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Abstract—Increasing energy consumption in server consolidation environments leads to high maintenance costs for data centers.

Main memory, no less than processor, is a major energy consumer in this environment. This paper proposes a technique for reducing

memory energy consumption using virtual machine scheduling in multicore systems. We devise several heuristic scheduling

algorithms by using a memory power simulator, which we designed and implemented. We also implement the biggest cover set first

(BCSF) scheduling algorithm in the working server system. Through extensive simulation and implementation experiments, we

observe the effectiveness of the memory-aware virtual machine scheduling in saving memory energy. In addition, we find out that

power-aware memory management is essential to reduce the memory energy consumption.

Index Terms—DRAM energy, virtual machine, scheduling, multicore processor.
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1 INTRODUCTION

AS the size of data centers continues to grow, it becomes
important to address the ever-increasing energy con-

sumption of computer systems. Not only does the high
energy consumption cause environmental problems, but it
also significantly increases the maintenance cost of data
centers. Great efforts have been devoted to reducing the
energy consumption by using various power management
features available in computer components [1], [2], [3].

Recently, a large number of virtual machines have been
consolidated in a single computer through virtualization
for efficient utilization of computer resources and ease of
maintenance. It is well known that most of the servers in
data centers are often underutilized due to overprovision-
ing [4]. Virtualization allows these underutilized servers to
be consolidated into a small number of physical servers.
Moreover, the advent of new processors with the enhanced
support for virtualization and advances in virtualization
software enables more underutilized servers to be con-
solidated. This paper targets these consolidated under-
utilized servers.

In order to provide sufficient memory for each virtual
machine, the demand for a large amount of memory has
increased. This leads to high energy consumption in the
memory system. In server systems with a large amount of
memory, the energy consumption in memory may exceed
that in processors. For example, Lefurgy et al. reported
that in a commercial server equipped with 16 processors
and 128 GB main memory, the processors are responsible
for only 28 percent of the entire energy consumption while
the memory for 41 percent [1]. Thus, one of key steps in
building energy-efficient data centers is to reduce memory
energy consumption.

The fundamental requirement to save memory energy is
to understand the characteristics of physical memory.
Typically, the entire physical memory is divided into a
number of memory blocks, each of which is the smallest
power control unit. This unit is usually termed as rank in the
SDRAM technology; in this paper, we call this unit a
memory node. Each memory node in its entirety is allowed to
be in one of power-saving modes in order to save energy.
Compared to the normal operating mode, the power-saving
mode enables memory nodes to dissipate less power
without loss of stored data. When data in a memory node
are accessed, its power mode has to be switched to the
normal operating mode. In most cases, this power mode
change incurs a substantial delay.

Using these characteristics of physical memory, the basic
approach to reducing memory power dissipation is to put
the memory nodes that are expected to experience relatively
long periods of idleness into one of power-saving modes. In
the server consolidation environment, a portion of entire
physical memory is allocated to each virtual machine. When
a virtual machine runs, only the memory nodes, which
contain the memory pages allocated to it, are accessed.
Meanwhile, other memory nodes are not accessed, and
these can be put into one of power-saving modes to reduce
memory power dissipation.
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In traditional single processor systems, only a single
virtual machine runs at a specific time; thus, the memory
nodes used by the virtual machine are the major source of
memory energy consumption. In multicore systems, how-
ever, several processor cores simultaneously access the
memory since they run a number of different virtual
machines at the same time. In these systems, the memory
energy consumption dynamically varies, depending on the
virtual machines that run together. In order to save memory
energy, it is necessary to minimize the number of memory
nodes accessed by these virtual machines through a
sophisticated scheduling policy.

In this paper, we mainly focus on this scheduling issue in
multicore-based computer systems. We present three
features, which are essential for reducing memory energy
consumption, and propose a memory power management
architecture that supports these features. Based on this
architecture, we devise several virtual machine scheduling
algorithms, the goal of which is to minimize the energy
consumption in the memory system. Through the simula-
tion experiments, the proposed BCSF scheduling achieves
memory energy savings of up to 57.4 percent compared to
the conventional architecture that does not use memory
power management techniques. We also implement the
BCSF scheduling algorithm on top of the credit scheduler
of Xen and present its impact on the performance of the
entire system.

The rest of the paper is organized as follows: Section 2
presents background information. Section 3 describes the
proposed memory power management architecture. In
Section 4, the virtual machine scheduling problem is defined,
and Section 5 explains several heuristic scheduling algo-
rithms. The methodology to evaluate the devised heuristic
scheduling algorithms is given in Section 6. Section 7
discusses the simulation results. We present the preliminary
implementation results in Section 8. Section 9 summarizes
the related work. In the final section, we present our
conclusion and future work.

2 BACKGROUND

2.1 DRAM Architecture

Typically, one, two, or four memory nodes are packaged as
a DRAM module, which is called dual in-line memory
module (DIMM). A memory node consists of a number of
DRAM chips, which work synchronously. A DRAM chip, in
turn, is composed of large arrays of capacitors and a
number of subcomponents such as row/column decoders,
sense amplifiers, etc. When all these subcomponents are
enabled, the memory can handle read/write operations
immediately. This mode is defined as a precharge state in the
DDR3 SDRAM technology [5], which we call a standby mode
in this paper.

Disabling some of subcomponents presents several
operating and power modes such as powerdown and self-
refresh modes in DDR3 SDRAM [5]. If a memory node is in
one of these low-power modes, it dissipates less power
while retaining the stored data. In order to service read/
write operations, however, the memory node should
transition to the standby mode, where all subcomponents
are enabled. This power mode transition incurs a large

transition delay and increases the memory access latency,
resulting in significant performance degradation in the
entire system. To avoid this performance degradation, the
memory nodes that are expected to be accessed soon should
be in the standby mode.

The actual power dissipation and transition delays of
several power modes vary, depending on the size and
operating clock of individual DRAM chips. Throughout this
paper, we assume the use of 4 GB DDR3 registered DIMMs,
which are widely used in server class computers. Note that
they are equipped with a registering clock driver (RCD) [7]
for high reliability. RCD continuously consumes substantial
power even when DRAM chips enter one of low-power
modes. Table 1 shows the power dissipation and transition
delays of this DRAM module [6]. The self-refresh mode is used
as the power-saving mode in this paper. In DDR3 DRAM, the
least power is dissipated in this mode.

2.2 Virtual Machine

Our memory power management architecture is based on
the Xen virtual machine monitor (VMM) [8]. The basic
function of Xen is to create several secure and isolated
runtime environments on a single computer. When creating
a new virtual machine, Xen makes virtual devices such as
virtual processors, virtual disks, and virtual network
interfaces.

At the same time, Xen allocates the entire requested
memory to the virtual machine at once because Xen does
not currently use a demand paging technique. Usually, this
allocated memory cannot be used by other virtual ma-
chines, except when transferring data between virtual
machines through temporary page sharing. Once a virtual
machine is created, Xen schedules its virtual processor,
which begins the boot-up procedure and eventually
executes tasks inside the guest operating system.

A single virtual machine may have more than two virtual
processors and run an SMP operating system to increase
throughput. VMware employs a coscheduling technique to
schedule such virtual processors [9]. Currently, Xen does
not place any restrictions on scheduling more than two
virtual processors that belong to a virtual machine. In this
paper, we assume that all virtual machines use a single
virtual processor except isolated driver domain (IDD). IDD
is a special virtual machine that has a privilege to directly
access physical hardware devices since other normal virtual
machines are not allowed to access the physical hardware
devices for security reasons. IDD provides hardware-
related services on behalf of the normal virtual machines.

The latest version of Xen uses a credit scheduler [10], [11]
to schedule virtual machines. The credit scheduler provides
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Power Dissipation and Transition Delays of
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fair sharing of CPU time among virtual machines based on
credits. A credit indicates the relative amount of CPU time
that a virtual machine can consume while guaranteeing
fairness among virtual machines. Virtual machines con-
sume credits during their execution, and the credits of all
virtual machines are recharged periodically. Virtual ma-
chines that exhaust their credits are not executed until their
credits are recharged. Note that Xen recently switches from
a global request queue to a per-PCPU request queue, and
thus, the credit scheduler uses a separate run queue for each
processor core.

3 MEMORY POWER MANAGEMENT ARCHITECTURE

The proposed memory power management architecture is
based on the current memory management and scheduling
architecture of Xen. Fig. 1 shows the overall memory power
management architecture proposed in this paper. This
section presents three features required to save memory
energy based on this architecture.

3.1 Memory Nodes Identification

The first feature is to identify a set of memory nodes
accessed by each virtual machine, which is denoted as MðvÞ
or the access set of virtual machine v. Monitoring memory
pages accessed by a virtual machine is one way to get the
access set of the virtual machine. A nonintrusive way of
tracking the accessed memory pages is to use hardware page
faults as in [12]. In this technique, page table entries are
deliberately invalidated; the pages that induce page faults
are those used by the virtual machine running at that time.
The access set of the virtual machine can be easily obtained
from these accessed memory pages. However, it is necessary
to periodically perform this task in order to maintain up-to-
date information on the access sets of virtual machines. Due
to the high overhead in the frequent use of page faults, this
technique is inefficient to be used in the real world.
Moreover, we cannot always guarantee that the recognized
memory nodes will be accessed in the future since this
technique relies only on the past behavior of virtual
machines.

In our memory power management architecture, the set
of memory nodes that contain memory pages allocated to a
particular virtual machine is used as the access set of the

virtual machine. When the memory allocator of the VMM
allocates memory pages to a newly created virtual machine,
the access set of the virtual machine is identified and
recorded in the access set table. The access set acquired
from this method may be larger than the access set
identified from the previous technique, which uses hard-
ware page faults. However, this method does not incur any
runtime overhead for detecting access sets, and we can
ensure that the virtual machine never accesses other
memory nodes not in this access set.

3.2 Power Mode Transition

The second feature is to control memory power mode by
using the identified access sets. As shown in Fig. 1, the
memory power control module handles the power mode
of each memory node based on currently used memory
nodes. The currently used memory nodes at time t, which
are denoted as CðtÞ, indicate a set of memory nodes
accessed by virtual machines running on every processor
core at time t. Since CðtÞ is the union of the access sets of
those virtual machines, it usually changes when one virtual
machine finishes and another begins to run on any of the
processor cores.

In order to reduce memory energy consumption without
performance loss, the memory power control module puts
memory nodes in CðtÞ in the standby mode, and other
memory nodes in the power-saving mode. Since CðtÞ may
change when the contexts of two virtual machines are
switched, the virtual machine scheduler of each processor
core informs the memory power control module of the access
set of the newly scheduled virtual machine in advance of
performing context switch between two virtual machines.
When informed by the virtual machine scheduler, the
memory power control module updates CðtÞ and transitions
the power mode of each memory node if necessary.

Transitioning power modes from the power-saving
mode to the standby mode incurs a significant delay, as
mentioned in Section 2.1. If the delay exceeds the time
required for a context switch between two virtual machines,
the next virtual machine may experience an unexpected
delay when accessing memory node whose power mode
transition is in progress. In order to avoid this performance
degradation, the context switching latency should be larger
than the transition delay from the power-saving mode to
the standby mode.

We have measured virtual machine context switching
latencies on the latest Intel Xeon E5405 processor running at
2 GHz. Fig. 2 shows the cumulative distribution function of
the context switching latencies when eight virtual machines
are executing various workloads on the same processor core.
The figure illustrates that 98 percent of context switches take
longer than the power mode transition delay, as shown in
Table 1. Thus, we expect that these transition delays hardly
influence the performance as long as we initiate the power
mode transition before the actual context switch.

3.3 Memory-Aware Virtual Machine Scheduling

In multicore systems, the execution sequence of virtual
machines affects memory energy consumption. We explain
this issue with an example. Suppose that a computer system
has two processor cores and four memory nodes. Fig. 3
shows two different virtual machine execution sequences
and memory energy consumption in this system. In the
figure, a shaded box indicates a running virtual machine;
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Fig. 1. Overall memory power management architecture.



we illustrate the virtual machine ID and its access set in the
shaded box. In addition, CðtÞ values at each unit time are
shown. We assume that the memory energy consumption of
a memory node in the standby mode for a unit time is one;
we ignore the memory energy consumption in the power-
saving mode. Based on this assumption, the memory
energy consumption per unit time is also displayed.

Without any memory power management, the total
memory energy consumption will be 32 since all four
memory nodes should be in the standby mode for eight unit
times. Using the features explained in Sections 3.1 and 3.2,
we can reduce the total memory energy consumption. The
actual amount of energy savings depends on the virtual
machine execution order. When virtual machines are
executed in the order as shown in Fig. 3a, the total memory
energy consumption is reduced to 24.

Our work is motivated by the fact that in multicore
systems, the total energy consumption in memory can be
reduced further by changing the schedule of the given virtual
machines. For example, if the execution sequence of the same
virtual machines is changed as depicted in Fig. 3b, the total
energy consumption is decreased to 16. Note that the energy
reduction stems from the decrease in the number of memory
nodes that are put into the standby mode by rearranging the
execution order of virtual machines.

Therefore, it is necessary to develop a new scheduling
policy that reorders the execution sequence of virtual
machines in order to save additional memory energy. The
fundamental goal of this memory-aware virtual machine
scheduling is to minimize the number of memory nodes in
the standby mode. In the following sections, we mainly
focus on this issue.

When devising a virtual machine scheduler, one of the
important considerations is to ensure fairness among
virtual machines. In our memory power management
architecture, we insert memory-aware scheduling features
into the credit scheduler of Xen instead of making a new
scheduler from scratch. Thus, our scheduler selects a virtual
machine among the virtual machines that have credits and
reside in the run queue. This temporarily reorders the
execution sequence of virtual machines in the run queue,
and thus, ensures that the memory-aware scheduler
provides the same level of fairness compared to the credit
scheduler of Xen.

4 MEMORY-AWARE VIRTUAL MACHINE

SCHEDULING PROBLEM

In this section, we formally define the memory-aware virtual

machine scheduling problem. The given computer system

consists of a set of memory nodes MM and C processor cores,

where C � 2. The system has a set of virtual machines and

schedules them based on their credits as explained in

Section 2.2.
Let us denote V as the set of all virtual machines and Vi as

the set of virtual machines that are executed on the

ith processor core. vti indicates the particular virtual machine

that runs on the ith processor at time t. Then, CðtÞ can be

defined as

CðtÞ ¼
[C
i¼1

MðvtiÞ;

where MðvÞ is the access set of the virtual machine v.
The power dissipation in memory at time t, denoted as

pðtÞ, depends on the number of memory nodes and their

operating modes. More specifically, pðtÞ can be defined as

pðtÞ ¼ e � jCðtÞj þ e � jMM� CðtÞj;

where e and e are the power dissipation of a memory node in

the standby mode and the power-saving mode, respectively.
Therefore, the total energy consumption in memory, E,

from 0 to a fixed time T is

E ¼
Z T

0

pðtÞdt;
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Fig. 3. Memory energy consumption of various virtual machine
execution sequences. (a) Scenario 1. (b) Scenario 2.

Fig. 2. The cumulative distribution function of the virtual machine context
switching latencies.



and our goal is to minimize it. That is given by

minE ¼ min

Z T

0

pðtÞdt

¼ min

Z T

0

ðe � jCðtÞj þ e � jMM� CðtÞjÞdt

¼ min ðe� eÞ
Z T

0

jCðtÞjdtþ e
Z T

0

jMMjdt
� �

:

Since e, e, and jMMj are the invariant with respect to time,
minimizing E is equivalent to

min

Z T

0

jCðtÞjdt:

Here, the memory-aware virtual machine scheduling
problem is to find a schedule S ¼ fS1; S2; . . . ; SCg that
minimizes

R T
0 jCðtÞjdt, where Si is a virtual machine

execution sequence on the ith processor core such that Si ¼
ð�1; �2; . . . ; �k; . . .Þ and �k 2 Vi.

The restricted version of this problem is proven to be
NP-COMPLETE.1 Therefore, we devise several heuristic
virtual machine scheduling algorithms that aim to minimize
memory energy consumption.

5 HEURISTIC SCHEDULING ALGORITHMS

In this paper, we present three different heuristic virtual
machine scheduling algorithms: BCSF, BNF, and COMB.
Each scheduling algorithm makes a scheduling decision
based on CðtÞ and the access set of the virtual machines in
run queues. This section illustrates the key idea and
pseudocode of each algorithm. The following notations
are used in pseudocodes to describe scheduling algorithms:

. IRi represents the ordered set of virtual machines
waiting in the run queue of the ith processor core.

. � denotes the next virtual machine to run as a result
of the scheduling decision.

Each scheduling algorithm is invoked when the VMM needs
to schedule a virtual machine in the ith processor core.

5.1 FIFO

First In, First Out (FIFO) does not use any sophisticated
scheduling policies. It simply returns the virtual machine at
the head of IRi as the next virtual machine to run. FIFO
shows the energy saving performance when the execution
order of virtual machines is not modified. We consider the
memory energy consumption of FIFO as the base memory
energy consumption, denoted as Ebase.

5.2 BCSF

Biggest Cover Set First (BCSF) utilizes CðtÞ to schedule
virtual machines. From the access sets of virtual machines
in IRi, BCSF tries to find the biggest access set that is
completely covered by CðtÞ and schedules the correspond-
ing virtual machine. If such a virtual machine is not found,
BCSF looks for other virtual machine whose access set is
overlapped with CðtÞ as many as possible. The main idea of
BCSF is to suppress the increase in CðtÞ whenever it

schedules a new virtual machine. The pseudocode of BCSF
is described in Algorithm 1.

Algorithm 1. BCSF

1: �  �

2: for j 1; jIRij do

3: v the jth virtual machine in IRi

4: if MðvÞ � CðtÞ AND jMð�Þj < jMðvÞj then

5: �  v

6: end if

7: end for

8: if � ¼ � then

9: shared 0

10: for j 1; jIRij do

11: v the jth virtual machine in IRi

12: if jMðvÞ \ CðtÞj > shared then

13: �  v

14: shared jMðvÞ \ CðtÞj
15: end if

16: end for

17: end if

5.3 BNF

Biggest memory Node First (BNF) schedules virtual ma-
chines based on the popularity of individual memory nodes.
The popularity of a certain memory node is defined as the
number of virtual machines that use the memory node in the
entire computer system. The higher the popularity of a
memory node is, the more virtual machines use it.

The pseudocode of BNF is displayed in Algorithm 2.
BNF uses two global variables: � and r. � is a set of memory
nodes, and r is used in selecting memory nodes for �. These
values are globally shared among all processor cores.

Algorithm 2. BNF

1: if IRi ¼ � or beginning of the schedule then

2: r 1

3: � �

4: end if

5: repeat

6: � � [ the rth popular memory node in MM

7: �  �

8: for j 1; jIRij do

9: v the jth virtual machine in IRi

10: if MðvÞ � � AND jMð�Þj < jMðvÞj then

11: �  v

12: end if

13: end for

14: if � ¼ � then

15: r rþ 1

16: end if

17: until � 6¼ �
In BNF, each processor core tries to select the access set that

is completely covered by � and schedules the corresponding
virtual machine. If a processor core cannot find such an access
set, � is expanded and the scheduler repeats finding a suitable
access set with it. The expansion of � enables the scheduler to
select virtual machines that have bigger access sets. This also
increases the size of CðtÞ and memory energy consumption.
Thus, in order to save memory energy, it is necessary to keep
the size of � as small as possible.
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In order to curb the growth of �, BNF exploits the
popularity of memory nodes. At first, � contains only the
memory node with the highest popularity. When � is
expanded, the memory node with the next highest popularity
is inserted to �. Initially, � consists of the memory nodes with
relatively high popularity. In this case, the probability of
finding the access set that is completely covered by � is high in
each processor core, avoiding the expansion of � substan-
tially. Moreover, the small access set size of the selected
virtual machine (due to the small �) leads to significant
memory energy savings in BNF.

5.4 COMB

COMB is a variant of BNF, which is enhanced with the fine-
grained control over �. Whereas BNF exploits the popularity
of memory nodes to schedule virtual machines, COMB uses
memory node combinations. In this paper, memory node
combinations of the given MM indicate all the possible
combinations from 1-combinations to jMMj-combinations.
These are partially ordered from the smallest combination
to the largest. We present an example of memory node
combinations for jMMj ¼ 4 in Table 2. The subscript of each
combination shown in the table stands for the index of the
partially ordered combinations. Note that the number of
possible memory node combinations for a given MM is 2jMMj � 1.

Algorithm 3 presents the pseudocode of COMB. COMB
schedules virtual machines through the same method used
in BNF, with the exception of constructing �. � is initially
the memory node combination with the smallest index. If a
processor core cannot find the access set that is entirely
covered by �, � is replaced with the memory node
combination of the next index.

Algorithm 3. COMB

1: if IRi ¼ � or beginning of the schedule then

2: r 1

3: � �

4: end if

5: repeat

6: � the rth memory node combination from MM

7: �  �

8: for j 1; jIRij do

9: v the jth virtual machine in IRi

10: if MðvÞ � � AND jMð�Þj < jMðvÞj then

11: �  v

12: end if

13: end for

14: if � ¼ � then

15: r rþ 1

16: end if

17: until � 6¼ �

Compared to BNF, COMB further reduces the growth of
� by using memory node combinations in organizing �. In
BNF, whenever no access set that is completely covered by
� is found, � has to be expanded by adding another memory
node, increasing the size of �. In contrast, in the same
situation, COMB does not immediately expand � but
replaces it with the memory node combination of the next
index, which is usually the same size as the previous one.
This gives COMB additional chances to find a suitable
access set without increasing the size of �, leading to
additional energy savings.

5.5 Time Complexity

The time complexity of scheduling algorithms is important
since scheduling is one of the most frequently-invoked
services in VMM. Thus, its overhead should be kept small
to avoid performance degradation. Table 3 summarizes the
time complexity of each algorithm, where � stands for the
average number of virtual machines in a run queue of each
processor core.

BCSF requires the least computation since it just checks
all virtual machines in the run queue. BNF is more complex
than BCSF as it has to consider the popularity of memory
nodes. COMB shows the highest time complexity since it
searches for all the combinations of memory nodes, which
requires O ð2jMMjÞ. Thus, the use of COMB requires careful
considerations in a computer system with a large number of
memory nodes.

6 EVALUATION METHODOLOGY

We have developed a memory power simulator, called
MPSim, to evaluate the scheduling algorithms described in
the previous section.

6.1 Simulation Parameters

6.1.1 Size of Simulated Computer System

One of the basic simulation parameters is the number of
processor cores and the amount of RAM in the system under
evaluation. Given the memory nodes, the maximum memory
energy consumption, denoted as Emax, indicates the memory
energy consumption assuming that no memory power
management technique is used, and thus, every memory
node is in the standby mode. Note that we do not consider
the memory power consumption during read or write
operations inEmax since it highly depends on the workloads.
Table 4 shows the various systems used in the experiments.

6.1.2 Consolidation Ratio

Another simulation parameter is the consolidation ratio,
which represents the average number of virtual machines
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Computer System with Four Memory Nodes
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of the Heuristic Scheduling Algorithms



that run on a single processor core. This paper utilizes three
different consolidation ratios: 4, 8, and 12 virtual machines
per processor core. The total number of virtual machines of
a system is given by the number of processor cores of the
system multiplied by the consolidation ratio.

6.1.3 CPU and I/O Burst Time Trace

In order to reflect the execution characteristics of virtual
machines in the simulator more realistically, statistics on the
CPU and I/O burst time are used. The CPU burst time
means the time duration that a virtual machine runs before
it is switched out due to I/O events or the expiration of a
given time slice. The I/O burst time represents the time
duration that a virtual machine waits for the completion of
I/O events. The CPU burst time of a virtual machine, as
well as its I/O burst time, depends on the workload
characteristics of individual virtual machines.

We have collected CPU and I/O burst time traces from
virtual machines running on a real platform using Xen. We
have instrumented the Xen scheduler so that we can record
the actual CPU and I/O burst time of the given workload.
The traces are gathered from three different workloads:
Linux kernel compilation (KRNL), RUBiS auction site
benchmark (RUB) [14], and Web browsing through VNC
(VNC) [15]. These three workloads exhibit different execu-
tion characteristics, which are summarized below.

. KRNL. This workload shows a long CPU burst time
and almost no I/O burst time.

. RUB. Only a relatively small amount of CPU time is
necessary to process HTTP requests. Thus, the CPU
burst time is short, while the I/O burst time is
relatively long.

. VNC. This workload shows a mixture of CPU and I/O
intensive characteristics since rendering Web pages
requires significant CPU time, while the VNC server
and client send/receive data over the network.

We construct a different mixture of these workloads for
each consolidation ratio, as summarized in Table 5. Since
the actual traces are affected by the consolidation ratio and
workload combinations, we have gathered the traces
separately for each configuration shown in Table 5 and
used in the comparable simulation experiments.

6.1.4 Access Set Configuration

The final simulation input is the access set of each virtual
machine. We actually identify the access sets of all virtual
machines from the working system. Note that we evenly

distribute the entire physical RAM to virtual machines. In
System B, for example, each virtual machine uses 490 MB

for main memory if the consolidation ratio is 8 VMs/core.
Creating and destroying virtual machines repeatedly

lead to memory fragmentation and increase the access sets
of the newly created virtual machines. In order to see this
impact on memory energy consumption, we use three
different access set configurations captured as follows: The
MAS1 configuration is taken from the access sets when Xen
initially creates all virtual machines. The MAS2 configura-
tion is obtained after half of the total virtual machines are
destroyed and recreated; the MAS3 configuration is obtained
after two and half of the total virtual machines are
destroyed and recreated.

The actual property of access set configurations is
affected by the size of the system and consolidation ratios.
As an example, we show the property of the access set
configurations actually identified from System B under the
consolidation ratio of 8 VMs/core in Table 6. Xen currently
tries to allocate a contiguous memory region to a newly
created virtual machine. Thus, MAS1 shows smaller
memory nodes than other configurations.

6.2 Simulation Architecture

MPSim simulates virtual machine executions over a number
of processor cores and keeps track of CðtÞ at every time t for
a given simulation duration. The series of CðtÞ is used to

estimate the total memory energy consumption.
For each processor core, MPSim classifies all simulated

virtual machines into the following four states:

. EXECUTE for the virtual machine that is currently
running,

. RUNNABLE for the virtual machine that is waiting for
the CPU with remaining credits,

. EXPIRED for the virtual machine that has exhausted
its credit, and

. WAIT for the virtual machine that waits for the
completion of I/O event.

MPSim maintains a separate queue for each state, and
virtual machines in the same state are kept in the same
queue. Especially, the queue for the RUNNABLE state is
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simply called the run queue. Fig. 4 shows these states and
possible state transitions.

Each simulated processor core in MPSim repeats the
following procedures for the specified simulation duration:

1. Virtual machine scheduling. MPSim selects one of
virtual machines in the run queue based on a
scheduling algorithm. CðtÞ is updated using the
access set of the selected virtual machine if necessary.

2. Execution time generation. The execution time of the
selected virtual machine is decided using the CPU
burst time trace, one of the simulation parameters
explained in Section 6.1.3. Then, the state of the
virtual machine is changed toEXECUTE (transition S).

3. Execution. If the execution time of the virtual
machine is equal to or greater than the time slice,
which is, by default, 30 ms in the credit scheduler,
the virtual machine is preempted. Otherwise, the
virtual machine voluntarily relinquishes the CPU
after consuming its CPU burst time. In both cases,
MPSim charges 100 credits of the running virtual
machine for every 10 ms as the current credit
scheduler of Xen does.

4. Postprocessing. If the virtual machine voluntarily
relinquishes the CPU, the state of the virtual machine
is changed to WAIT (transition F3). For other virtual
machines, which consume the entire time slice, the
next state is decided based on the remaining credits. If
the virtual machine still has some credits, its state
transitions again to RUNNABLE (transition F1); other-
wise, to EXPIRED (transition F2).

After the postprocessing procedure, MPSim moves to the first
procedure in order to pick the next virtual machine to run.

A virtual machine in the WAIT state waits for a specific
amount of time, which simulates the waiting time for
I/O events. In MPSim, the waiting time of the virtual
machine is determined by using the I/O burst time trace
(cf. Section 6.1.3). After the decided I/O burst time has
expired, the state of the virtual machine is changed to
RUNNABLE if it has remaining credits (transition R1);
otherwise, to EXPIRED (transition R2).

Like the credit scheduler of Xen, MPSim recharges the
credits of all virtual machines every 30 ms [10], [11]. Once
the credits are recharged, virtual machines in the EXPIRED
state advance to the RUNNABLE state (transition R3).

7 SIMULATION RESULTS

This section presents the simulation results. All the
measurements are taken from the average of 50 simulations,
each running for 10,000 ms of simulated time.

7.1 Base Memory Energy Consumption

7.1.1 System Size

This section examines the impact of the system size on Ebase
relative to Emax. Emax of a given system is directly affected
by the number of memory nodes installed in the system; we
denote this number as jMMj. However, Ebase depends on CðtÞ,
as explained in Section 4. Since CðtÞ represents the set of
memory nodes used by virtual machines running at the
same time, it is proportional to both: 1) the average number
of memory nodes used by a virtual machine, denoted as
Nmem, and 2) the number of processor cores of the system,
denoted as NC. Thus,

Ebase

Emax
/ NC �Nmem

jMMj :

Fig. 5 plots Ebase normalized to Emax of the various
computer systems listed in Table 4. We assume the access set
configuration of MAS1 and the consolidation ratio of 8 VMs/
core. The figure shows that even without any scheduling
algorithm, our memory power management architecture
successfully saves memory energy.

The relative amount of energy savings in each system is not
the same. In this experiment, the same access set configura-
tion is used, and thus, Nmem is identical in all cases. Then,

Ebase
Emax

/ NC
jMMj :

We denote the ratio of NC to jMMj simply as C/M ratio. When
the C/M ratio is identical as in System A, B, and C, we
observe that the relative memory energy consumption is
similar to about 60 percent of Emax, regardless of the actual
size of each system. However, when we decrease the C/M
ratio as shown in the second half of Table 4 (System B1 to
B5), the memory energy consumption reduces. Especially in
System B5, which has the smallest C/M ratio among all the
simulated systems, the memory energy consumption is
reduced to about 48.5 percent of Emax.

As the degree of server consolidation grows, the demand
for a large amount of memory is increasing to provide
sufficient memory to each virtual machine. Thus, the
C/M ratio is also expected to decrease. In such an
environment, our result shows that the proposed memory
power management architecture effectively reduces the
memory energy consumption.
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Fig. 4. States transitions of virtual machines.

Fig. 5. Normalized Ebase under various system size configurations.



7.1.2 Access Set Configuration

We measure Ebase of System B under various access set
configurations when the consolidation ratio is 8 VMs/core.
The results are displayed in Table 7. We observe that Ebase is
strongly influenced by the access set configuration. As the
access set configuration changes from MAS1 to MAS3, the
access set size of each virtual machine increases and so does
CðtÞ. This eventually raises the memory energy consumption.

7.2 Energy Savings of Scheduling Algorithms

The following sections discuss the additional memory
energy savings relative to Ebase via memory-aware schedul-
ing algorithms. For each scheduling algorithm, we measure
the energy consumption of System B under various
consolidation ratios and access set configurations. Fig. 6
shows the memory energy savings relative to Ebase.

7.2.1 Impact of Consolidation Ratio and Access Set

Configuration

In any access set configuration, we notice that the memory
energy savings tend to be improved as the consolidation
ratio increases. Enlarging the consolidation ratio increases
the number of virtual machines in the run queue. This
allows each algorithm to find a more suitable virtual
machine to schedule, leading to better energy savings.

Fig. 6 also presents the memory savings for various
access set configurations. We find that the proposed
scheduling algorithms result in more energy savings with
respect to Ebase for all the access set configurations. The
largest energy savings have been achieved when the access
set configuration is MAS1. However, as the access set
configuration varies from MAS1 to MAS3, the amount of
energy savings decreases accordingly. To achieve more
energy savings, this indicates that the memory power-aware
scheduling algorithms should be accompanied by power-
aware memory management that can shrink the access set
size of each virtual machine.

7.2.2 Energy Saving Performance of Individual

Scheduling Algorithms

First of all, COMB shows substantial energy saving
performance when the consolidation ratio is small, while
the energy savings are not greatly improved as the
consolidation ratio increases. As explained in Section 5.4,
COMB consumes substantial CPU time to suppress the
increase in CðtÞ through fine-grained control over �. In real-
world workloads, however, it turns out that this additional
effort does not lead to significant energy savings.

BCSF exhibits the largest energy savings when 12 virtual
machines per processor core are consolidated under the
MAS1 access set configuration. In this configuration, BCSF

results in energy savings of up to 22.3 percent relative to
Ebase, which is 57.4 percent relative to Emax of the given
system. BCSF shows superior energy saving performance
in MAS1. This is because CðtÞ is not drastically increased
since BCSF usually selects the access set that is completely
covered by the current CðtÞ. If BCSF cannot find such
access sets, CðtÞ is expanded to include the access set of the
newly scheduled virtual machine. In spite of this, CðtÞ does
not grow much since the access set size of each virtual
machine is relatively small in MAS1.

In MAS2 and MAS3, the amount of memory energy saved
using BCSF considerably decreases due to relatively large
access set size. In BCSF, the presence of even one big access
set can be a significant obstacle in keeping the size of CðtÞ
small. When the large access set is selected and the
corresponding virtual machine is scheduled, CðtÞ is ex-
panded. The increased CðtÞ hardly shrinks although virtual
machines with small access sets are scheduled later. In
BCSF, each processor core chooses the access set over-
lapped with CðtÞ as many as possible but does not consider
overlapping with the access sets selected in other processor
cores. Thus, the selected access sets usually do not contain
many same memory nodes. These access sets form CðtÞ
again, and the size of CðtÞ is not easily reduced. This leads
to the small memory energy savings.

BNF saves much smaller energy than BCSF. Initially, � is
small. As time advances, � has to increase in order to
schedule virtual machines whose access sets are not
covered by �. As BNF schedules virtual machines with
increased �, it has a similar problem as BCSF. Each
processor core chooses the access set overlapped with � as
many as possible but does not reflect the access sets of the
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TABLE 7
Normalized Ebase of System B under Different Access Set

Configurations and Consolidation ratio of 8 VMs/Core

Fig. 6. Energy savings of BCSF, BNF, and COMB for various consolidation ratios and access set configurations. (a) MAS1. (b) MAS2. (c) MAS3.



virtual machines scheduled on other processor cores. Then,
the selected access sets usually do not include many same
memory nodes. Thus, in this case, BNF does not efficiently
save memory energy.

8 IMPLEMENTATION

We implement the BCSF algorithm on top of the credit
scheduler of Xen 3.4 since it shows the best energy saving
performance in most of the simulation results. This section
presents the actual energy savings and the impact of
memory-aware scheduling on the existing scheduling
architecture.

For measurements, we use a server equipped with two
Xeon E5405 (quad-core) processors and 32 GB RAM.
Throughout the experiments in this section, we run two
virtual machines for KRNL, three for RUB, two for VNC,
and one for IDD over each processor core (i.e., 8 VMs/core)
unless otherwise stated. All the measurements are taken
while running this workload for 300 seconds.

In order to compare the simulation results with the
implementation results under different access set status,
MAS1 to MAS3 are also used in the implementation
experiments. For MAS1, the experiments are performed
when Xen initially creates all virtual machines. For MAS2

and MAS3, we perform the experiments after half of all
virtual machines and two and half of all virtual machines
are destroyed and recreated, respectively.

Unfortunately, the memory controller of our server does
not provide any direct interfaces for controlling the memory
power mode although DRAM itself has several low-power
modes. As a result, we log the scheduling time of each
virtual machine and its memory node status during the
execution of workloads and indirectly calculate the energy
consumption.

8.1 Impact of Memory-Aware Scheduling on the
Conventional Architecture

In this section, we use the MAS1 access set configuration for
all experiments.

8.1.1 Scheduling Overhead

The BCSF scheduling algorithm adds additional computa-
tion time when scheduling virtual machines. Scheduling is
one of the most frequently invoked services in the VMM
and needs to be lightweight not to affect system perfor-
mance. We measure the average elapsed time to schedule a
virtual machine without memory-aware scheduling and
with the BCSF algorithm. Table 8 shows the measured
time. When using BCSF, additional 1 �s, which is about
8.3 percent of the conventional scheduling time, is spent to
select a virtual machine that can reduce memory energy
consumption. When we run an experiment for 300 seconds,
however, less than 0.1 second is consumed in scheduling

virtual machines, and thus, additional 1 �s for memory-
aware scheduling is negligible and hardly affects the overall
system performance.

8.1.2 Fairness

As stated in Section 3.3, the memory-aware virtual machine
scheduling is based on the credit scheduler of Xen and has
the same level of fairness. In order to see the effect of
memory-aware virtual machine scheduling on fairness, we
run eight virtual machines on each processor core and make
them compile the Linux kernel. Then, we measure the
elapsed time and display the results in Table 9. As expected,
memory-aware virtual machine scheduling distributes CPU
time quite evenly over all the virtual machines.

8.1.3 Run Queue Waiting Time

Although memory-aware virtual machine scheduling re-
veals the same level of fairness compared to the credit
scheduling, reordering virtual machine execution sequences
temporarily affects the waiting time in the run queue. This
waiting time influences the responsiveness of virtual
machines. We measure the average waiting time of virtual
machines in the run queue under the MAS1 access set
configurations, as shown in Table 10. Using the BCSF
algorithm, about 37 percent of waiting time is added
compared to the results without memory-aware virtual
machine scheduling. This shows the trade-off between
energy savings of the entire system and responsiveness of
individual virtual machines.

The average waiting time of IDD is shorter than that of
other virtual machines. The major reason is that IDD
frequently runs for relatively short time since its task is
usually to handle interrupts of physical hardware devices.
Thus, IDD does not exhaust its credit and remains in the run
queue for most of the experiment time, leading to the higher
probability to be scheduled. Also, the increased average
waiting time of IDD using BCSF is smaller than that of other
virtual machines. One of the reasons is that IDD has a bigger
access set than other normal virtual machine due to the
memory allocation policy of Xen. In BCSF, there can be
several access sets covered by CðtÞ when CðtÞ is large, but
the biggest one is selected. Thus, virtual machines of big
access sets have a higher probability to be scheduled when
CðtÞ is large. Likewise, the big access set of IDD leads to
more chances to be scheduled when CðtÞ is large.
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8.2 Energy Savings of BCSF Scheduling

We display the energy consumption measured through
simulation and implementation experiments under various
access set configurations together in Fig. 7. In the figure, Sim
stands for the simulation results and Impl for the implemen-
tation results. For Ebase, the implementation results present
energy consumption similar to the simulation results, as
shown in Fig. 7a. However, when BCSF is used, we observe
that simulation results and implementation results have a
non-negligible difference, as depicted in Fig. 7b.

One of the major reasons for this gap is the increased
waiting time of IDD in the run queue, as shown in Table 10.
The increased waiting time of IDD leads to the deferred
interrupt processing, which increases the I/O burst time of
other virtual machines. This bias is not considered in the
simulation experiments with BCSF since we use the same
I/O burst time traces for all algorithms under evaluation in
the previous section. Because of the increased I/O burst
time, the number of virtual machines in the run queue
decreases and BCSF has a reduced chance to find a more
suitable virtual machine, which might reduce energy
savings. Thus, in implementation experiments, BCSF
consumes more energy than that in the simulation.

We apply the bias in the simulation experiments with
BCSF by adding the increased I/O burst time into the I/O
burst time traces and measure the energy consumption
again. The simulation results, denoted as Sim+, are also
shown in Fig. 7. By doing this, the energy difference between
the simulation and implementation results is decreased
within 1.6 percent of Emax from 5.7 percent of Emax.

8.3 Shared Memory Impact on Saving Memory
Energy

Xen exploits shared memory to move data, such as disk
blocks and network packets, between virtual machines. The
previous simulation experiments cannot estimate the
impact of shared memory since shared memory is dyna-
mically created and removed. Due to the implementation,
we can actually evaluate such impact.

First, we adjust the access set of a virtual machine when
it uses the shared memory that is located out of the memory
nodes it currently uses. After the virtual machine releases
the shared memory, the access set of the virtual machine is
restored. The modified access sets are used when schedul-
ing virtual machines in BCSF and updating CðtÞ.

We display the results, denoted as Impl-sh, in Fig. 7. When
the shared memory is considered, the access sets of virtual
machines expand and the memory energy consumption
accordingly increases. The increase of the energy consump-
tion is great especially under the MAS1 and MAS2 access set
configurations. In MAS3, the increased access sets do not
affect the memory energy consumption since the access sets
of all virtual machines are substantially large already.
However, regardless of the access set configurations, BCSF
reduces the energy consumption by 4.63 percent (MAS3) to
12.8 percent (MAS1) compared to Ebase.

When we inspect the usage of shared memory during the
experiment, most of shared memory is created between IDD
and other virtual machines. When IDD moves data from
physical devices to virtual machines and vice versa, IDD
maps the memory pages of the target virtual machines in its
address space and accesses those pages. When the use of
the pages finishes, IDD immediately unmaps the shared
memory and the access set of IDD is restored to the
previous access sets. Since all the virtual machines need the
help of IDD for I/O services, the access set of IDD is
frequently expanded, which leads to the increased memory
energy consumption.

One of the ways to avoid the increased access set of IDD
due to shared memory is to use the memory pages from
IDD instead of that from the target virtual machines when
creating shared memory. In this way, the target virtual
machine maps the memory pages from IDD in its address
space to access the shared memory pages. Then, the access
set of IDD does not expand due to the shared memory
although the access set of the target virtual machines may
increase. Note that this method is used in [16] to improve
I/O performance in Xen.

Assuming that this method is applied to the memory
management of Xen, we measure energy consumption over
the same experimental environment. We show the results,
denoted as Impl-opt, in Fig. 7. The memory energy
consumption is dramatically reduced compared to the
results of Impl-sh when the access set configuration is
relatively small such as in MAS1 and MAS2. This shows that
reducing the access set of IDD is important in order to save
the memory energy when other access sets are small.

9 RELATED WORK

Traditionally, the energy consumption in memory has been
reduced using the information inside the operating system
since it controls the execution of applications and various
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Fig. 7. Energy consumption normalized to Emax. (a) Base energy
consumption. (b) Energy consumption when the BCSF algorithm is used.



system services. Delaluz et al. manipulated power mode
transitions within the process scheduler of the operating
system when switching contexts between processes in
conjunction with hardware-directed memory power man-
agement [12]. Huang et al. exploited page aggregation and
migration techniques in order to reduce the number of
memory nodes allocated to a process, which considerably
reduces memory power [19]. Lee et al. saved additional
energy by considering buffer caches of the operating system
in memory power management [20].

All these researches are based on a single-processor
computer system. They only focused on minimizing the
number of memory nodes used by a process. In this paper,
we mainly consider the scheduling problem of memory
power management in multicore systems. However, all
previous techniques can be orthogonally used to reduce the
number of memory nodes used by a virtual machine since
this could save substantial energy as shown in the
simulation and implementation results.

The nonvirtualized computing environment based on
multicore systems has a similar scheduling problem in
reducing memory energy consumption. Our scheduling
algorithms are also applicable in this environment if we
consider virtual machines as processes, and VMM as an
operating system. However, this paper targets the virtua-
lized computing environment since it is more attractive than
the nonvirtualized environment for efficiently utilizing the
increasing performance capabilities of computing resources.

Memory is one of major bottlenecks in achieving a high
degree of server consolidation. Several researches used the
memory page sharing technique to consolidate more virtual
machines on the same computer system. The VMware ESX
server used content-based page sharing and hot I/O page
remapping to share memory page frames [17]. Gupta et al.
devised subpage level sharing and in-core memory com-
pression, which leads to additional reduction in memory use
[18]. As the number of shared memory pages increases, the
access set of a virtual machine is also expected to increase,
and thus, the memory allocation status gradually seems to
transition to the memory allocation status similar to MAS3.
Based on the simulation results shown in Section 7.2, we
expect that our memory management architecture saves
additional memory energy even in such environments.

10 CONCLUDING REMARKS AND FUTURE WORK

This paper identifies that virtual machine scheduling affects
the memory energy consumption in the server consolida-
tion environment based on multicore systems. We propose
a memory power management architecture by adding
memory power-aware features to Xen. In order to examine
the memory energy consumption in various systems, a
memory power simulator, MPSim, is designed and im-
plemented. On top of MPSim, we devise heuristic schedul-
ing algorithms: BCSF, BNF, and COMB.

Through extensive simulation results, we present that
our memory power management architecture effectively
reduces the memory energy consumption and our schedul-
ing algorithms make additional energy savings. Especially,
BCSF saves memory energy by up to 57.4 percent
compared to the conventional system that does not exploit

memory power management features. As the degree of
server consolidation increases, energy saving performance
of the scheduling algorithms further improves. We also find
that power-aware memory management is necessary in
order to achieve more energy savings by reducing the
number of memory nodes used by a virtual machine.

In order to see whether the simulation results can be
replicated on real systems, we implement the BCSF schedul-
ing algorithm in the credit scheduler of Xen. Simulation and
implementation results are compared and similar results are
obtained. Based on the implementation, we discover that
shared memory between virtual machines significantly
influences the memory energy consumption. We present
that the use of memory in IDD in creating shared memory can
relieve such problems.

Our simulator and implementation currently do not
support virtual machine migration between processor cores
since Xen usually restrains virtual machine migrations in
order to benefit from the processor caches. We plan to support
virtual machine migration and devise various migration
policies to save the memory energy further.
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