
Parameter-Aware I/O Management
for Solid State Disks (SSDs)

Jaehong Kim, Sangwon Seo, Dawoon Jung, Jin-Soo Kim, Member, IEEE, and

Jaehyuk Huh, Member, IEEE

Abstract—Solid state disks (SSDs) have many advantages over hard disk drives, including better reliability, performance, durability,

and power efficiency. However, the characteristics of SSDs are completely different from those of hard disk drives with rotating disks.

To achieve the full potential performance improvement with SSDs, operating systems or applications must understand the critical

performance parameters of SSDs to fine-tune their accesses. However, the internal hardware and software organizations vary

significantly among SSDs and, thus, each SSD exhibits different parameters which influence the overall performance. In this paper, we

propose a methodology which can extract several essential parameters affecting the performance of SSDs, and apply the extracted

parameters to SSD systems for performance improvement. The target parameters of SSDs considered in this paper are 1) the size of

read/write unit, 2) the size of erase unit, 3) the size of read buffer, and 4) the size of write buffer. We modify two operating system

components to optimize their operations with the SSD parameters. The experimental results show that such parameter-aware

management leads to significant performance improvements for large file accesses by performing SSD-specific optimizations.

Index Terms—Solid state disk(SSD), measurement, storage management, and operating systems.

Ç

1 INTRODUCTION

A solid state disk (SSD) is a data storage device that uses
solid state memory to store persistent data. In

particular, we use the term SSDs to denote SSDs consisting
of NAND flash memory, as this type of SSDs is being
widely used in laptop, desktop, and enterprise server
markets. Compared with conventional hard disk drives
(HDDs), SSDs offer several favorable features. Most
notably, the read/write bandwidth of SSDs is higher than
that of HDDs, and SSDs have no seek time since they have
no moving parts such as arms and spinning platters. The
absence of mechanical components also provide higher
durability against shock, vibration, and operating tempera-
tures. In addition, SSDs consume less power than HDDs [1].

During the past few decades, the storage subsystem has
been one of the main targets for performance optimization
in computing systems. To improve the performance of the
storage system, numerous studies have been conducted
which use the knowledge of internal performance para-
meters of hard disks such as sector size, seek time,
rotational delay, and geometry information. In particular,

many researchers have suggested advanced optimization
techniques using various disk parameters such as track
boundaries, zone information, and the position of the disk
head [2], [3], [4]. Understanding these parameters also helps
to model and analyze disk performance more accurately [5].

However, SSDs have different performance parameters
compared with HDDs due to the difference in the
characteristics of underlying storage media [6]. For exam-
ple, the unit size of read/write operations in SSDs, which
we call the clustered page size, is usually greater than the
traditional sector size used in HDDs. Therefore, if the size of
write requests is smaller than the clustered page size, the
rest of the data should be read from the original data,
incurring the additional overhead of a read operation [7].
Issuing read/write requests in a multiple of the cluster page
size can avoid this overhead. However, the actual value of
such a parameter varies depending on the type of NAND
flash memory employed and the internal architecture of
SSDs. SSD manufacturers have been reluctant to reveal such
performance parameters of SSDs.

In this paper, we propose a methodology which can
extract several essential parameters affecting the perfor-
mance of SSDs and apply them to SSD systems for
performance improvement. The parameters considered in
this paper include the size of read/write unit, the size of
erase unit, the size of read buffer, and the size of write
buffer. To extract these parameters, we have developed a
set of microbenchmarks which issue a sequence of read or
write requests and measure the access latencies. By varying
the request size and the access pattern, the important
performance parameters of a commercial SSD can be
successfully estimated.

The extracted performance parameters of SSDs can be
used for various purposes. The parameters can fine-tune the
model of a given real SSD. For example, when simulating an

636 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 5, MAY 2012

. J. Kim, S. Seo, and J. Huh are with the Department of Computer Science,
Korea Advanced Institute of Science and Technology, 335 Gwahak-ro
(373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701, Republic of Korea.
E-mail: {jaehong, swseo}@camars.kaist.ac.kr, jhuh@cs.kaist.ac.kr.

. D. Jung is with Samsung Electronics, Samsung Semiconductor R&D
Center, San #16 Banwol-Dong Hwasung Gyeonggi-Do, Republic of Korea.
E-mail: dw0904.jung@samsung.com.

. J.-S. Kim is with the School of Information and Communication
Engineering, Sung Kyun Kwan University, 300 Cheoncheon-dong
Jangan-gu, Suwon 440-746, Republic of Korea.
E-mail: jinsookim@skku.edu.

Manuscript received 14 June 2010; revised 29 Nov. 2010; accepted 6 Mar.
2011; published online 22 Mar. 2011.
Recommended for acceptance by E. Miller.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2010-06-0344.
Digital Object Identifier no. 10.1109/TC.2011.76.

0018-9340/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

SSD exploiting multichip parallelism, performance para-
meters such as the size of a clustered page can be used to
model the channels with a striping technique [8]. In
addition, file systems can be optimized to model and
exploit the characteristics of SSDs, with the critical
performance parameters such as the clustered block size [9].

In this paper, to demonstrate the application of the
extracted SSD parameters, we redesign two I/O compo-
nents of a Linux operating system. We modify the generic
block layer and I/O scheduler to parameter-aware compo-
nents. Although the benefits of the optimizations vary by
SSD designs and the characteristics of workloads, the I/O
optimizations with the SSD performance parameters result
in up to 24 percent bandwidth improvement with the
postmark benchmark, and up to 321 percent improvement
with the filebench benchmark.

The rest of the paper is organized as follows: Section 2
overviews the characteristics of NAND flash memory and
SSDs, and Section 3 presents related work. Section 4
describes the detailed methodology for extracting perfor-
mance parameters in SSDs and presents the results.
Section 5 describes the designs of parameter-aware I/O
components for a commercial operating system. Section 6
shows the performance evaluation of the proposed para-
meter-aware system, and Section 7 concludes the paper.

2 BACKGROUND

2.1 NAND Flash Memory

NAND flash memory is a non-volatile semiconductor
device. A NAND flash memory chip consists of a number
of erase units, called blocks, and a block is usually comprised
of 64 or 128 pages. A page is a unit of read and write
operations. Each page in turn consists of data area and
spare area. The data area accommodates user or application
contents, while the spare area contains management
information such as ECCs (error correction codes) and
bad block indicators. The data area size is usually 2 KB or
4 KB, and the spare size is 64 B (for 2 KB data) or 128 B (for
4 KB data). Fig. 1 illustrates the organization of NAND flash
where a block contains 128 4-KB-pages.

NAND flash memory is different from DRAMs and
HDDs in a number of aspects. First, the latency of read and
write operations is asymmetric. Second, NAND flash
memory does not allow in-place update; once a page is
filled with data, the block containing the page should be
erased before new data are written to the page. Moreover,
the lifetime of NAND flash memory is limited to 10,000-
100,000 program/erase cycles [10].

2.2 Solid State Disks (SSDs)

A typical SSD is composed of a host interface control logic,
an array of NAND flash memory, a RAM, and an SSD
controller, as shown in Fig. 1b. The host interface control
logic transfers command and data from/to the host via the
USB, PATA, or SATA protocol. The main role of the SSD
controller is to translate read/write requests into flash
memory operations. During handling read/write requests,
the controller exploits RAM to temporarily buffer write
requests or accessed data. The entire operations are
governed by a firmware, usually called a flash translation
layer (FTL) [11], [12], run by the SSD controller.

To increase the read/write bandwidth of SSDs, many
SSDs use an interleaving technique in the hardware logic
and the firmware. For example, a write (or program)
operation is accomplished by the following two steps:
1) loading data to the internal page register of a NAND
chip, and 2) programming the loaded data into the
appropriate NAND flash cells. Because the data program-
ming time is longer than the data loading time, data can be
loaded to another NAND chip during the data program-
ming time. To increase the bandwidth, the interleaving
technique exploits the parallelism of accessing multiple
NAND chips simultaneously. If there are multiple indepen-
dent channels, the read/write bandwidth of SSDs can be
accelerated further by exploiting interchannel and intra-
channel parallelism [13], [14].

2.3 Flash Translation Layer (FTL)

FTL is the main control software in SSDs that gives an illusion
of general hard disks, hiding the unique characteristics of
NAND flash memory from the host. One primary technique
of FTL to achieve this is to map Logical Block Addresses
(LBA) from the host to physical addresses in flash memory.
When a write request arrives, FTL writes the arrived data to a
page in an erased state and updates the mapping information
to point to the location of the up-to-date physical page. The
old page that has the original copy of data becomes
unreachable and obsolete. A read request is served by
reading the page indicated by the mapping information.

Another important function of FTL is garbage collection.
Garbage collection is a process that erases dirty blocks
which have obsolete pages and recycles these pages. If a
block selected to be erased has valid pages, those pages are
migrated to other blocks before erasing the block.

According to the granularity of mapping information,
FTLs are classified into page-mapping FTLs [15] and block-
mapping FTLs. In page-mapping FTLs, the granularity of
mapping information is a page, while that of block-mapping
FTLs is a block. As the size of a block is much larger than that
of a page, block-mapping FTL usually requires less memory
space than page-mapping FTL to keep the mapping informa-
tion in memory. Recently, several hybrid-mapping FTLs have
been proposed. These hybrid-mapping FTLs aim to improve
the performance by offering more flexible mapping, while
keeping the amount of mapping information low [16], [17].

3 RELATED WORK

Extracting performance-critical parameters for HDDs has
been widely studied for designing sophisticated disk

KIM ET AL.: PARAMETER-AWARE I/O MANAGEMENT FOR SOLID STATE DISKS (SSDS) 637

Fig. 1. NAND flash memory internals (a) and the block diagram of an

SSD (b).

scheduling algorithms [18], [19], [20] and characterizing the
performance of HDDs to build detailed disk simulators [21],
[22], [23], [24]. However, as SSDs have completely a
different architecture compared to HDDs, the methodology
for extracting parameters in HDDs cannot be used for SSDs.
Our work introduces a methodology for extracting the
performance parameters of SSDs and show the effects of
parameter-aware system design. To the best of our knowl-
edge, our work is among the first to examine the
performance parameters obtained from commercial SSDs
and apply them to SSD systems.

Agrawal et al. [7] provide a good overview of the SSD
architecture and present various tradeoffs in designing
SSDs. Using a simulator, they explore the benefits and
potential drawbacks of various design techniques by
varying performance parameters such as the page size,
the degree of overprovisioning, the amount of ganging, the
range of striping, etc. Their study indicates that such
parameters affect the performance of SSDs significantly.

Adrian et al. have developed Gordon, a flash memory-
based cluster architecture for large-scale data-intensive
applications [25]. The architecture of Gordon is similar to
that of SSDs in that it uses NAND flash memory chips
and an FTL-like flash memory controller. To achieve the
high I/O performance of data-intensive work, they tune
performance parameters such as the clustered page size,
showing the performance sensitivity of flash-based storage
to several critical parameters.

Our methodology for extracting performance parameters
is a kind of the gray-box approach [26], [27]. The gray-box
approach is a methodology that acquires information
regarding a target system, with minimum partial knowledge
on the system. This approach is different from the white-box
approach or the black-box approach, which has the full
knowledge or no knowledge on the target system, respec-
tively. Instead, the gray-box approach assumes some knowl-
edge of the algorithms or architectures adopted in the system.

Yotov et al. have applied the gray-box approach to the
memory hierarchy [28]. They introduce a methodology
which extracts several memory hierarchy parameters in
order to optimize the system performance under a given
platform. Timothy et al. have also characterized RAID
storage array using the gray-box approach [29]. They
employ several algorithms to determine the critical para-
meters of a RAID system, including the number of disks,
chunk size, the level of redundancy, and layout scheme. For
disk characteristics, Talagala et al. have proposed three disk
microbenchmarks that obtain a subset of disk geometry and
performance parameters in an efficient and accurate manner
[30]. For storage clusters, Gunawi et al. have inferred the
structure and policy of software systems for large-scale
storage clusters by using standard tools for tracing both the
disk and network traffics [31]. To find the buffer-cache
replacement of operating systems, Burnett et al. have
introduced a simple fingerprinting tool which identifies
popular replacement algorithms [32]. Sivathanu et al. [33]
have proposed the concept of a semantically-smart disk
system that has detailed knowledge of how the file system
uses the disk system. To obtain this knowledge automati-
cally, they used a tool that discovers the structures of certain
file systems [33]. Similarly, based on the existing knowledge
on common SSDs, we devise a methodology for extracting
the essential performance parameters of SSDs.

4 EXTRACTING PERFORMANCE PARAMETERS IN

SSDS

4.1 Parameters in SSDs

The performance parameters of SSDs are different from
those of HDDs as described in Section 1. In this section, we
describe the important performance parameters of SSDs
which will be identified with our metholodogy.

4.1.1 Clustered Page

We define a clustered page as an internal unit of read or write
operation used in SSDs. As discussed in Section 2.2, SSD
manufacturers typically employ the interleaving technique
to exploit inherent parallelism among read or write
operations. One way to achieve this is to enlarge the unit
size of read or write operations by combining several
physical pages, each of which comes from a different NAND
flash chip. Fig. 2 shows an example configuration where a
clustered page is interleaved in eight flash memory chips on
two channels. Note that, depending on FTLs used in SSDs, it
is also possible to form a clustered page with just four
physical pages on the same channel in Fig. 2, allowing two
channels to operate independently.

The clustered page size is the same or a multiple of the
physical page size of NAND flash memory. The clustered
page size is a critical parameter for application-level I/O
performance as shown in Gordon [25]. Adjusting the size of
data transfer to the clustered page size, can enhance the I/O
performance, since the FTL does not need to read or write
more data than requested. In addition to enhancing the
performance, the use of the clustered page can reduce the
memory footprint required to maintain the mapping
information inside SSDs.

4.1.2 Clustered Block

We define a clustered block as an internal unit of erase
operation used in SSDs. Similar to the clustered page, SSDs
often combine several blocks coming from different NAND
flash chips into a single clustered block. Fig. 2 shows an
example of a clustered block which consists of eight
physical blocks. The use of the clustered block improves

638 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 5, MAY 2012

Fig. 2. Example of a clustered page (block), which is interleaved in eight

flash memory chips on two channels.

the garbage collection performance by performing several
erase operations in parallel. Using the clustered block is also
effective in reducing the amount of mapping information,
especially in block-mapping FTLs, since a clustered block,
instead of an individual physical NAND block, now takes
up one mapping entry.

4.1.3 Read/Write Buffer

Many SSD controllers use part of DRAM as a read buffer
or write buffer to improve the access performance by
temporarily storing the requested data into the DRAM
buffer. Although users can obtain the DRAM buffer size
via ATA IDENTIFY DRIVE command, it just displays the
total DRAM size, not the size of read/write buffer. Thus,
we present methodologies that can estimate the accurate
sizes of these buffers in Section 4.2.5 and Section 4.2.6.

The read buffer size or the write buffer size can be a
valuable hint to the buffer cache or I/O scheduler in the host
operating system. For example, if we know the maximum
size of write buffer, the I/O scheduler in the host system can
merge incoming write requests in such a way that the
request size does not go beyond the write buffer size.
Similarly, the read buffer size can be used to determine the
amount of data to be prefetched from SSDs.

4.2 Methodology for Extracting Performance
Parameters in SSDs

4.2.1 Experiment Environment

We ran the microbenchmarks on a Linux-based system
(kernel version 2.6.24.6). Our experimental system is
equipped with a 2.4 GHz Intel(R) Core(TM)2 Quad and
4 GB of RAM. The system uses two disk drives, one hard disk
drive (HDD) and one SSD, both of which are connected to the
host system via SATA-II (Serial ATA-II) interface. The HDD
is the system disk where the operating system is installed. In
our experiments, we have evaluated four different SSDs
commercially available from the market. The full details of
each SSD used in this paper are summarized in Table 1.

Because we measure performance parameters empiri-
cally, the results sometimes vary from one execution to the
next. Thus, we obtained all results in several trial runs to
improve the accuracy. While we ran our microbenchmarks,
we turned off SATA NCQ (Native Command Queuing) as
SSD-C is the only SSD which supports this feature.

4.2.2 Assumptions on SSD Models

There are many possible architectural organizations and
trade-offs in SSDs as discussed in [7]. As a result, the
specifics of internal hardware architecture and software
algorithm used in SSDs differ greatly from vendor to
vendor. However, most of the commercial SSDs share a

common basic organization described in Fig. 1b. With this
hardware architecture, many commercial SSDs commonly
employ a variant of block-mapping or page-mapping FTLs
and the address maps of SSDs are stored in the DRAM [7],
[34], [13], [8]. Furthermore, most of the SSDs use part of
DRAM as a read buffer and a write buffer to improve the
access performance by temporarily storing the requested
data in the DRAM buffers.

For typical SSDs, as described in Section 2.2, our
methodology can successfully extract the aforementioned
parameters. Our methodology does not require any detailed
knowledge on the target SSDs such as the number of
channels, the number of NAND flash memory chips, garbage
collection policies, etc. The methodology is based on the
common characteristics found in most of the commercial
SSDs, which are independent from the specific model details.

However, if SSDs have completely different hardware
architectures and use software algorithm beyond our
expected models, the extracting methodology should
change. For example, some high-end SSDs, such as Fusion
IO, support PCI Express and use the system memory for
storing their mapping. It is also possible that SSDs may
selectively cache page-level address mapping on the DRAM,
while the rest of the page map is stored in flash memory [15].
In such case, it is hard to extract the parameters as the access
latencies are also affected by hits or misses in the cached
page maps in the DRAM.

4.2.3 Measuring the Clustered Page Size

As described in the previous section, the clustered page is
treated as the unit of read and write operations inside SSDs
in order to enhance the performance using channel-level
and chip-level interleaving. This suggests that when only a
part of a clustered page is updated, the SSD controller
should first read the rest of the original clustered page that
is not being updated, and combine it with the updated data,
and write the new clustered page into flash memory. This
read-modify-write operation [7] incurs extra flash read
operations, increasing the write latency.

Consider a case (1) in Fig. 3a, where all the write requests
are aligned to the clustered page boundary. In this case, no
extra operations are necessary other than normal write
operations. However, cases (2) and (3) illustrated in Fig. 3a
necessitate read-modify-write operations as the first (in case
(2)) or the second (in case (3)) page is partially updated.

To measure the clustered page size, we have developed a
microbenchmark which exploits the difference in write
latency depending on whether the write request is aligned
to the clustered page boundary or not. The microbenchmark
repeatedly writes data sequentially setting the request size
as an integer multiple of physical NAND page size (e.g.,
2 KB). Owing to the extra overhead associated with

KIM ET AL.: PARAMETER-AWARE I/O MANAGEMENT FOR SOLID STATE DISKS (SSDS) 639

TABLE 1
Characteristics of SSDs Used in This Paper

unaligned write requests, we expect to observe a sharp drop

in the average write latency whenever the request size

becomes a multiple of the clustered page size. Procedure 1

describes the pseudocode of our microbenchmark.

Procedure 1. ProbeClusteredPage

Input: F , /* file descriptor for the raw disk device opened

with O_DIRECT */

TSW , /* the total size to write (in KB, e.g., 1,024 KB) */

ISW , /* the increment in size (in KB, e.g., 2 KB) */

NI /* the number of iteration (e.g., 64) */

1: SW (0 /* the size of write request (in KB) */
2: write_init(F) /* initialize the target SSD by sequentially

updating all the available sectors to minimize the effect

of garbage collection */

3: while SW � TSW do

4: SW (SW þ ISW
5: lseek(F , 0, SEEK SET) /* set the file pointer to the

offset 0 */

6: Start(gettimeofdayðÞ
7: for i ¼ 1 to NI do

8: write_file(F , SW) /* write SW KB of data to F */

9: ATA_FLUSH_CACHE() /* flush the write

buffer */

10: end for

11: End(gettimeofdayðÞ
12: print the elapsed time by using Start and End

13: end while

There are some implementation details worth mention-
ing in Procedure 1. First, we open the raw disk device with
O_DIRECT flag to avoid any influence from buffer cache in
the host operating system. Second, before the actual
measurement, we initialize the target SSD by sequentially
updating all the available sectors to minimize the effect of
garbage collection during the experiment [12]. Third, we
make the first write request during each iteration always
begin at the offset 0 using lseek(). Finally, all experiments
are performed with the write buffer in SSDs enabled. To
reduce the effect of the write buffer, we immediately flush
data to NAND flash memory by issuing ATA FLUSH
CACHE command, after writing data to the target SSD.
Most of these implementation strategies are also applied to
other microbenchmarks presented in the following sections.

To estimate the clustered page size, we have measured
the latency of each write request varying the request size up
to 1,024 KB. Fig. 4 plots the results obtained by running
Procedure 1 on the tested SSDs. All the experiments for
SSD-A, SSD-B, and SSD-D are performed with the write
buffer enabled. Enabling the write buffer in SSD-C makes it
difficult to measure the latency accurately as the cost of the
internal flush operation highly fluctuates. Thus, the
microbenchmark was run with the write buffer disabled
in SSD-C so that the measurement is not affected by the
activity of flush operation.

In Fig. 4, the general trend is that the latency increases in
proportion to the request size. However, we can observe
that there are periodic drops in the latency. For example, in
Fig. 4a, the latency drops sharply whenever the request size
is a multiple of 16 KB. Therefore, we can conclude that the
clustered page size of SSD-A is 16 KB. For the same reason,
we believe that the clustered page size of SSD-B, SSD-C, and
SSD-D is 128 KB, 4 KB, and 128 KB, respectively.

Unlike other SSDs, the result of SSD-C shows no notable
drop in the write latency. Upon further investigation, it
turns out that SSD-C internally allows the update of only
one sector (512 B); thus, the additional overhead for read-
modify-write is eliminated. An intriguing observation in
Fig. 4 is that there are several spikes in the write latency,
most notably in Fig. 4b, 4c, and 4d. We suspect this is due to
garbage collection which should be occasionally invoked to
make free blocks.

4.2.4 Measuring the Clustered Block Size

The clustered block is the unit of an erase operation in SSDs
to improve the write performance associated with garbage
collection. This indicates that if only a part of a clustered
block is updated when garbage collection is triggered, live

640 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 5, MAY 2012

Fig. 3. (a): A write request that is aligned (1) and unaligned (2, 3) to the

Fig. 4. The average write latency with varying the size of write requests.

pages in the original clustered block should be copied into
another free space in SSDs. This valid copy overhead affects
the write performance of SSDs, decreasing the write
bandwidth noticeably.

Consider a case (1) illustrated in Fig. 3b, where the size of
write requests is smaller than that of the clustered block.
Assume that the leftmost clustered block has been selected as
a victim by the garbage collection process. When a series of
blocks are updated sequentially, there is no overhead other
than erasing the victim block during garbage collection.
However, if there are many random writes whose sizes are
smaller than the clustered block size, the write bandwidth
will suffer from the overheads of copying valid pages. As
shown in cases (2) and (3) of Fig. 3b, the additional overhead
disappears only when the size of random write requests
becomes a multiple of the clustered block size.

To retrieve the clustered block size, our microbenchmark
exploits the difference in write bandwidth between sequen-
tial and random writes. Initially, the size of write request is
set to the clustered page size. And then, for the given
request size, we issue a number of sequential and random
writes which are aligned to the clustered page boundary,
and measure the bandwidth. We repeat the same experi-
ment, but each time the request size is doubled. As the
request size approaches to the clustered block size, the gap
between the bandwidth of sequential writes and that of
random writes will become smaller. Eventually, they will
show the similar bandwidth once the request size is equal to
or larger than the clustered block size. Procedure 2 briefly
shows how our microbenchmark works to probe the
clustered block size.

Procedure 2. ProbeClusteredBlock

Input: F , /* file descriptor for the raw disk device opened

with O_DIRECT */
SP , /* the clustered page size obtained in Section 4.2.3

(in KB, e.g., 16 KB) */

TNP , /* the total number of cluster pages (e.g., 1024) */

TSW , /* the total size to write (in KB, e.g.,

(8� 1;024� 1;024 KB)) */

NP /* the initial number of clustered pages (e.g., 2).

NP � SP is the actual size of write requests */

1: NI (0 /* the number of iteration */
2: while NP � TNP do

3: NP (NP � 2 /* We assume the clustered block

size is a power of 2 multiple of the clustered page

size */

4: write_init(F) /* initialize the target SSD */

5: Start(gettimeofdayðÞ
6: lseek(F , 0, SEEK SET) /* set the file pointer to the

offset 0 */

7: NI (TSW=ðNP � SP Þ
8: for i ¼ 1 to NI do

9: write_file(F , NP � SP) /* write (NP � SP) KB

of data to F */

10: ATA_FLUSH_CACHE() /* flush the write

buffer */
11: end for

12: End(gettimeofdayðÞ
13: print the elapsed time of sequential writes by using

Start and End

14: write_init(F)

15: Start(gettimeofdayðÞ
16: for i ¼ 1 to NI do

17: R(randðÞ%NI /* choose R randomly */
18: R(R� ðNP � SP Þ � 1;024

19: lseek(F , R, SEEK SET)

20: write_file(F , NP � SP)

21: ATA_FLUSH_CACHE()

22: end for

23: End(gettimeofdayðÞ
24: print the elapsed time of random writes by using

Start and End

25: end while

To determine the clustered block size, the microbe-

nchmark measures the bandwidth of sequential and

random writes, increasing the request size up to 128 MB.

Fig. 5 compares the results for four tested SSDs. The value

of NP , which represents the initial number of clustered

pages to test, is set to two for SSD-A, SSD-B, and SSD-D. For

SSD-C, we configure NP ¼ 10 as there was no difference in

the bandwidth between sequential and random writes with

NP ¼ 2.
From Fig. 5a, we find that the bandwidth of sequential

writes is higher than that of random writes when the size

of write request is smaller than 4,096 KB. If the request size

is increased beyond 4,096 KB, there is virtually no

difference in the bandwidth. As mentioned above, the

bandwidth of random writes converges to that of sequen-

tial writes as the request size approaches to the clustered

block size. This suggests that the clustered block size of

SSD-A is 4,096 KB. Similarly, we can infer that the

clustered block size of SSD-B, SSD-C, and SSD-D is

16,384 KB, 5,120 KB, and 16,384 KB, respectively.

KIM ET AL.: PARAMETER-AWARE I/O MANAGEMENT FOR SOLID STATE DISKS (SSDS) 641

Fig. 5. Sequential versus random write bandwidth according to the size of write requests.

4.2.5 Measuring the Read Buffer Capacity

The read buffer in SSDs is used to improve the read
performance by temporarily storing the requested and/or
prefetched data. If the requested data cannot be found in
the read buffer, or if the size of the read request is larger
than the size of the read buffer, then the data has to be read
directly from NAND flash memory, which results in larger
read latencies.

To differentiate the read request served from the read
buffer from that served from NAND flash memory, we
have developed two microbenchmarks, ProbeReadBuffer()
and ProbeNANDReadLatency(), as shown in Procedure 3
and Procedure 4.

Procedure 3. ProbeReadBuffer

Input: F , /* file descriptor for the raw disk device opened

with O_DIRECT */

TSR, /* the total size to read (in KB, e.g., 1,024 KB) */

ISR /* the increment in size (in KB, e.g., 1 KB) */

1: SR(0 /* the size of read request (in KB) */
2: write_init(F) /* initialize the target SSD */

3: while SR � TSR do

4: SR(SRþ ISR
5: R(randðÞ%1;024 /* choose R randomly */

6: lseek(F , 1;024� 1;024� 1;024þR� 16�
1;024� 1;024, SEEK SET) /* set the file pointer

randomly */

7: read_file(F , 16� 1;024) /* read 16 MB of data
from F */

8: R(randðÞ%63

9: lseek(F , R� 16� 1;024� 1;024, SEEK SET) /* set

the file pointer randomly (We assume the size of

read buffer is smaller than 16 MB) */

10: read_file(F , SR) /* read SR KB of data from F */

11: lseek(F , R� 16� 1;024� 1;024, SEEK SET)

12: Start(gettimeofdayðÞ
13: read_file(F , SR)

14: End(gettimeofdayðÞ
15: print the elapsed time by using Start and End

16: end while

Procedure 4. ProbeNANDReadLatency

Input: F , /* file descriptor for the raw disk device opened
with O_DIRECT */

TSR, /* the total size to read (in KB, e.g., 1,024 KB) */

ISR /* the increment in size (in KB, e.g., 1 KB) */

1: SR(0 /* the size of read request (in KB) */

2: write_init(F) /* initialize the target SSD */

3: while SR � TSR do

4: SR(SRþ ISR
5: R(randðÞ%1;024 /* choose R randomly */

6: lseek(F , 1;024� 1;024� 1;024þR� 16�
1;024� 1;024, SEEK SET) /* set the file pointer

randomly */

7: read_file(F , 16� 1;024) /* read 16 MB of data

from F */
8: R(randðÞ%63

9: lseek(F , R� 16� 1;024� 1;024, SEEK SET) /* set

the file pointer randomly (we assume that the size of

read buffer is smaller than 16 MB) */

10: Start(gettimeofdayðÞ
11: read_file(F , SR) /* read SR KB of data from F */

12: End(gettimeofdayðÞ
13: print the elapsed time by using Start and End

14: end while

The microbenchmark ProbeReadBuffer() is used to
measure the latency of read requests served from the read
buffer, if any. The microbenchmark repeatedly issues two
read requests, each of which reads data from the same
location O.1 It measures the latency of the second request,
hoping that a read hit occurs in the read buffer for the
request. Before reading any data from O, the benchmark fills
the read buffer with the garbage by reading large data from
the random location far from O. In each iteration, the size of
read request is increased by 1 KB, by default. If the size of
read request becomes larger than the read buffer size, the
whole data cannot be served from the read buffer and
the request will force flash read operations to occur. Thus,
we expect to observe a sharp increase in the average read
latency whenever the request size is increased beyond the
read buffer size.

On the other hand, ProbeNANDReadLatency() is de-
signed to obtain the latency of read requests which are
served from NAND flash memory directly. The benchmark
is similar to ProbeReadBuffer() except that the first read
request (lines 7-8) in ProbeReadBuffer() has been eliminated
to generate read misses all the times.

To estimate the capacity of the read buffer, we compare
the latency measured by ProbeReadBuffer() with that
obtained by ProbeNANDReadLatency(), varying the size
of each read request. Fig. 6 contrasts the results with respect
to the read request size from 1 KB to 1,024 KB (4,096 KB for
SSD-C). In Fig. 6, the labels “NAND” and “Buffer” denote

642 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 5, MAY 2012

1. In each iteration, this location is set randomly based on the R value,
which eliminates the read-ahead effect, if any, in target SSDs. In the tested
SSDs, however, we could not observe any read-ahead mechanism.

Fig. 6. The latency of read requests with increasing the size of read requests.

the latency obtained from ProbeNANDReadLatency() and
from ProbeReadBuffer(), respectively. As mentioned above,
ProbeNANDReadLatency() always measures the time taken
to retrieve data from NAND flash memory, while ProbeR-
eadBuffer() approximates the time to get data from the read
buffer as long as the size of read requests is smaller than the
read buffer size.

In Fig. 6a, when the size of read requests is smaller than
256 KB, “Buffer” results in much shorter latency compared to
“NAND.” This is because requests generated by ProbeR-
eadBuffer() are fully served from the read buffer. On the other
hand, if the request size exceeds 256 KB, both “Buffer” and
“NAND” exhibit almost the same latency. Since “NAND”
represents the time to read data from NAND flash memory,
this result means that read requests whose sizes are bigger
than 256 KB cannot be handled in the read buffer. Therefore,
we can conclude that the read buffer size of SSD-A is 256 KB.
For SSD-C and SSD-D, the similar behavior is also observed
for the request sizes from 512 KB to 3,072 KB (SSD-C), or from
16 KB to 64 KB (SSD-D). Therefore, the read buffer size of SSD-
C and SSD-D is 3,072 KB and 64 KB, respectively. However, in
case of SSD-B, the results of both “NAND” and “Buffer” show
exactly the same behavior, which implies that SSD-B does not
use any read buffer.

4.2.6 Measuring the Write Buffer Capacity

As discussed in Section 4.1, the main role of the write buffer
in SSDs is to enhance the write performance by temporarily
storing the updated data into the DRAM buffer. This implies
that when the size of write requests exceeds the write buffer
size, some of data should be flushed into NAND flash
memory. This additional flush operation results in extra flash
write operations, impairing the write latency.

To determine whether the write request is handled by the
write buffer or NAND flash memory, we have developed two
microbenchmarks, ProbeWriteBuffer() and ProbeNAND-
WriteLatency(), as shown in Procedure 5 and Procedure 6.
The former measures the time taken to write data into the
write buffer, if any, while the latter is intended to measure the
time to write the requested data to NAND flash memory.

Procedure 5. ProbeWriteBuffer

Input: F , /* file descriptor for the raw disk device opened

with O_DIRECT */

TSW , /* the total size to write (in KB, e.g., 1,024 KB) */

ISW , /* the increment in size (in KB, e.g., 1 KB) */

NI /* the number of iteration (e.g., 30) */

1: SW (0 /* the size of write request (in KB) */

2: write_init(F) /* initialize the target SSD */
3: while SW � TSW do

4: SW (SW þ ISW
5: for i ¼ 1 to NI do

6: ATA_FLUSH_CACHE() /* flush the write

buffer */

7: lseek(F , 0, SEEK SET) /* set the file pointer to

the offset 0 */

8: Start(gettimeofdayðÞ
9: write_file(F , SW) /* write SW KB of data to F */

10: End(gettimeofdayðÞ
11: print the elapsed time by using Start and End

12: end for

13: end while

Procedure 6. ProbeNANDWriteLatency
Input: F , /* file descriptor for the raw disk device

opened with O_DIRECT */

TSW , /* the total size to write (in KB, e.g., 1,024 KB) */

ISW , /* the increment in size (in KB, e.g., 1 KB) */

NI /* the number of iteration for outer loop (e.g., 30) */

1: SW (0 /* the size of write request (in KB) */

2: write_init(F) /* initialize the target SSD */

3: while SW � TSW do

4: SW (SW þ ISW
5: for i ¼ 1 to NI do

6: ATA_FLUSH_CACHE() /* flush the write

buffer */

7: lseek(F , 16� 1;024� 1;024, SEEK SET)

/* We assume that the size of write buffer is

smaller than 16 MB */

8: write_file(F , 16� 1;024) /* write 16 MB of data
to F */

9: lseek(F , 0, SEEK SET) /* set the file pointer to

the offset 0 */

10: Start(gettimeofdayðÞ
11: write_file(F , SW) /* write SW KB of data to F */

12: End(gettimeofdayðÞ
13: print the elapsed time by using Start and End

14: end for

15: end while

ProbeWriteBuffer() repeatedly measures the write la-
tency, increasing the request size by 1 KB. Before the actual
measurement, the benchmark makes the write buffer
empty by issuing the flush operation supported by the
ATA command. After flushing the write buffer, we expect
that the subsequent write request is handled in the write
buffer, if any, as long as the request size is smaller than the
write buffer size. When the request size is too large to fit
into the write buffer, the request will cause flash write
operations, prolonging the average write latency severely.

ProbeNANDWriteLatency() is analogous to ProbeWrite-
Buffer() except that lines 7-8 are added to fill the entire write
buffer with garbage intentionally. Since the write buffer is
already full, some part of data is flushed to NAND flash
memory upon the arrival of the next write request.

Note that, in ProbeWriteBuffer() and ProbeNAND-
WriteLatency(), we repeatedly measure the write latency
NI times for the given request size. This is because it is not
easy to accurately measure the time needed to write data
in the presence of asynchronous flush operations. Espe-
cially, when the write buffer has some valid data, the
actual timing the flush operation is performed and the
amount of data flushed from the write buffer to NAND
flash memory can vary from experiment to experiment. To
minimize the effect of these variable factors, we obtain
enough samples by repeating the same experiment multi-
ple times.

As mentioned above, ProbeWriteBuffer() measures the
latency required to store data to the write buffer, while
ProbeNANDWriteLatency() estimates the write latency
needed to flush data to NAND flash memory. Fig. 7 plots
the measured latencies for four commercial SSDs with
various request sizes ranging from 1 KB to 1,024 KB. In

KIM ET AL.: PARAMETER-AWARE I/O MANAGEMENT FOR SOLID STATE DISKS (SSDS) 643

Fig. 7, “NAND” and “Buffer” indicate the latencies obtained
from ProbeNANDWriteLatency() and ProbeWriteBuffer(),
respectively.

When the size of write requests is less than or equal to
255 KB, “Buffer” shows much shorter latencies than
“NAND” in Fig. 7a. This indicates that such write requests
are fully handled in the write buffer. On the other hand, if
the size of write requests becomes larger than 255 KB,
“Buffer” shows a sharp increase in the write latency
probably because the write buffer cannot accommodate
the requested data and causes flash write operations. In
particular, the lowest latency of “Buffer” is similar to that of
“NAND” when the request size is 255 KB. This confirms
that the size of write buffer in SSD-A is 255 KB. Any attempt
to write data larger than 255 KB incurs extra flush overhead,
although the write buffer is empty. For SSD-C, the similar
behavior is also observed when the request size is 112 KB.
Thus, we believe that write buffer size of SSD-C is 112 KB.

In cases of SSD-B and SSD-D, slightly different behaviors
have been noted. For SSD-B, we can see that “Buffer”
exhibits the faster latency compared to “NAND” when the
request size is between 1 KB and 128 KB. For the same
reason with SSD-A and SSD-C, the size of the write buffer
for SSD-B is estimated to 128 KB. For SSD-D, it appears that
SSD-D does not make use of any write buffer, however, we
could not draw any conclusion using our methodology
since the behavior of SSD-D is so different from other SSDs.

4.2.7 Elapsed Times to Extract Parameters

Table 2 is added to show the elapsed times for measure-
ment. Extraction times range from 18 sec to 327 min, and we
believe they are short enough to be used for practical
purposes. Note that the parameter extraction is necessary
only once for each SSD. Using only a quarter of a day in the
worst case, our methodology can successfully extract the
performance parameters in all tested SSDs.

4.3 More Parameters in SSDs

In addition to the four performance parameters we
discussed in the previous section, we also identify two
policies of using the read and write buffers to enhance

performance. The first identified policy is whether an SSD
uses a prefetching or read-ahead mechanism to reduce read
latencies. To determine whether prefetching is used, we
compare two cases. The first case is to set the location R on
line 8 in Procedure 4 (ProbeNANDReadLatency()) ran-
domly, which eliminates the read-ahead effect. The second
case is to set the location R statically, which triggers the
read-ahead mechanism, if any prefetch policy was used in
SSDs. In the tested SSDs, however, we identified that no
read prefetching is used, since there is no performance
advantage in the second case compared with the first one.

The second policy we identify is whether the available
DRAM for write traffics is organized to a write cache or a
write buffer. To reduce writes to the flash memory, a write
cache keeps frequently updated pages in the DRAM, with a
possibly better replacement policy and more DRAM
capacity than a write buffer. However, a write buffer
flushes updated pages to the flash memory in FIFO order,
as soon as the buffer is full. Our test issues two writes to the
same logical address, and the second one may hit in the
DRAM, if the first write is still in the DRAM. For the three
SSDs except for SSD-C, the results show that the second
write hits in the DRAM only when the second one is issued
immediately after the first one without any other writes
between them, showing the DRAM is used as a simple write
buffer, not a write cache.

However, SSD-C does not present a clear pattern as
shown in Fig. 7c. This is because the flush operations show
asynchronous characteristics in the SSD. Furthermore, the
actual timing the flush operation is performed and the
amount of data flushed from the write buffer to NAND
flash memory vary from iteration to iteration. Table 3
summarizes the additional parameters obtained from all
tested SSDs.

4.4 Limitations

Since our extracting methodology exploits the common
architectures and characteristics found in many commercial
SSDs, it has some limitations as well. First, for a clustered
page, if an SSD supports a mechanism to hide read-modify-
write overheads, the size of a clustered page is difficult to
extract. For example, SSD-C shows no notable drop in the

644 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 5, MAY 2012

Fig. 7. The latency of write requests with increasing the size of write requests.

TABLE 2
Elapsed Time to Extract Parameters

TABLE 3
More Parameters in SSDs

write latency at every 4 Kbytes. That means the manufac-
turer of SSD-C internally exploits the performance optimi-
zations to eliminate the overhead for read-modify-write for
writes with small data sizes. For a clustered block size, if an
SSD reduces the garbage collection overheads between
sequential/random writes, obtaining the clustered block
becomes difficult. For a read/write buffer, if an SSD uses a
read-ahead technique and manages the DRAM not as a
buffer but as an associative write cache, we should redesign
our methodology to extract a read/write buffer size.

Another important policy for SSDs is the garbage
collection mechanisms and policies. Although they affect
the performance and longevity of SSDs, it is extremely
difficult to infer them without any knowledge of internal
organization, mapping policy, and FTL designs. Further-
more, the irregularity of garbage collection triggers worsens
the difficulty of inferring the garbage collection policy. For
the above reason, inferring garbage collection policies with-
out any prior knowledge of the FTL is open for further
investigation, which is beyond the limited scope of this paper.

For SSD-A, we have confirmed from the manufacturer of
the SSD that all the parameter values we found are correct.
Unfortunately, however, the parameters of the other SSDs
could not be verified by the manufacturers, as they do not
make the parameters publicly available. However, the
extracted parameters are meaningful, so long as they can
exhibit expected performance improvements by optimizing
SW components with the parameters. To verify the para-
meters indirectly, in the next section, we show the perfor-
mance improvement of the system by using the parameters
extracted from each SSD.

5 PARAMETER-AWARE I/O COMPONENT DESIGN

In this section, to demonstrate the benefits of using the
extracted parameters for system optimizations, we propose
new parameter-aware designs of I/O components in a
commercial operating system. We modify two kernel layers
in a Linux operating system, generic block layer and I/O
scheduler. Using the extracted performance parameters
from different SSDs, the modified two components adjust
the size and alignment of block requests from the file
system, to send optimized requests to SSDs.

5.1 Linux I/O Components Overview

Linux kernels have several layers of I/O components to
manage disk I/O operations. The topmost file system layer
provides the file system abstraction. The file system
manages the disks at block granularity, and the request
sizes from the file systems are always multiples of the block
size. The generic block layer under the file system, receives
block requests and process them before passing them to the
I/O scheduler layer. The generic block layer merges block
requests from the file system layer to optimize the request
size. If requests from the file system access consecutive disk
addresses, the block layer merge them into a single request.
Such merging amortizes the cost of sending requests,
reducing the overhead per byte transferred.

The merged requests from the block layer are transferred
to the I/O scheduler layer. The I/O scheduler layer
schedules I/O requests to reduce the seek times of hard
disks. The I/O scheduler reorders the requests to minimize

disk arm movements, while still providing the fairness of
disk accesses. For hard disks, one of the most commonly used
I/O schedulers is CFQ (completely fair queuing), which
provides equal sharing of disk bandwidth. However, SSDs
have completely different characteristics from hard disks.
SSDs do not require seek times to move mechanical arms, so
complex scheduling is not necessary in the I/O scheduler. It
has been shown that in SSDs, doing nothing in the I/O
scheduler (NOOP scheduler) performs better than a tradi-
tional I/O scheduler for disks, such as CFQ [34], [35]. In this
paper, we modify the NOOP scheduler to a parameter-aware
I/O scheduler for SSDs.

5.2 Optimizing Linux Generic Block Layer for SSDs

As discussed in Section 5.1, the generic block layer merges
consecutive requests from the file system to reduce the
number of requests delivered to the disks. However, such
merging operations incur trade-offs between the total disk
throughput and the response time for each request. Since
requests for large data take longer response times than
requests for small data, increasing the request size hurts
the response times for individual requests. Furthermore,
large requests consume more memory buffer cache
resources. Therefore, the block layer must use an optimal
maximum request size, which can balance between the
throughput and the response time. To find the optimal
request size for traditional hard disks, Schindler et al. used
disk track boundary [3].

In this paper, we propose two designs for the block layer
using the SSD performance parameters. The first design,
parameter aware splitting (PAS), sets the maximum request
size for merging in the block layer to the read or write
buffer size of SSDs. The second design, parameter aware
splitting and aligning (PASA), not only sets the maximum
request to the read and write buffer sizes, but also aligns
each request to the clustered page or block size.

Parameter-aware splitting (PAS) uses the size of a read/
write buffer obtained in Section 4 to set the maximum
request size in the block layer. As shown in Fig. 8a, when
the contiguous requests are submitted from the file system
layer to the generic block layer, PAS merges the requests
and splits them into pieces whose size is the read or write
buffer size of the SSD. PAS can achieve a short response
time, since the entire request can be sent to the fast DRAM
buffer in SSDs.

Second, parameter-aware splitting and aligning (PASA)
further optimizes PAS by aligning requests to the clustered
page or block size. Unlike PAS, PASA first checks whether a
request is aligned to the clustered page or block boundary. If
the request is aligned to the clustered page/block boundary,
PASA splits the requests by the size of the read or write
buffer. Otherwise, PASA first aligns the requests to the
clustered page/block boundary and splits the requests by the
read or write buffer size, as shown in a right figure in Fig. 8a.

5.3 Linux I/O Scheduler Optimization

The block layer does not reorder requests, but can only
merge and split consecutive requests from the file system.
The I/O scheduler can reorder requests and look for further
opportunities to merge and split requests by the read or
write buffer sizes. We redesign the I/O scheduler to make
requests aligned and well-split for SSDs.

KIM ET AL.: PARAMETER-AWARE I/O MANAGEMENT FOR SOLID STATE DISKS (SSDS) 645

Parameter-aware I/O scheduler (PAI) maintains two queues,
a normal queue and a pending queue, to find more mergeable
requests, as shown in Fig. 8b. The normal queue manages
well-split requests, which are aligned to the clustered page or
block size and split by the read or write buffer size. The
pending queue manages the badly-split requests, which are
not aligned to the clustered page or block boundary or split by
the read or write buffer size. The badly-split requests stay in
the pending queue for a while, to be merged with other
requests. A similar technique is used in schedulers for
traditional hard disks [36].

Since the requests in the normal queue are optimized to
the SSD, PAI dispatches the requests before the requests
in the pending queue. To prevent increasing the response
times of the pending requests and avoid starvation, PAI sets
the time bound for dispatching the requests from the
pending queue.

6 PERFORMANCE EVALUATION

6.1 Experimental Setup

We have implemented PAS and PASA in the original block
layer of the Linux operating system, and PAI as a Linux
kernel module. We use Linux kernel 2.6.24.6. The system
configurations used in this experiment are described in
Section 4.2.1. Four different SSDs used in this evaluation are
summarized in Table 1. All experiments are performed with
the ext3 file system, and the block size of the file system is
set to 4 KB.

In Section 6.2 and Section 6.3, we evaluate the perfor-
mance of SSDs with four configurations. We use the NoPAS-
NOOP (NoPAS: No-Parameter-Aware-Splitting) as the
baseline configuration and compare NoPAS-PAI, PAS-PAI
and PASA-PAI to the baseline. We use the NOOP scheduler
as the baseline I/O scheduler, since the NOOP scheduler

provides the best performance among the available disk-
based I/O schedulers with SSDs and has a reasonable
fairness guarantee for SSDs that has no seek time [35], [34].

We use two benchmarks to evaluate the modified block
layer and the I/O scheduler: postmark [37], filebench [38].
All experiments were repeated 10 times, and we mark an
error range for each result. To improve the experimental
accuracy, we flush the page cache in Linux and the write
caches of SSDs before each experiment is performed.

6.2 Postmark

The first benchmark we use for evaluation is the Postmark
(version 1.51) benchmark [37] with the file sizes varied from
256 KB to 8 MB. We use 200 simultaneous files in
200 subdirectories. The benchmark runs 3,000 transactions
for SSD-A and SSD-C, and 300 transactions for SSD-B and
SSD-D. The seed for random number generator is set to 712.
Fig. 9 shows the evaluation results for four configurations
as mentioned in Section 6.1. Figs. 9a, 9b, 9c, and 9d show the
results on SSD-A, SSD-B, SSD-C, and SSD-D, respectively.

For postmark, using PAI with neither PAS nor PASA
(NoPAS-PAI) shows mixed results. Compared to the baseline
(NoPAS-NOOP), the performance with NoPAS-PAI can
either improve or drop, depending on the file size and the
SSDs. The mixed results are due to the trade-off of using PAI.
PAI may slightly delay issuing requests to the SSD to increase
the chance to merge requests in the pending queue. If
merging does not occur, the baseline (NoPAS-NOOP), which
sends requests without delay, performs better than NoPAS-
PAI. If merging occurs frequently, the benefits of PAI
outweigh the delaying overhead.

However, combining PAS or PASA with PAI provides
noticeable performance improvements over the baseline for
large file sizes of 4 and 8 MB. With smaller input file sizes,
the performance gains are generally minor. The benefits of

646 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 5, MAY 2012

Fig. 8. Parameter aware splitting (PAS) and aligning (PASA) (a), and parameter aware I/O scheduler (PAI) (b).

Fig. 9. Postmark : Write bandwidth with postmark (the read bandwidth results show similar trends to the write bandwidth results).

size adjustment and alignment are much higher in large file

inputs than small file inputs. With the small file sizes, PAS

and PASA have few chances of adjustment, as requests are

mostly smaller than the write buffer size.
To show the effects of the request size adjustment and

alignment, table 4 presents the number of total requests, the

number of aligned requests, and the number of small

(smaller than 256 KB2) and large (larger than 256 KB)

requests. In general, the total number of requests increases

with PAS and PASA. For the 8MB file configuration, the

total numbers of requests submitted to an SSD with PAS

and PASA, increase by 171 percent and 186 percent,

respectively, compared to NoPAS. The ratio of adjusted

requests (�256 KB requests) in PAS (100 percent) and

PASA (100 percent) is higher than that in NoPAS

(23 percent). Furthermore, the ratio of aligned requests in

PASA (88 percent) is higher than that in PAS (35 percent)

and NoPAS (38 percent). Thus, in 8 MB configuration with

SSD-A, PASA outperforms PAS and NoPAS by five percent

and 20 percent with PAI.
However, in 256 KB configuration, most of the requests

(98 percent) are small ones with less than 256 KB. Therefore,

without PAS or PASA, the original requests fit in the write

buffer. Furthermore, there are relatively small increases in

aligned requests compared to 8 MB configuration. The

performance gains with 256 KB are smaller that those with

8 MB, as the performance benefits from the adjustment and

alignment are lower than the performance costs from the

increased number of requests.
The patterns of performance changes in SSD-B and SSD-

D are similar to that of SSD-A. However, SSD-C exhibits a

different behavior, with little improvement for large files by

our optimization. Instead, for SSD-C, there are modest

improvements for 256 KB, 512 KB, and 1 MB file sizes.

6.3 Filebench

The second benchmark to evaluate parameter-aware opti-
mizations is the filebench (version 1.64 and 1.48) benchmark
[38]. Among several workloads, we use three profiles
(webserver, fileserver and OLTP(online transaction proces-
sing)) of the filebench. The webserver profile reads the file
set of random sizes and appends a log file using writes. We
use 1,000 files and 16 MB average file size with 16 threads in
SSD-A and SSD-C and use 100 files in SSD-B and SSD-D.
The fileserver profile creates, writes, appends and deletes
the set of files randomly. We use 10,000 files and 1 MB
average file size with 50 threads. The OLTP profile specifies
datafiles, logfiles and database write threads. We use 10 MB
average file size and 200 shadow processes to handle the
OLTP transactions. For all the profiles, we use configura-
tions with relatively large request sizes.

Fig. 10 shows the bandwidth results from the three
profiles in the filebench for four configurations as described
in Section 6.1. In Fig. 10, NoPAS-PAI outperforms NoPAS-
NOOP in all SSDs. The bandwidth is further improved with
PAS or PASA, except for SSD-C. For SSD-A, SSD-B, and SSD-
D, combining PASA and PAI results in significant band-
width improvements, up to 321 percent with PASA-PAI in
SSD-D on OLTP profile. PAI alone can provide relatively
small improvements, but the synergy between the optimiza-
tions in the block layer and I/O scheduler improves the
bandwidth significantly when PAI is combined with PAS or
PASA. The performance enhancement of the OLTP profile is
higher than those of the other profiles (webserver and
fileserver). Since the OLTP profile produces intensive writes,
using write buffers efficiently with PAI-PAS/PASA im-
proves the overall performance significantly. SSD-C shows
little improvement with the optimizations, which are
consistent with the observation from the large file config-
uration in the Postmark benchmark in the previous section.

6.4 Discussion

The results with the two benchmarks showed that the
parametrization of the block layer and I/O scheduler

KIM ET AL.: PARAMETER-AWARE I/O MANAGEMENT FOR SOLID STATE DISKS (SSDS) 647

TABLE 4
Composition of Requests Dispatched from PAI to the Block Device Driver (Postmark with SSD-A)

Fig. 10. Normalized bandwidth with Filebench (webserver, fileserver, and OLTP profiles): y-axis is normalized to NoPAS-NOOP for each SSD.

2. The size of the read/write buffer in SSD-A is 256 KB.

provides significant performance improvements for SSD-A,
SSD-B, and SSD-D, with large input file sizes. In general, the
optimizations become more effective as the average request
sizes increase, since the block layer and I/O scheduler can
have more chances to adjust request sizes and alignment
with large request sizes. Combining PASA in the block layer
and PAI in the I/O scheduler provides the best improve-
ments for the three SSDs, as it can benefit from the synergy
of the two optimizations.

SSD-C exhibits a different behavior from the other three
SSDs. The cluster page size was extracted less clearly in
SSD-C than in the other SSDs. As SSD-C seemingly uses
some internal optimizations such as eliminating the over-
heads for read-modify-write, the performance gain by the
parametrization of the block layer and I/O scheduler is
modest for SSD-C.

However, for all four SSDs, there are few cases where the
parametrization causes consistent performance drops. A
minor modification of the two components with the
extracted SSD parameters provides significant performance
improvements for large requests, with little negative impact
for the other cases. We have attempted to apply the
extracted SSD parameters only to the two components,
since our goal is to demonstrate the usefulness of the
parameters. Further optimizations of applications or oper-
ating systems are open for future work, and we expect the
knowledge on the critical SSD parameters to help to
improve the performance of I/O-intensive applications.

7 CONCLUSION

In this paper, we proposed a new methodology that can
extract several important parameters affecting the perfor-
mance of SSDs and apply them to two components of a Linux
operating system to improve the bandwidth of SSDs. The
parameters discussed in this paper include clustered page
size, clustered block size, and the size of read/write buffer. By
optimizing the OS components with the extracted para-
meters, the write bandwidths for postmark and filebench
improved by up to 24 percent and 321 percent, respectively.

Although the methodology requires minimal assump-
tions on the common architecture of SSDs, we believe the
methodology is generic enough to be applied for many
currently available SSD designs. Such understanding of the
internal parameters of SSDs not only help to improve the
system performance by parameter-aware optimizations, but
also help to model SSD systems more accurately for system
studies. Also, the performance improvement we achieved
suggests the potential benefits of making the parameters of
SSDs publicly available by the manufacturers. Despite of
the reluctance of SSD manufacturers to open the internal
architectures of SSDs, this study shows that even a limited
information of SSD internals can improve file system
performance significantly for certain cases.

REFERENCES

[1] Samsung Elec., “Samsung SSD,” http://www.samsung.com/
global/business/semiconductor/products/flash/ssd/2008/
home/home.html, 2009.

[2] R.V. Meter, “Observing the Effects of Multi-Zone Disks,” Proc.
USENIX Ann. Technical Conf. (ATC ’97), p. 2, 1997.

[3] J. Schindler, J.L. Griffin, C.R. Lumb, and G.R. Ganger, “Track-
Aligned Extents: Matching Access Patterns to Disk Drive
Characteristics,” Proc. USENIX Conf. File and Storage Technologies
(FAST ’02), pp. 259-274, 2002.

[4] R.Y. Wang, T.E. Anderson, and D.A. Patterson, “Virtual Log Based
File Systems for a Programmable Disk,” Proc. Third Symp.
Operating Systems Design and Implementation (OSD ’99), pp. 29-43,
1999.

[5] E.K. Lee and R.H. Katz, “An Analytic Performance Model of Disk
Arrays,” Proc. ACM SIGMETRICS Conf., pp. 98-109, 1993.

[6] J.-H. Kim, D. Jung, J.-S. Kim, and J. Huh, “A Methodology for
Extracting Performance Parameters in Solid State Disks (ssds),”
Proc. IEEE/ACM Int’l Symp. Modeling, Analysis, and Simulation of
Computer and Telecomm. Systems (MASCOTS ’09), pp. 133-143, 2009.

[7] N. Agrawal, V. Prabhakaran, T. Wobber, J.D. Davis, M. Manasse,
and R. Panigrahy, “Design Tradeoffs for SSD Performance,” Proc.
USENIX Ann. Technical Conf. (ATC ’08), pp. 57-70, 2008.

[8] J. Seol, H. Shim, J. Kim, and S. Maeng, “A Buffer Replacement
Algorithm Exploiting Multi-Chip Parallelism in Solid State
Disks,” Proc. Int’l Conf. Compilers, Architecture, and Synthesis for
Embedded Systems (CASE ’09), pp. 137-146, 2009.

[9] C. Hyun, J. Choi, Y. Oh, D. Lee, E. Kim, and S.H. Noh, “A
Performance Model and File System Space Allocation Scheme for
SSDs,” Proc. Int’l Symp. Massive Storage Systems and Technologies
(MSST ’10), pp. 1-6, 2010.

[10] Samsung Elec., “NAND Flash Memory,” http://www.samsung.
com/global/business/semiconductor/products/flash/Products_
NANDFlash.html, 2009.

[11] A. Kawaguchi, S. Nishioka, and H. Motoda, “A Flash-Memory
Based File System,” Proc. USENIX Technical Conf., pp. 13-13, 1995.

[12] J. Kim, J.M. Kim, S. Noh, S.L. Min, and Y. Cho, “A Space-Efficient
Flash Translation Layer for CompactFlash Systems,” IEEE Trans.
Consumer Electronics, pp. 366-375, 2002.

[13] C. Park, P. Talawar, D. Won, M. Jung, J. Im, S. Kim, and Y. Choi,
“A High Performance Controller for NAND Flash-Based Solid
State Disk (NSSD),” Proc. Non-Volatile Semiconductor Memory
Workshop (NVSMW ’06), pp. 17-20, 2006.

[14] J.H. Kim, S.H. Jung, and Y.H. Song, “Cost and Performance
Analysis of NAND Mapping Algorithms in a Shared-bus Multi-
chip Configuration,” Proc. Int’l Workshop Software Support for
Portable Storage (IWSSPS ’08), pp. 33-39, 2008.

[15] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: A Flash Translation
Layer Employing Demand-Based Selective Caching of Page-Level
Address Mappings,” Proc. ACM Int’l Conf. Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’09),
pp. 229-240, 2009.

[16] J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee, “A Superblock-Based Flash
Translation Layer for NAND Flash Memory,” Proc. Int’l Conf.
Embedded Software (EMSOFT ’06), pp. 161-170, 2006.

[17] Y.-G. Lee, D. Jung, D. Kang, and J.-S. Kim, “�-FTL:: A Memory-
Efficient Flash Translation Layer Supporting Multiple Mapping
Granularities,” Proc. Int’l Conf. Embedded Software (EMSOFT ’08),
pp. 21-30, 2008.

[18] B.L. Worthington, G.R. Ganger, Y.N. Patt, and J. Wilkes, “On-
Line Extraction of SCSI Disk Drive Parameters,” Proc. ACM
SIGMETRICS Conf., pp. 146-156, 1995.

[19] P.J. Shenoy and H.M. Vin, “Cello: A Disk Scheduling Framework
for Next Generation Operating Systems,” Proc. ACM SIGMETRICS
Conf., pp. 44-55, 1998.

[20] B.L. Worthington, G.R. Ganger, and Y.N. Patt, “Scheduling
Algorithms for Modern Disk Drives,” Proc. ACM SIGMETRICS
Conf., pp. 241-251, 1994.

[21] G.R. Ganger, B.L. Worthington, and Y.N. Patt, “The DiskSim
Simulation Environment,” technical report, 1998.

[22] D. Kotz, S.B. Toh, and S. Radhakishnan, “A Detailed Simulation
Model of the HP 97560 Disk Drive,” technical report, Dartmouth
College, 1994.

[23] C. Ruemmler and J. Wilkes, “An Introduction to Disk Drive
Modeling,” Computer, vol. 27, no. 3, 17-28, Mar. 2000.

[24] J. Schindler and G.R. Ganger, “Automated Disk Drive Character-
ization, CMU,” Technical Report, CMU-CS-99-176, Carnegie
Mellon University, Pittsburgh, PA, Dec. 1999.

[25] A.M. Caulfield, L.M. Grupp, and S. Swanson, “Gordon: Using
Flash Memory to Build Fast, Power-Efficient Clusters for Data-
Intensive Applications,” Proc. ACM Int’l Conf. Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’09),
pp. 217-228, 2009.

[26] A.C. Arpaci-Dusseau and R.H. Arpaci-Dusseau, “Information and
Control in Gray-Box Systems,” Proc. ACM Symp. Operating Systems
Principles (SOSP ’01), pp. 43-56, 2001.

648 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 5, MAY 2012

[27] N. Joukov, A. Traeger, R. Iyer, C.P. Wright, and E. Zadok,
“Operating System Profiling Via Latency Analysis,” Proc. Symp.
Operating Systems Design and Implementation (OSDI ’06), pp. 89-102,
2006.

[28] K. Yotov, K. Pingali, and P. Stodghill, “Automatic Measurement of
Memory Hierarchy Parameters,” Proc. ACM SIGMETRICS Conf.,
pp. 181-192, 2005.

[29] T.E. Denehy, J. Bent, F.I. Popovici, A.C. Arpaci-Dusseau, and R.H.
Arpaci-Dusseau, “Deconstructing Storage Arrays,” Proc. ACM
Int’l Conf. Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’04), pp. 59-71, 2004.

[30] N. Talagala, R. Arpaci-Dusseau, and D. Patterson, “Micro-Bench-
mark Based Extraction of Local and Global Disk,” Technical
Report, CSD-99-1063, Univ. of California at Berkeley, CA, 2000.

[31] H.S. Gunawi, N. Agrawal, A.C. Arpaci-Dusseau, R.H. Arpaci-
Dusseau, and J. Schindler, “Deconstructing Commodity Storage
Clusters,” Proc. Int’l Symp. Computer Architecture (ISCA ’05),
pp. 60-71, 2005.

[32] N.C. Burnett, J. Bent, A.C. Arpaci-Dusseau, and R.H. Arpaci-
Dusseau, “Exploiting Gray-Box Knowledge of Buffer-Cache
Management,” Proc. USENIX Ann. Technical Conf. (ATC ’02),
pp. 29-44, 2002.

[33] M. Sivathanu, V. Prabhakaran, F.I. Popovici, T.E. Denehy, A.C.
Arpaci-Dusseau, and R.H. Arpaci-Dusseau, “Semantically-Smart
Disk Systems,” Proc. USENIX Conf. File and Storage Technologies
(FAST ’03), pp. 73-88, 2003.

[34] J. Kim, Y. Oh, E. Kim, J. Choi, D. Lee, and S.H. Noh, “Disk
Schedulers for Solid State Drivers,” Proc. Int’l Conf. Embedded
Software (EMSOFT ’09), pp. 295-304, 2009.

[35] D.P. Bovet and M. Cesati, “Understanding the Linux Kernel,”
O’Reilly Media Inc., 2005.

[36] S. Iyer and P. Druschel, “Anticipatory Scheduling: A Disk
Scheduling Framework to Overcome Deceptive Idleness in
Synchronous I/O,” Proc. ACM Symp. Operating Systems Principles
(SOSP ’01), pp. 117-130, 2001.

[37] J. Katcher, “PostMark: A New File System Benchmark,” http://
www.netapp.com/technology/level3/3022.html, TR3022, 1997.

[38] “FileBench,” http://www.solarisinternals.com/wiki/index.php/
FileBench, 2011.

Jaehong Kim received the BS degree in
computer engineering from Sung Kyun Kwan
University, Suwon, South Korea, in 2008, and
the MS degree in computer science, in 2010,
from Korea Advanced Institute of Science and
Technology (KAIST), Daejeon, South Korea. He
is currently a PhD candidate at KAIST. His
research interests include flash memory, cloud
computing, and virtualization.

Sangwon Seo received the BS degree in
computer engineering from Kyung-Hee Univer-
sity, Seoul, South Korea, in 2008, and the MS
degrees in computer science, in 2010, from
Korea Advanced Institute of Science and Tech-
nology (KAIST), Daejeon, South Korea, and
Technische Universitat (TU), Berlin, Germany,
respectively. He is currently a PhD candidate at
KAIST. His research interests include distributed
system, cloud computing, and virtualization.

Dawoon Jung received the BS, MS, and PhD
degrees in computer science from Korea Ad-
vanced Institute of Science and Technology
(KAIST), Daejeon, South Korea, in 2002, 2004,
and 2009, respectively. He is currently a senior
software engineer of the Flash Software Devel-
opment Team, Memory business Samsung
Electronics. His research interests include oper-
ating systems, embedded systems, and flash-
based storage systems.

Jin-Soo Kim received the BS, MS, and PhD
degrees in computer engineering from Seoul
National University, Korea, in 1991, 1993, and
1999, respectively. He is currently an associate
professor in Sung Kyun Kwan University, Suwon,
South Korea. Before joining Sung Kyun Kwan
University, he was an associate professor at
Korea Advanced Institute of Science and Tech-
nology (KAIST) from 2002 to 2008. He was also
with the Electronics and Telecommunications

Research Institute (ETRI) from 1999 to 2002, as a senior member of
research staff, and with the IBM T.J. Watson Research Center as an
academic visitor from 1998 to 1999. His research interests include
embedded systems, storage systems, and operating systems. He is a
member of the IEEE and the IEEE Computer Society.

Jaehyuk Huh received the BS degree in
computer science from Seoul National Univer-
sity, South Korea, and the MS and PhD degrees
in computer science from the University of
Texas at Austin. He is an assistant professor
of computer science at Korea Advanced Institute
of Science and Technology (KAIST), Daejeon,
South Korea. His research interests are in
computer architecture, parallel computing, vir-
tualization, and system security. He is a member
of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KIM ET AL.: PARAMETER-AWARE I/O MANAGEMENT FOR SOLID STATE DISKS (SSDS) 649

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

