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Abstract—As NAND flash memory is gaining popularity as a storage medium for mobile embedded devices, many flash-aware file

systems, flash-aware DBMSes, and flash translation layers (FTLs) require an flash-efficient index structure. This paper proposes a

novel index structure called ��-Tree which natively works on NAND flash memory, aiming at improving performance over Bþ-Tree.

��-Tree stores all the nodes along the path from the root to the leaf into a single flash memory page in order to minimize the number of

flash write operation when a node is updated. Furthermore, ��-Tree has an adaptive page layout scheme which dynamically adjusts

the page layout according to the workload characteristics on-the-fly. ��-Tree also allows flash pages with different page layouts to

coexist in the same tree. Our evaluation results with real workload traces show that ��-Tree outperforms Bþ-Tree by up to 55 percent

in terms of the time needed for flash operations. With a small in-memory cache of 32 KB, ��-Tree improves the overall performance by

up to five times compared to Bþ-Tree with the same cache size.

Index Terms—NAND flash memory, index structure, Bþ-Tree

Ç

1 INTRODUCTION

NAND flash memory is being widely used as a storage
medium in modern mobile embedded devices such as

MP3 players, PMPs, and cell phones. Recently, NAND
flash-based Solid State Drives (SSDs) are rapidly becoming
viable competitors to Hard Disk Drives (HDDs) in note-
book and desktop PC markets due to their advantages in
terms of performance, energy consumption, weight, shock
resistance, etc.

However, NAND flash memory features several unique
characteristics. First, once data are written in NAND flash
memory, it cannot be overwritten until it is erased. Second,
the unit of erase operation (called block) is larger than the unit
of read and write operations (called page) by 64 � 256 times.
Third, the number of erase operations that can be performed
on a single block is limited.

In legacy systems, the unique characteristics of NAND
flash memory are hidden via a software layer called FTL
(Flash Translation Layer) [1], [2], [3]. One of the main
functionalities of FTL is address translation, the ability to
write incoming data into any preerased location by keeping
track of mapping information between logical pages and

the corresponding physical pages in NAND flash memory.

In this way, FTL provides the general block device interface,
on top of which the existing disk-based file systems or

DBMSes can be built. For flash memory cards (e.g., SD,
e-MMC, etc.) and SSDs, FTL is located inside the device as a
form of firmware. When NAND flash chips are directly

attached to the system as in digital TVs and iPhones, FTL is
implemented in the device driver of the host system.

Another approach to managing NAND flash memory is

to use flash-aware file systems such as UBIFS, JFFS3, and
YAFFS, or flash-aware DBMSes such as FlashDB [4], and

LGeDBMS [5]. They understand the characteristics of flash
memory, thus it is possible to work directly on flash

memory without the need for FTL.
We note that all of the aforementioned approaches require

an efficient index structure. Basically, an index is a data

structure that enables sublinear-time lookup. Index struc-
tures are heavily used in file systems to map a pathname to a

file metadata (i.e., inode) or to locate the data block
associated with the given offset of a file. In DBMSes, various
indexes are used to improve the speed of data retrieval

operations on a database table. Moreover, extent-based FTLs
such as �-FTL [1] also employ an index structure for

managing their address mapping information.
Indexes can be implemented using a variety of data

structures, but Bþ-Tree is one of the most popular index

structures [6], [7]. Bþ-Tree guarantees logarithmic access
time and supports efficient retrieval in block-oriented

storage by reducing the number of I/O operations through
very high fanout. Although Bþ-Tree is a successful index

structure for disk-based storage, it is not the case for NAND
flash-based storage; since in-place update is not allowed in
flash memory, any change in a leaf node will propagate to

the root node causing a lot of page writes.
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To remedy this wandering tree problem, this paper
suggests ��-Tree, a new ordered index structure tailored
to the characteristics of NAND flash memory. ��-Tree is a
variation of Bþ-Tree, where all updated nodes from the leaf
to the root are stored into a single page. In most cases, as
only one page is written for each update in a leaf node, the
overall update cost is improved compared to Bþ-Tree.
However, storing all updated nodes into a single page
makes ��-Tree occupy more flash pages due to smaller leaf
node size compared to Bþ-Tree which uses the entire page
as a leaf node. To overcome this space inefficiency, a set of
additional schemes is proposed in this paper. First, ��-Tree
generalizes the page layout so that it can store records in a
fine-grained manner. Second, ��-Tree has an adaptive page
layout scheme where different page layouts can coexist in
the same tree. In particular, ��-Tree adjusts the page layout
automatically according to the state of the tree on-the-fly so
that we do not have to preset the page layout for
dynamically changing workloads. Our experimental results
with real workload traces show that ��-Tree outperforms
Bþ-Tree by up to 55 percent in terms of the time spent for
flash operations. With a small in-memory cache of 32 KB,
��-Tree improves the overall performance by up to five
times compared to Bþ-Tree with the same cache size.

The rest of the paper is organized as follows: Section 2
overviews NAND flash memory and Bþ-Tree, and presents
the motivation of ��-Tree. Section 3 overviews �-Tree, the
previous version of ��-Tree. Section 4 describes the
structure of ��-Tree and the adaptive page layout scheme.
Section 5 presents the evaluation results, and Section 6 gives
the related work. Section 7 concludes the paper.

2 BACKGROUND AND MOTIVATION

2.1 NAND Flash Memory

NAND flash memory is a nonvolatile semiconductor device.
The initial state of each NAND flash memory cell is set to
“1,” and a set of selected cells can be transitioned to “0” by
write (or program) operation. Once the cell is programmed
to “0,” reverting to the original “1” state requires a special
erase operation. This means that after we write certain data
into NAND flash memory, we cannot overwrite another
data in the same location until the original data are erased.

NAND flash memory has a hierarchical structure where a
chip consists of a number of blocks and each block is, in turn,
composed of 64 � 256 pages. A page is basic unit of read and
write operations, while erase operations are performed on a
block basis. Thus, it is not possible to erase a particular page in
a block selectively. In addition, NAND flash memory cells
tend to wear out over time as they are repeatedly pro-
grammed and erased. Usually, the number of erase opera-
tions that can be performed on a single block is limited to
5;000 � 100;000 times. This necessitates a technique called
wear-leveling which avoids concentrating writes on particular
blocks to extend the lifetime of flash memory.

NAND flash memory can be classified into two types:
Single-Level Cell (SLC) and Multi-Level Cell (MLC) [8], [9].
In typical SLC NAND chips, the page size is 2 KB and a
block consists of 64 pages. On the other hand, MLC NAND
achieves higher density and larger capacity by storing two

or more bits per each memory cell. As a result, the size of
each page in MLC NAND is increased to 4 � 8 KB, and the
number of pages in a block is also increased to 128 � 256
pages. Even though the operation latency of MLC NAND is
longer than that of SLC NAND, many of NAND flash-based
devices currently being used are based on MLC NAND due
to its low cost-per-bit.

2.2 Bþ-Tree

Bþ-Tree is one of the most popular index structures for
managing a large amount of records. Bþ-Tree is a balanced
search tree which provides efficient insertion, deletion, and
retrieval operations with the guarantee of amortized
logarithmic access time. Many file systems (such as NTFS,
ReiserFS, JFFS3, etc.) and DBMSes (such as MSSQL, MySQL,
Oracle 8, etc.) are using Bþ-Tree for metadata indexing or
table indexing.

Unlike binary search tree, each node in Bþ-Tree consists
of a number of key and pointer pairs, while each node in a
binary search tree has only one key and two pointers. A
node in Bþ-Tree contains up to d key values, K1; K2; . . . ; Kd,
and dþ 1 pointers, P1; P2; . . . ; Pdþ1. The key values in a node
are kept in sorted order. Thus, if i < j, then Ki < Kj. The
maximum number of keys that can be stored in a node, d, is
called the fanout or order of Bþ-Tree. Fig. 1 illustrates an
example Bþ-Tree of order 2. The high fanout degree of
Bþ-Tree has the advantage of reducing the number of
I/O operations when accessing an entry in the tree. The size
of each node is set to a multiple of sector size for HDDs or to
a multiple page size for NAND flash memory.1

There are two types of nodes in Bþ-Tree: leaf nodes and
nonleaf nodes (or index nodes). Except for a tree consisting of a
single node, a leaf node can store from d=2 to d keys and the
associated pointers. For i ¼ 1; 2; . . . ; d, each pointer Pi points
to the record corresponding to the key Ki. Pdþ1 is usually
used for chaining the leaf nodes in key order to facilitate
range searches. For index nodes, the structure is essentially
the same but pointers refer to other Bþ-Tree nodes.

We define the level of a node as the number of edges on
the shortest path from leaf nodes to the node plus one.
According to this definition, the level of any leaf node is
one, and the level of the root node is always the same as the
height of the tree.

Bþ-Tree tries to keep its nodes balanced whenever any
insertion or deletion occurs. Unbalanced trees such as binary
search tree may have a long path because they can be skewed
by a certain insertion sequence. However, Bþ-Tree guaran-
tees the logarithmically bounded depth for all leaf nodes.
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Fig. 1. An example of Bþ-Tree of order 2.

1. Without loss of generality, we assume that each node occupies a single
flash page in this paper.



To find a record with a key K in Bþ-Tree, several nodes
in a path from the root to the leaf are visited. At each node,
the retrieval process searches for the smallest key Ki greater
than K, and loads the node designated by the correspond-
ing pointer Pi. If there is no such key, it follows the last
pointer Pm, where m is the number of pointers in the node.
When it reaches the leaf node, it checks whether the node
contains the key Ki that is equal to K. If the node has such
Ki, it returns the record pointed to by Pi. Otherwise, the
retrieval process fails.

To insert a key K, the insertion process first finds the
proper leaf node by using the above retrieval procedure.
Then, it inserts the keyK into the leaf node. If the leaf node is
already full, a split occurs. In general, to handledþ 1 keys, the
first dðdþ 1Þ=2e keys are put into the existing node and the
remaining keys into a new node. After the split, the lowest key
of the new node is inserted to its parent node as a separator.

In most cases, the parent node is not full and the
insertion process ends. If the parent node is full too, the split
occurs again recursively up to the root node. When the
recursive split process finally reaches the root node,
Bþ-Tree increases its height. This results in a new root
node which has only one key and two pointers.

The deletion process for a key K proceeds similarly.
After finding the proper leaf node, the key is removed from
the leaf node. However, in order to keep the property that
each node must have at least d=2 keys, balancing
techniques such as redistribution or concatenation may
occur [7]. As a result of concatenation, a node can be
removed from Bþ-Tree, and recursive concatenations may
decrease the height of Bþ-Tree by one.

For Bþ-Tree of order d with n records, the cost of
retrieval, insertion, or deletion operation is proportional to
logd=2 n in the worst case. Thus, as the node size increases,
the operation cost will drop due to the increased branching
factor d. Actually, the optimal node size depends on the
characteristics of the underlying system and storage
devices. In many cases, Bþ-Tree uses the node size ranging
from 4 to 16 Kbytes for modern hard disks considering the
seek penalty, the rotational delay, DMA granularity, the
unit of paging, and many other factors [10].

2.3 Motivation

We encounter a problem when implementing Bþ-Tree on
NAND flash memory. Recall that all records inserted into
Bþ-Tree are pointed to by leaf nodes. To update a record,
the corresponding leaf node should be written to another
page because NAND flash does not support in-place
update.2 By writing the leaf node into a new page, its

parent node also should be updated as one of its pointers
has been modified. This recursive update ends when the
new root node is written into another page.

Fig. 2 depicts an example of Bþ-Tree whose height is
three. If we want to update the leaf node F , the parent index
nodes, C and A, also need to be updated, requiring the total
three flash page writes. We can see that, to update a record in
Bþ-Tree, it is necessary to write as many flash pages as the
height of the tree. This is very inefficient because write and
erase operations are expensive in NAND flash memory.

The designers of JFFS3 have used an in-memory data
structure called the journal tree to reduce the number of
updates on index nodes. When something is changed in the
JFFS3 file system, the corresponding leaf node is written into
flash memory, but the index nodes are updated only in the
journal tree. Periodically, those delayed updates are com-
mitted, i.e., written into flash memory in bulk. The journal
tree allows to merge many index node updates and lessen the
amount of flash write operations. However, the use of the
journal tree is not appropriate for small embedded systems
with limited memory size because it requires memory in
proportion to the number of updates delayed. Even worse,
the larger is the journal, the longer it may take to mount JFFS3
since the journal tree should be built from the uncommitted
leaf nodes when JFFS3 is being mounted. This paper
proposes a new novel index structure called ��-Tree, which
requires only a single flash write operation whenever any
node in the tree is updated.

3 �-TREE

In our earlier work, we proposed �-Tree [11] to implement
an efficient index structure on NAND flash memory. Since
the overall structure of ��-Tree is based on that of �-Tree,
we briefly describe the page layout of �-Tree and its
limitations in this section.

3.1 Page Layout

�-Tree stores all the updated nodes along the path from the
leaf to the root into a single flash memory page. Fig. 3
shows an example of �-Tree, where the same leaf node F is
updated as in Fig. 2. In �-Tree, the modified parent nodes,
C0 and A0 are also written in the same page together with
F 0, thus guaranteeing only one flash page write for each
update request.

While the node size is fixed and same for all nodes in
Bþ-Tree, the size of each node in �-Tree varies depending
on the level of the node and the current height of �-Tree.
When the height of �-Tree is greater than one, each leaf
node occupies half of a page. As the level of a node
increases, the node size is reduced by half, and only the
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Fig. 2. An example of Bþ-Tree update.

2. Here, we assume that each node in Bþ-tree occupies a single flash
page.

Fig. 3. An example of �-Tree update.



root node has the same size as its child nodes. Suppose that
the height of �-Tree is H and the page size is P . The node
size NL at level L can be represented as follows:

NL ¼
P if a single level ðH ¼ 1Þ;
P � 1

2

� �L�1
if root ðL ¼ H and H > 1Þ;

P � 1
2

� �L
otherwise ð1 � L < H and H > 1Þ:

8><
>: ð1Þ

Fig. 4 illustrates the change in the page layout when we
vary the height of �-Tree from one to four.

The page layout used in �-Tree ensures the same node
size for each level regardless of the �-Tree height. This is
important especially when the height of �-Tree grows or
shrinks because all the existing nodes except for the root
node can be reused. If the entire nodes were to be
reorganized to fit into the new layout whenever the height
is changed, it would not be acceptable due to considerable
write operations.

3.2 Tree Operations

We describe the distinction between Bþ-Tree and �-Tree
when they handle tree operations such as retrieval,
insertion, and deletion. The major difference between Bþ-
Tree and �-Tree is that the size of a node in �-Tree is
determined by its level and height.

Retrieval. The retrieval process of �-Tree is basically
same as that of Bþ-Tree, because the logical structures of
two trees are identical. The only difference lies in reading a
node from pages. There are more than one nodes in a single
page of �-Tree, while there is only one node in Bþ-Tree.

Insertion. The insertion process of �-Tree first finds the
target leaf node using the retrieval process. To insert a key
into the leaf node, �-Tree allocates a new page and the
updated target leaf node is written into the page along with
all the updated parent nodes. Unless there is an overflow in
any of updated nodes, �-Tree always writes only one page.

When one of updated nodes becomes full due to the
insertion, �-Tree splits the node. Since two different nodes
at the same level cannot coexist in the same page, �-Tree
allocates one more page. Then, the former half of the node is
written into the first page, and the latter half and all of its
parent nodes into the second page. When the root node
becomes full as a result of the insertion, the height of �-Tree
is raised by one.

Deletion. The deletion process of �-Tree is similar to
the insertion process. �-Tree first finds the target leaf
node, and deletes the key and the associated pointer from
the node. All updated nodes from the leaf node to the root
node are written into a newly allocated page. If the leaf
node becomes empty by deletion, the leaf node is deleted
and the pointer that points to the node in its parent node

is also deleted. Deletion can be propagated to the root
node, and the height of �-Tree shrinks when the root node
has only one pointer.

Note that leaf nodes are not chained together in �-Tree.
Chaining leaf nodes is useful for tree rebalancing and range
lookups, but out-of-place update to a leaf node would lead
to tremendous amount of consecutive updates through the
links between leaves on NAND flash memory. In most
cases, we can avoid additional flash overhead during range
lookups using a small in-memory cache of recently-accessed
pages [11], as the next leaf node can be retrieved through
the parent node which is usually cached in memory.

3.3 Limitations and Opportunities

As mentioned in Section 3.1, only half of a single page is
devoted to the space for storing pointers to records in �-Tree.
Consequently, �-Tree requires about twice as many pages as
Bþ-Tree to index the same number of records. This may
elevate the page reclaiming cost known as the garbage
collection overhead, thus damaging performance and short-
ening the lifetime of flash memory.

The page layout of �-Tree is not space-efficient since the
leaf node size does not have to be always half of a page.
For example, Fig. 5a depicts a �-Tree of height three that
occupies five flash pages. Dark gray regions denote
obsolete or unused nodes. White regions and gray regions
indicate free space and the space used by valid nodes,
respectively. In many cases, the space usage of index nodes
is not dense, as shown in Fig. 5a. This is because the ratio
of the child node size to the parent node size is exactly
two, while the fanout of a node is much greater than two.
As a result, a significant amount of space is wasted in
higher level nodes.

If we enlarge the leaf node size as shown in Fig. 5b, we
can accommodate the same number of records in fewer
pages. However, the use of larger leaf node is not always
advantageous, because it will inevitably allocate a smaller
space to index nodes, possibly leading to the height growth
due to the lack of pointers to leaf nodes. Since the height of
a tree has great influence on the latency of tree operations,
we should avoid the height growth as much as possible. As
there is a tradeoff between space efficiency and perfor-
mance, the first issue we have to consider is, when the
number of records is fixed, how to obtain the best page
layout of �-Tree that can minimize both the number of
pages occupied by the tree and the height of the tree.

Although it is possible to find the best layout for the
given number of records, it requires some a priori knowl-
edge of the target workload to estimate the number of
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Fig. 4. The change in the page layout in �-Tree.
Fig. 5. �-Tree examples: (a) the original layout and (b) the page layout
with enlarged leaf nodes.



records it handles. However, the number of records to be
indexed by �-Tree not only varies from workload to
workload, but also changes over time dynamically even in
the same workload. There is clearly no single page layout
that works for all cases. Therefore, it is necessary to develop
an adaptive, self-organizing layout scheme that automati-
cally adjusts the page layout according to the current state
of the tree on-the-fly. The second issue is to find out when
and how the page layout should be adjusted to improve
space efficiency and performance.

Whenever the page layout is changed, it is not acceptable
if we have to reorganize the entire nodes under the new
layout and rewrite them into NAND flash memory. This
will cause considerable read and write overhead. Instead,
we need to devise a scheme that allows different layouts to
coexist in the same tree simultaneously, which is the final
issue addressed in this paper.

4 ��-TREE

��-Tree is an improved version of �-Tree. While �-Tree has
static page layout, ��-Tree has generalized the page layout
so that the node size at each level can be configured flexibly.
Furthermore, each page in ��-Tree can have its own layout.
In �-Tree, all nodes in the same level have the same size
during the lifetime of the tree. In contrast, the page layout
evolves in ��-Tree according to the current state of the tree.
The specific page layout is determined by the proposed
adaptive page layout scheme, which helps ��-Tree mini-
mize the number of pages occupied by the tree and
postpone the height growth as long as possible.

4.1 Layout Analysis

4.1.1 Generalizing �-Tree Layout

We first generalize the page layout of the previous �-Tree.
��-Tree defines the proportion value for each level as the ratio
of the node size to the single page size. As shown in Fig. 6,
the size of nonroot nodes at level L is determined by the
proportion value pL, and the root node occupies the rest of
the page. Like �-Tree, a leaf node takes up the entire page
when the height is one.

Let us denote the height of ��-Tree as H, and the
proportion value at level L as pL, where 0 < pL � 1. In
��-Tree, the node size, NL, at level L is given by

NL ¼

P if a single level ðH ¼ 1Þ;

P � 1�
XL�1

i¼1

pi

 !
if root ðL ¼ H and H > 1Þ;

P � pL otherwise ðL < H and H > 1Þ;

8>>><
>>>:

ð2Þ

where P represents the page size of NAND flash memory.

Note that the original �-Tree layout can be seen as an

instance of the generalized layout if we set the proportion

value pL ¼ ð12Þ
L, for all L < H.

The generalized layout still retains the property of �-Tree

such that nonroot nodes are not influenced by the change in

the height. At the same time, the generalized layout allows

us to configure the tree more flexibly and in a fine-grained

manner. However, the proportion values should be chosen

carefully as they have great impact on the overall

performance. The larger leaf node lessens space overhead,

but makes the tree grow up faster. The smaller leaf node

prevents fast growth of the tree, but occupies more pages

for the same number of records.

4.1.2 Finding the Best Layout

We mathematically analyze the page layout to find the best

layout which, for the given number of records, minimizes

the cost of an update (i.e., insert and delete) operation.

Table 1 summarizes the notation used in our analysis.
The optimal ratio of index nodes is obtained when the

number of pointers to leaf nodes is maximized. When the

leaf node size is fixed, the number of pointers in index

nodes decides the height of the tree. This is because if there

are not enough pointers in index nodes, the height of the

tree should be raised to make room for more pointers.

Hence, maximizing the number of pointers to leaf nodes is

equivalent to minimizing the height of the tree.
The upper bound on the total number of pointers in index

nodes, nI , can be represented as nI ¼ fp2 � fp3 � � � � � fpH ,

where f and H denote the fanout of a single page and the

height of the tree, respectively. In ��-Tree, all nodes in the

path from the root node to a leaf node should be stored in a

single page, thus, p2 þ p3 þ � � � þ pH ¼ 1� p1. Using the

AM-GM (Arithmetic Mean-Geometric Mean) inequality,3

we can find the ratio that maximizes nI as follows:

p2 ¼ p3 ¼ � � � ¼ pH ¼
1� p1

H � 1
: ð3Þ

Therefore, the same proportion values pL (L � 2) for all
index nodes are optimal in that they minimize the height of
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Fig. 6. The generalized page layout in ��-Tree.

TABLE 1
Summary of Notations

3. For any n nonnegative real numbers x1; x2; . . . ; xn, the inequality
x1þx2þ���þxn

n � n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x2 � � � xn
p

holds the equality if and only if x1 ¼
x2 ¼ � � � ¼ xn.



the tree. Consequently, the maximum number of records, n,
that ��-Tree of the height H can accommodate is given by

n ¼ fHp1
1� p1

H � 1

� �H�1

: ð4Þ

For the given n records, the minimum height of the tree h
can be derived from (4) as follows:

h ¼
�
e
W�1

�
log p1þlog f�logn

elogð1�p1Þþlog f

�
þlogð1�p1Þþlog f

�
þ 1; ð5Þ

where W�1 indicates the Lambert W Function with k ¼ �1
[12]. The Lambert W Function cannot be derived in terms of
elementary functions, but it can be approximated using
iterative algorithms such as Newton’s method [13].

The proportion value of leaf nodes, p1, directly affects the
number of pages possessed by ��-Tree. As p1 is getting
larger, the number of pages used by the tree gets smaller,
and it lessens the garbage collection overhead.

Let us denote by Cgc the garbage collection cost for a
single victim page. Since valid nodes in the victim page are
retrieved and then rewritten into a new page during
garbage collection, Cgc is essentially the same as the cost
of an update operation, Cu, as follows:

Cgc ¼ Cu ¼ crhþ cw; ð6Þ

where cr and cw indicate the read latency and the write
latency for a single page in NAND flash memory,
respectively.4

Suppose that Ou denotes the number of update
operations and e is the total number of pages allocated to
��-Tree. Since ��-Tree writes one single flash page for each
update operation, the number of pages to be reclaimed, Nr,
can be represented as follows:

Nr ¼ Ou � e: ð7Þ

The probability that a victim page has valid leaf node, Pv, is
simply calculated as the proportion of the number of
records (n) to the total number of records that all leaf nodes
can accommodate (efp1), thus

Pv ¼
n

efp1
: ð8Þ

Since garbage collection is performed only for valid node,
we can derive the total number of garbage collection
operations triggered by update operations, Ogc, multiplying

the number of pages to be reclaimed (Nr) by the probability
that a victim page has valid leaf node (Pv), as follows:

Ogc ¼ NrPv ¼ ðOu � eÞ
n

efp1
: ð9Þ

Consequently, the objective value �, which represents the
average cost for an update operation is defined as follows:

� ¼ OuCu þOgcCgc
Ou

¼
�
Ou þ ðOu�eÞn

efp1

�
ðcw þ crhÞ

Ou
: ð10Þ

We plot � varying the value of p1 from 0.5 to 1, as
illustrated in Fig. 7. We set all the proportion values of index
nodes identically as suggested in (3). The cost of reading or
writing a flash page is modeled after MLC NAND flash
memory [8] such that cr ¼ 165:6 �s and cw ¼ 905:8 �s. The
other parameter values are set as follows: n ¼ 1;000;000,
e ¼ 8;192, Ou ¼ 1;000;000, and f ¼ 512. The value of � is
minimized when p1 is 0.81, and suddenly jumps when p1 is
0.82, 0.93, and 0.95, due to height growth. Within the same
height, � decreases as the value of p1 is getting larger
because of the reduced garbage collection overhead.

Fig. 8 shows the optimal value of p1 which minimizes the
objective value �, and the optimal height of ��-Tree, when
we vary the total number of records (n) from ten thousands
(104) to ten billions (1010). Other parameters are configured
the same way as in Fig. 7. As n grows, the optimal value of
p1 is decreased to delay the increase in the tree height.
When the number of records reaches certain points (such as
6:6� 104, 2:3� 106, etc.), p1 jumps rapidly as the tree height
is raised by one. Right after the height is increased, it is
optimal to set p1 as large as possible again to accommodate
more number of records within the current height.

In conclusion, when the number of records n is known,
the optimal layout of ��-Tree can be found as follows:
1) Find p1 from Fig. 8. This is the value of p1 which
minimizes the update cost � in (10). 2) Set the proportion
values pL (L > 2) for index nodes identical as shown in (3).

4.1.3 Limit on the Number of Records

Since all nodes along the path from the root to the leaf should
be stored in a single page, the maximum height of �-Tree or
��-Tree is determined by the page size, thus limiting the
number of records that can be indexed by the tree.

Another advantage of ��-Tree over �-Tree is that ��-Tree
can index much more number of records. The height of�-Tree
is quickly limited due to the nature of exponential decrease in
the node size. When the page size is 4 KB and the entry size is
8 bytes (i.e., f ¼ 512), the maximum height of �-Tree is
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Fig. 7. The average cost for an update operation according to p1. Fig. 8. The optimal value of p1 and the optimal height according to the
number of records.

4. A block containing invalidated victim pages should be erased during
garbage collection, but we ignore this cost because it is very small compared
to other factors.



limited to 9, accommodating up to 1:6� 1011 records only. By
contrast, in the same situation, the height of ��-Tree can grow
up to 256 and it can index up to 1:2� 1077 records.

4.2 Adaptive Page Layout Scheme

4.2.1 Overview

Although the previous analytical results are helpful to
understand the best layout when the number of records is
fixed, predicting the number of records to be handled by
��-Tree is almost impossible in practice. For this reason, we
developed an adaptive page layout scheme for ��-Tree.

The adaptive page layout scheme gradually varies the
page layout according to the current state of ��-Tree on-the-
fly. The leaf node size plays an important role in controlling
the page layout. Under the proposed scheme, each page can
have its own leaf node size if necessary. Whenever we insert
a record, the adaptive page layout scheme tries to postpone
the height growth by shrinking the leaf node size. On the
contrary, it also attempts to enlarge the leaf node size to
reduce the number of occupied pages when deleting a
record. Once the leaf node size is adjusted, the rest of the
page is divided evenly and allocated to index nodes, as
suggested in Section 4.1.2.
��-Tree remembers the current layout used by the most

recently written page. At the end of each update operation,
the current layout may vary gradually if some conditions
are satisfied, and only the pages written after the layout
variation are affected by the new layout. When a node
under the old layout is updated, the current layout is
applied to all the updated nodes from the leaf to the root;
they are resized according to the current layout and written
into a new page.

4.2.2 Conditions for Layout Variation

At the end of each update (i.e., insert and delete) operation,
��-Tree checks for certain conditions to see if it needs to
change the layout. In case of insertion, the leaf node size
shrinks if at least one of the following two conditions is
satisfied:

1. when the root node is full,

2.
SplitðIÞ
SplitðLÞ >

1� p1

p1
,

where SplitðIÞ and SplitðLÞ represent the total number of
splits occurred in index nodes and in leaf nodes,
respectively.

Recall that ��-Tree shrinks the leaf node size to postpone
the height growth as long as possible. When the root node is
full, the next insertion to the root node will raise the height
of the tree. In order to prevent this, we shrink the leaf node
size and give more space to index nodes.

When a number of records are inserted into a narrow
range of key values, the height of the tree can still grow faster
than our expectation. This is because the layout variation is
applied only to the updated leaf and index nodes, without
changing the page layout of existing nodes belonging to
other key values. If we enlarge index nodes before the
root node gets full, it will be helpful to slow down the height
increase. For this reason, we added the second condition.
When the number of splits in index nodes is greater than a

certain threshold, ��-Tree also shrinks the leaf node size

even though the root node is not full. The rapid layout

variation is evaded by the enlarged index nodes.
For delete operations, the leaf node size is enlarged only

if the utilization of the root node is less than 50 percent.

Unlike insertions, we do not vary the layout aggressively

for deletions. If we did, it would cancel the layout variation

caused by the previous insert operation, incurring unne-

cessary overhead when insert and delete operations are

performed one after the other.

4.2.3 Layout Variation Policy

The page layout of��-Tree is adjusted using three parameters:

�, �, and �. � and � represent the upper bound and the lower

bound of the proportion value of the leaf node, respectively,

i.e., � � p1 � �. � denotes the amount of the proportion value

adjusted at a time due to the layout variation.
The adaptive layout scheme is not activated when the

height of ��-Tree is one as the entire page is allocated to a

leaf node. When the height of ��-Tree increases from one to

two, p1 is initialized to �. Afterwards, if the conditions for

layout variation shown in Section 4.2.2 are satisfied, p1 is

increased or decreased by �.
The value of p1 cannot be less than �, or cannot be greater

than �. If the root node is full and p1 � � is less than �, the

height of ��-Tree is raised by one and p1 is initialized to �

again. In contrast, if the root node has only one entry when

p1 þ � is greater than �, the height is reduced by one with p1

being initialized to �.
Algorithm 1 summarizes the steps for the proposed

adaptive page layout scheme, where R:entry and R:max

indicate the number of entries in the root node and the

maximum number of entries that can be accommodated in

the root node, respectively. The algorithm AdaptiveLayout-

Variation() is called at the end of each update operation.

Algorithm 1. AdaptiveLayoutVariation

1: R get the root node

2: C  get the current layout of ��-Tree

3: H  get the current height of ��-Tree

4: if R:entry ¼ R:max or
SplitðIÞ
SplitðLÞ >

1� C:p1

C:p1
then

5: if C:p1 � � � � then

6: C:p1  C:p1 � �
7: else

8: C:p1  �

9: H  H þ 1

10: end if

11: else if R:entry <
R:max

2
then

12: if C:p1 þ � � � then

13: C:p1  C:p1 þ �
14: else if H > 1 then

15: C:p1  �

16: H  H � 1

17: end if

18: end if

19: C:pi  ð1� C:p1Þ=ðH � 1Þ, for all i � 2
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4.3 Implementation of ��-Tree

4.3.1 Supporting Different Page Layouts

In ��-Tree, the page layout can be dynamically changed
after each update operation. The modified layout is applied
only to those pages written after the layout variation since
rewriting all the previous pages according to the new layout
is not practical due to large overhead. This means that
��-Tree should provide a mechanism in which flash pages
with different page layouts can coexist in the same tree and
they can refer to each other freely.

For this reason, each page has a page header which stores
its layout information. When accessing a node, ��-Tree
first reads the page header from the page the node belongs
to and calculates the offset and the size of the node based
on the layout information. Due to page headers, pages
with the previous layout do not have to be rewritten and
they can be reused regardless of the layout or height
variation in ��-Tree.

As shown in Fig. 9, the page header is located on top of
each page, storing the layout information when the page
was written such as the leaf node size and the height of the
tree. Because index nodes always have the same size, we
can calculate the offset and the size of every index node
using these two values.

Fig. 10 illustrates an example of update operation
performed in ��-Tree of the height three. A page header is
located on top of every page and different pages have
different layouts in ��-Tree. The space for index nodes is
evenly divided regardless of the height or layout variation.
In Fig. 10, the layout variation occurred when ��-Tree
writes flash pages 121 and 136. We can see that the leaf node
size is reduced by � after the layout variation. In case the
leaf node C is updated, all of its parent nodes, B and A, also
should be updated. Except for the root node A, updated
nodes B and C have layouts different from the current
layout. They are resized to B0 and C0, respectively, and
finally written into the page 137 with the updated root node
A0. The node C0 may split when all the entries previously
stored in C cannot be accommodated in C0.

4.3.2 ��-Tree Operations

There are three major differences between ��-Tree opera-
tions and �-Tree (or Bþ-Tree) operations. First, a node can
be split in ��-Tree not only when a new entry is inserted to
the node, but also when the node is updated. In �-Tree or
Bþ-Tree, a node split occurs only if the node is full and no
entry is available for the newly inserted record. In ��-Tree,
however, a node split also takes place when the node needs
to be updated but its node size becomes smaller in the
current page layout due to the layout variation. As a result,

all operations except for retrieval can cause node splits in
��-Tree. Second, a node can be split into more than two
nodes in ��-Tree, whereas a node is always divided into
two nodes in Bþ-Tree and �-Tree. For example, if the node
size to be split is s1 and the corresponding node size in the
current layout is s2, the node is split into ds1s2e nodes in
��-Tree. Finally, ��-Tree should read the page header to
locate the position of each node.

Retrieval. The retrieval process of ��-Tree is almost same
as that of �-Tree, since it does not change the page layout.
The only difference is that ��-Tree is required to calculate
the position of each node using the layout information in
the page header.

Insertion. The insertion process first finds the target leaf
node using the retrieval process. ��-Tree inserts a key into
the node and allocates a new page to store all updated
nodes. For every updated node at each level, ��-Tree
compares its layout with the current layout. If two layouts
do not match, ��-Tree changes the node size so that it fits
into the current layout. And then, all updated nodes are
written into the new page. After a record is inserted, the
page layout can be changed if the condition described in
Section 4.2.2 is satisfied.

If a node overflows during the insertion process, ��-Tree
splits the node into k (k � 2) nodes and prepares the total
k flash pages by allocating the additional k� 1 pages. And
��-Tree writes split nodes into k pages sequentially. The
parent nodes are written to the last page with the last split
node. Splitting nodes can take place recursively for each
level, and the height of ��-Tree grows up if the root node
needs to be split.

Deletion. The deletion process is almost same as the
insertion process. ��-Tree deletes a key from the target leaf
node, and allocates a new page to store all updated nodes.
And then, it compares the layout of updated nodes with the
current layout, modifies the node size if necessary, and
writes all the updated nodes into the new page. Finally,
��-Tree checks for the condition for possible layout change.

When a node is resized according to the current layout,
an overflow can occur. In this case, the node is split into
more than two nodes in the same way as in insertion. If the
overflowed node is the root node, the height of ��-Tree is
increased. On the other hand, the updated node is deleted if
it has no entry. If the deleted node is the root node, the
height of ��-Tree is decreased.

As in �-Tree, ��-Tree does not perform balancing or
redistribution which may incur additional flash access
overhead. In fact, the adaptive page layout scheme serves
as a substitute for such mechanisms.
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Fig. 9. Page header examples.
Fig. 10. An example of ��-Tree update.



4.3.3 In-Memory Cache

Most of previous flash-aware index schemes such as BFTL
[14], FD-tree [15], and LA-tree [16] depend on in-memory
structures to temporarily cache tree updates. Such an in-
memory cache delays the actual flash accesses and batches
incoming updates together, thereby reducing the number of
flash operations. By contrast, the performance improvement
of ��-Tree over Bþ-Tree is basically originated from its page
layout. In particular, ��-Tree does not rely on any in-
memory structures such as mapping table and node cache
to operate. This means that the benefit of the adaptive page
layout scheme used in ��-Tree is orthogonal to the use of an
in-memory cache. Consequently, we can expect that even
though we use an in-memory cache for ��-Tree, it will still
outperform Bþ-Tree with the same cache.

To verify this, we implement a simple in-memory cache
that can be used in both ��-Tree and Bþ-Tree. The memory
space is split into two partitions: operation buffer and node
cache. The operation buffer temporarily holds incoming
requests to absorb and coalesce actual tree operations to
��-Tree or Bþ-Tree. All operations first pass through this
buffer, and go to the tree on cache misses. On a cache hit,
i.e., when the previous operation on the same key exists in
the operation buffer, the corresponding value in the buffer
is either updated (for write operation) or returned (for read
operation), and the operation terminates without triggering
actual tree operation. The node cache keeps the nodes
accessed by previous operations so that subsequent tree
operations on the same node can be performed without any
flash operations. Both the operation buffer and the node
cache are managed in LRU fashion. We allocate the half of
the configured memory for the operation buffer and the
other half for the node cache.

5 EVALUATION

5.1 Evaluation Methodology

��-Tree is built on a trace-driven NAND flash memory
simulator which performs raw flash read, write, and erase
operations. The simulator has an ability to count the
number of operations performed, and these counts are
converted to the elapsed time using the operational latency
of MLC NAND flash memory: 165:6 �s for read, 905:8 �s for
write, and 1;500 �s for erase [8]. The simulator can be
configured with parameters such as the total capacity of
NAND flash memory, the page size, and the number
of pages in a block. We configure it with typical parameters

of MLC NAND flash memory, where the page is 4,096 bytes
in size and each block has 128 pages. The size of a key-
pointer pair is set to 8 bytes in all cases. Unless otherwise
stated, the parameter values of �, �, and � for ��-Tree are set
to 0.9, 0.5, and 1/256 (i.e., 16 bytes or two entries),
respectively, throughout the experiment. The garbage
collection is triggered when the number of free blocks is
less than 10 percent of the total number of blocks, and the
victim block is selected using the round-robin policy. For
fair comparison, we have also implemented Bþ-Tree and
�-Tree on the same simulator.

We have used six traces obtained from real workloads
for performance evaluation. Table 2 summarizes the
characteristics of traces used in this paper. kernel and
postmark are obtained from tree operations of the Reiser file
system (ReiserFS), and tpcc, financial, general, and web
are from tree operations of �-FTL [1]. ReiserFS is one of the
representative disk-based file systems in Linux which uses
Bþ-Tree for metadata indexing. �-FTL is a flash translation
layer that supports multiple mapping granularities using
variable-sized extents. �-FTL uses �-Tree [11] for storing its
mapping information. We have also used several microbe-
nchmarks to explore the various aspects of ��-Tree. The
main performance metric we use is the elapsed time needed
for flash memory operations. In cases of the experiments
using randomly generated keys, we repeat the same set of
experiments for five times, and take the average of three
values discarding the maximum and the minimum values.

5.2 Microbenchmarks Results

5.2.1 Adaptive Layout Variation

First, we verify that ��-Tree adjusts the page layout
adaptively according to the number of records. We insert
randomly generated key-record pairs into ��-Tree and
investigate the change in the leaf node size.

Fig. 11 shows the variation of leaf node size when the
number of records is increased from ten thousands to one
million. The y-axis represents the proportion value of the leaf
node (p1) and the number of records is displayed in
logarithmic scale. The dotted line plots the optimal size of
the leaf node obtained from Fig. 8, and the solid line is the
actual result. We can see that the leaf node size is initialized
to � and it is gradually decreased down to � as the number of
records increases. The sudden jump indicates the point
where the height of��-Tree is raised. After the height growth,
the leaf node size is reset to � and gradually shrinks again.

We observe there is a slight difference between the
analytical model and the actual result. This is because the
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The Characteristics of Traces



analytical model is based on the assumption that every
node is always fully utilized, thus the height of ��-Tree is
raised only when all nodes are full. This is the ideal case of
balanced search trees. In practice, however, the height is
increased due to recursive splits from a leaf node to the root
node, even though other nodes are not full. Therefore, the
actual leaf node size is smaller than the estimated value of
the analytical model and the height is, in reality, increased
faster than in the analytical model.

5.2.2 Space Overhead

To compare the space overhead of Bþ-Tree, �-Tree, and
��-Tree, we insert ten million randomly generated key-
record pairs and measure the number of pages occupied by
each tree. Fig. 12a illustrates the results. The dashed line, the
dotted line, and the solid line denote the results of Bþ-Tree,
�-Tree, and ��-Tree, respectively.

From Fig. 12, we confirm that the number of pages used by
�-Tree is almost doubled compared to Bþ-Tree. The space
overhead of ��-Tree is slightly larger than Bþ-Tree but
notably smaller than �-Tree. In fact, as the leaf node size gets
smaller, the number of pages occupied by ��-Tree becomes
closer to �-Tree. In the opposite case where the leaf node size
gets larger, the number of pages used by ��-Tree moves
toward Bþ-Tree.

5.2.3 Tree Height

Fig. 12b depicts the change in the height when we insert the
same randomly generated ten million entries to Bþ-Tree,
�-Tree, and ��-Tree. The optimal height from Fig. 8 is also
illustrated in Fig. 12b for comparison. We can see that the
height growth of Bþ-Tree is much slower than �-Tree. This
is because Bþ-Tree can accommodate more number of
records than �-Tree in the same height since the fanout of a
node in Bþ-Tree is larger than that in �-Tree. The height
growth of ��-Tree is slightly slower than �-Tree, even

though ��-Tree uses significantly fewer number of pages.
This is due to the adaptive page layout scheme which
postpones the height growth as long as possible. Another
reason is that the maximum number of pointers in index
nodes of ��-Tree is larger than that of �-Tree since ��-Tree
always evenly divide the space for index nodes while the
parent index node size is reduced by half in �-Tree.

5.2.4 Update Performance

The number of records inserted into the tree has great
influence on the update performance. As the number of
records increases, the number of pages occupied by the tree
also grows, thus garbage collection is invoked more
frequently to reclaim obsolete pages.

To compare the update performance of �-Tree and
��-Tree, we first initialize each tree with the given number
of records ranging from 100,000 to 400,000. Then, we
perform one million update (insert and delete) operations.
The space allocated for each tree is configured to 16 MB.

Fig. 13 compares the total elapsed time to complete all
the update operations in �-Tree and ��-Tree. Obviously, the
total elapsed time increases as there are more number of
records in the tree. However, the total elapsed time of
�-Tree grows faster than that of ��-Tree. ��-Tree outper-
forms �-Tree by 56 percent when the number of records is
400,000. This is because the number of pages occupied by
��-Tree is much less than that of �-Tree, improving the
garbage collection overhead of ��-Tree.

5.3 Real Workloads Results

5.3.1 Overall Performance

Fig. 14 compares the total elapsed time of Bþ-Tree, �-Tree,
and ��-Tree for the real workload traces. The total elapsed
time is normalized to the results of Bþ-Tree. In this
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Fig. 11. The variation of the leaf node size in ��-Tree.

Fig. 12. Comparison of Bþ-Tree, �-Tree, and ��-Tree.

Fig. 13. The total elapsed time for one million update operations.

Fig. 14. The normalized elapsed time for real workload traces.



experiment, the space allocated to each tree is 16 MB for

kernel and postmark, and 64 MB for tpcc, financial, general,
and web. This is because the latter four traces have lots of

update operations compared to former traces.
In Fig. 14, we observe that��-Tree outperforms Bþ-Tree by

up to 55 percent for the postmark trace and by 34 percent on
average (25 percent for kernel, 39 percent for tpcc, 29 percent

for financial, 25 percent for general, and 29 percent for web).

Note that �-Tree has marginal benefits over Bþ-Tree for
financial and general traces. This is due to the fact that the

height of �-Tree is three while that of Bþ-Tree is two. The
difference in the height increases the read cost significantly,

and it offsets the benefit of the reduced write cost.
��-Tree also outperforms�-Tree by up to 25 percent for the

postmark trace and by 18 percent on average (12 percent for
kernel, 17 percent for tpcc, 18 percent for financial, 20 percent

for general, and 15 percent for web). Compared to �-Tree, we
can see that the write cost is substantially improved due to

the space efficiency of ��-Tree.

5.3.2 The Effect of Parameters

To study the effect of parameters used in ��-Tree, we
evaluate the performance and the overall space overhead of
��-Tree varying the parameter values of �, �, and � one at a
time. Fig. 15 summarizes the total elapsed time and the total
number of pages occupied by ��-Tree when only one
parameter value is changed while the others are fixed. The
results are normalized to those of the given workload with
the default parameter values. The default values of �, �, and
� are 0.9, 0.5, and 1/256, respectively.

When � ¼ 0:5, ��-Tree works almost same as �-Tree
since the adaptive scheme does not work (� ¼ �). As the
value of � increases, the total elapsed time and the overall
space overhead is steadily reduced for all workloads. This is
because as � gets larger, the leaf node also has more chance
of getting enlarged. However, � cannot be increased
beyond a certain value since the fanout of index nodes
should be able to accommodate new entries created by the
split procedure when the height is increased. These factors
should be considered when choosing the value of �.

��-Tree shows the best performance when � equals to 0.5
in most workloads. When � < 0:5, the leaf node size is
smaller than half of a single page. This will make ��-Tree
require more number of pages and eventually incur more
garbage collection overhead. When � > 0:5, the minimum
leaf node size is increased, but the maximum size of index
nodes becomes smaller at the same time. Although the
space overhead decreases, smaller index nodes accelerate
splits in index nodes and make the height of ��-Tree grow
faster. The financial trace is an exception where its
performance is improved constantly as � is increased up
to 0.8. It was helpful for the financial trace to have higher
page utilization rather than to use the adaptive layout
scheme. Yet, the performance difference is not significant.

In case of �, the smaller value of � makes the layout
variation be fine grained, but the overhead may increase
due to frequent layout changes. By contrast, the larger
value of � may degrade the performance due to the coarse-
grained layout variation. Fig. 15 shows that the perfor-
mance degradation is severe when the value of � is larger
than 1/16 (i.e., 256 bytes or 32 entries). However, when the
value of � is less than 1/16, it hardly affects the overall
performance. Note that the space overhead is not influ-
enced by the value of � since it does not directly affect the
leaf node size.

5.3.3 The Effect of Adaptive Page Layout Scheme

In order to assess the effect of the proposed adaptive
scheme, we evaluate the performance of static ��-Tree
where the adaptive page layout scheme is disabled by
configuring � equal to �. Fig. 16 illustrates the total elapsed
time for three real workloads (postmark, tpcc, and financial),
and three randomly synthesized microbenchmark work-
loads (micro100k, micro600k, and micro1m), varying the
leaf node size from 0.5 to 0.9 statically (i.e., p1 ¼ � ¼ �). In
the synthesized workloads, one million update operations
are performed after ��-Tree is initialized with 100,000
records (micro100k), 600,000 records (micro600k), or
1,000,000 records (micro1m). The results are normalized to
those of the previous ��-Tree with the adaptive page layout
scheme enabled.
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Fig. 15. The total elapsed time and the overall space overhead of ��-Tree varying parameter values of �, �, and �.



As p1 is getting larger, the total elapsed time gradually
decreases due to the reduced garbage collection overhead.
Each workload has its own optimal value of p1 which
minimizes the total elapsed time: 0.8 for real workloads, 0.9
for micro100k, 0.7 for micro600k, and 0.6 for micro1m. If p1

is enlarged beyond this optimal point, the elapsed time
rapidly increases since the height of ��-Tree grows up. For
all workloads, the proposed adaptive page layout scheme
shows comparable or better performance than the best
possible result obtained by ��-Tree whose page layout is
statically configured.

5.3.4 The Effect of In-Memory Cache

Fig. 17 illustrates the total elapsed time of ��-Tree for real
workloads varying the size of cache from 0 to 256 KB. All
results are normalized to those of ��-Tree without cache
(i.e., 0 KB cache size). As the cache size getting larger, the
elapsed time decreases because the cache absorbs actual
flash operations. The cache effect of tpcc is relatively small
compared to other workloads since its working set is large
and access patterns are randomly distributed.

Fig. 18 compares the total elapsed time of ��-Tree with
that of Bþ-Tree using the same in-memory cache mechan-
ism. The cache sizes of both trees are configured to 32 KB,
and the results are normalized to those of Bþ-Tree. Even
though the same caching scheme is used, ��-Tree still
outperforms Bþ-Tree by up to five times. This suggests that

��-Tree’s adaptive page layout scheme is quite effective
regardless of whether there is an in-memory cache or not. In
fact, the use of cache does not weaken the advantages of the
adaptive page layout scheme in ��-Tree.

5.4 Comparison with BFTL

We compare the update performance of ��-Tree with that of
BFTL [14], which is a popular Bþ-Tree layer for flash
memory working on top of FTL. BFTL absorbs incoming
tree updates in in-memory cache called reservation buffer,
and flushes them at once. The update records are written on
flash pages in a log-structured manner, and BFTL maintains
a mapping table called Node Translation Table (NTT) to keep
track of the scattered records for each node.

Since BFTL works on top of FTL, its performance depends
on the underlying FTL. In this evaluation, BFTL is
implemented on two kinds of FTLs: DAC [3], which is a
representative page mapping FTL and FAST [2], which is a
log-based block mapping FTL. We observe the performance
of each scheme serving one million random update opera-
tions after initializing it with the given number of records.
The size of the reservation buffer and the maximum length
of NTT lists are configured to 60 and 3, respectively, as
recommended in the BFTL paper [14]. For fair comparison,
the cache size of ��-Tree is set to 128 KB which is almost the
same amount of total memory used in BFTL over FAST. We
allocate 16 MB for flash space.
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Fig. 16. The total elapsed time for ��-Tree after disabling the adaptive page layout scheme according to the value of p1.

Fig. 17. The total elapsed time of ��-Tree varying the size of cache. Fig. 18. Comparison of Bþ-Tree and ��-Tree with 32 KB cache.



Fig. 19 shows the total elapsed time for��-Tree and BFTLs.
��-Tree outperforms BFTL over FAST by up to four times,
and BFTL over DAC by up to 3.2 times. Although BFTL can
coalesce update operations, scattered nodes should be
merged because NTT cannot grow unlimitedly. The node
merge operation occurs very frequently under random
updates, triggering a large amount of flash read and write
operations. Furthermore, invalid logs should be compacted
to gather free space while garbage collector in the underlying
FTL also reclaims invalid flash pages at the same time. This
duplicated garbage collection degrades the performance. By
contrast, since ��-Tree manages mapping and garbage
collection on raw flash by itself, the overall overhead can
be much smaller compared to BFTL and other similar
approaches that work on FTL.

6 RELATED WORK

A number of schemes have been proposed for developing
efficient index structures for flash memory. BFTL [14] is one
of the most popular Bþ-Tree layer for flash memory,
making tradeoff between read and write performance.
BFTL maintains in-memory pool to buffer newly created
or modified nodes, and those buffered nodes are flushed to
log pages in flash memory periodically or when the in-
memory pool becomes full. Although BFTL can improve the
write performance, scattered log pages may degrade the
read performance.

FlashDB [4] addresses this problem by employing an
adaptive algorithm which switches two separate modes:
LogMode and DiskMode. LogMode handles write-intensive
nodes such as index nodes by writing them to a list of log
pages similar to BFTL. On the other hand, read-intensive
nodes such as leaf nodes are written directly into flash
memory as a single page in DiskMode. This algorithm can
improve the write performance without suffering from poor
read performance caused by scattered leaf nodes.

Recently, FD-Tree [15] is introduced to lessen the small
random write overhead. FD-Tree consists of multiple levels
of fractional sorted runs, and a small in-memory Bþ-Tree
called head tree on top level. Updates are stored in head
tree first, and merged into lower level sorted runs
subsequently. FD-Tree avoids random writes by rewriting
merged runs into flash pages in batch.

All of the aforementioned index structures are imple-
mented on top of FTL, hence they do not consider
important flash memory management issues such as out-
of-place update and garbage collection. Since index struc-
tures are not aware of flash page allocation and mapping,
the chance of improvement is limited. By contrast, ��-Tree

deals with raw flash pages directly without the help of
intermediate layers such as FTL. Since ��-Tree itself
manages flash pages and garbage collection, the overall
performance and space efficiency can be improved further.
We believe ��-Tree is an essential component in building
flash-aware DBMSes and file systems.

MicroHash [17] is a hash-based index structure that also
works on raw flash memory. MircoHash is developed for
flash-based wireless sensor devices to obtain both high
performance and low energy consumption, but not appro-
priate for a general index structure in file systems or
DBMSes due to its scalability problem.

Agrawal et al. have suggested Lazy Adaptive Tree (LA-
Tree) [16], which is designed to optimize accesses to raw
flash memory. A number of fixed-size subtrees based on
Bþ-Tree at each level organizes the entire tree, and one
buffer is attached to each subtree to batch updates on the tree
and its descendants. These buffers are lazily merged with the
tree at an appropriate time. LA-Tree uses an online adaptive
algorithm, which decides the optimal time to merge the
buffers considering tradeoff between update performance
and lookup performance. As mentioned in LA-tree paper
[16], the approaches of LA-Tree and ��-Tree are orthogonal
because the objective of LA-Tree is minimizing the number
of accesses to flash while that of ��-Tree is reducing the
overhead associated with an update operation.

7 CONCLUSIONS

An index structure natively works on NAND flash memory
is essential for many flash-aware file systems, flash-aware
DBMSes, and FTLs. Therefore, the importance of a space-
efficient index structure cannot be overemphasized espe-
cially for resource-constrained embedded systems. This
paper proposes an index structure called ��-Tree, which
aims at improving performance over Bþ-Tree.
��-Tree can handle tree update requests efficiently on

NAND flash memory by storing all the updated nodes into
a single flash page. ��-Tree has generalized the page layout
so that the node size can be configured in a fine-grained
manner. Under the generalized page layout, we show that,
for the given number of records, it is possible to find the
best page layout which maximizes space efficiency and
performance through analytical modeling.

However, as the number of records to be indexed by
��-Tree cannot be predicted in practice, we propose an
adaptive page layout scheme which dynamically adjusts the
page layout at runtime. According to the current state of
��-Tree, the adaptive page layout scheme enlarges or
shrinks the leaf node size to accommodate more number
of records within the current height. The rest of a page is
evenly divided and then allocated to index nodes to
maximize the number of pointers to leaf nodes. The changed
page layout is effective only for those pages written after the
layout variation. ��-Tree allows flash pages with different
page layouts to coexist in the same tree by maintaining a
page header in each page.

Our evaluation results with the real workload traces
show that ��-Tree outperforms Bþ-Tree by up to 55 percent
in terms of the total elapsed time. With a small in-memory
cache of 32 KB, ��-Tree improves the overall performance
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Fig. 19. The total elapsed time for BFTL and ��-Tree performing one
million update operations.



by up to five times compared to Bþ-Tree with the same
cache size. In the near future, we plan to use ��-Tree for
developing flash-aware file systems and extent-based FTLs.
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