 2012.

[14] H. Jo, J.-U. Kang, S.-Y. Park, J.-S. Kim, and J. Lee, “FAB: Flash-aware
buffer management policy for portable media players,” IEEE Trans.
Consum. Electron., vol. 52, no. 2, pp. 485–493, May 2006.

[15] H. Kim and S. Ahn, “A buffer management scheme for
improving random writes in flash storage,” in Proc. 6th USENIX
Conf. File Storage Technol. (FAST’08), San Jose, CA, Feb. 2008,
pp. 239–252.

[16] S. Kang, S. Park, H. Jung, H. Shim, and J. Cha, “Performance trade-
offs in using NVRAM write buffer for flash memory-based
storage devices,” IEEE Trans. Comput., vol. 58, no. 6, pp. 744–758,
Jun. 2009.

[17] L. Shi, J. Li, C. j. Xue, C. Yang, andX. Zhou, “ExLRU:A unifiedwrite
buffer cachemanagement for flashmemory,” in Proc. 11th ACM Int.
Conf. Embedded Softw. (EMSOFT’11), Taipei, Taiwan, Oct. 2011,
pp. 339–348.

[18] L. Shi, C. J. Xue, and X. Zhou, “Cooperating write buffer cache and
virtual memory management for flash memory based systems,” in
Proc. 17th IEEE Real-Time Embedded Technol. Appl. Symp. (RTAS’11),
Chicago, IL, Apr. 2011, pp. 147–156.

[19] Embedded Multi-Media Card (eMMC), Electrical Standard (4.5 Device),
JEDEC Standard, Jun. 2011.

[20] SD Group, “SD specifications part 1 physical layer simplified speci-
fication version 3.01,” SD Card Association, May 2010.

[21] A. Ban, “Flash file system,” U.S. Patent 5,404,485, Apr. 1995.
[22] H. Shim, D. Jung, J. Kim, J.-S. Kim, and S. Maeng, “Co-optimization

of buffer layer and FTL in high-performance flash-based storage
systems,” Des. Autom. Embedded Syst., vol. 14, no. 4, pp. 415–443,
Dec. 2010.

[23] ODROID-T PlatformDeveloper Edition, Hardkernel Co., Ltd., May
2011.

[24] S. Park and K. Shen, “FIOS: A fair, efficient flash I/O scheduler,” in
Proc. 10thUSENIXConf. File StorageTechnol. (FAST’12), San Jose,CA,
Feb. 2012, pp. 155–169.

[25] J. Katcher, “PostMark: A new file system benchmark,” Report of
Network Appliance, Tech Rep. TR3022, 1997.

[26] A. Kopytov, “SysBench: A system performance benchmark,” 2004.
[27] FileBench Version 1.4.9.1, “A file system and storage benchmark,”

Jul. 2008.
[28] A. Tridgell and R. Sahlberg, “DBENCH: A benchmark

tool,” 2008.

2064 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 8, AUGUST 2014

Hyotaek Shim received the BS degree in com-
puter engineering from Inha University, Incheon,
Republic of Korea, in 2006, and received theMS–
PhD joint degree in computer science from Korea
Advanced Institute of Science and Technology
(KAIST), Daejeon, in 2013. He is currently a
senior researchengineeratSamsungElectronics.
His research areas include flash memory-based
storage systems, embedded systems, operating
systems, and cloud computing systems.

Jin-Soo Kim received the BS, MS, and PhD
degrees in computer engineering from Seoul
National University, Republic of Korea, in 1991,
1993, and 1999, respectively. He is currently an
associate professor at Sungkyunkwan University,
Suwon, Republic of Korea. Before joining
Sungkyunkwan University, he was an associate
professor at Korea Advanced Institute of Science
and Technology (KAIST) from 2002 to 2008. He
was also with the Electronics and Telecommuni-
cations Research Institute (ETRI) from 1999 to

2002 as a senior member of the research staff, and with the IBM T. J.
Watson Research Center as an academic visitor from 1998 to 1999. His
research interests include embedded systems, storage systems, and
operating systems.

Seungryoul Maeng received the BS degree in
electronics engineering from Seoul National Uni-
versity (SNU), Republic of Korea, in 1977, and the
MS and PhD degrees in computer science from
Korea Advanced Institute of Science and Tech-
nology (KAIST), Daejeon, in 1979 and 1984,
respectively. Since 1984, he has been a faculty
member of Computer Science Department at
KAIST. From 1988 to 1989, he was with the
University of Pennsylvania as a visiting scholar.
His research interests include micro-architecture,

parallel processing, cluster computing, and embedded systems.

▽ For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SHIM ET AL.: SYSTEM-WIDE COOPERATIVE OPTIMIZATION FOR NAND FLASH-BASED MOBILE SYSTEMS 2065

