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ABSTRACT

Separating hot data from cold data is known to allow for
efficient management of NAND flash memory in Solid State
Drives (SSDs). However, most of previous work has been
evaluated with the trace-driven simulations under different
workloads and testing conditions. The goal of this paper
is to empirically study the performance, computation over-
head, and memory consumption of the existing hot/cold
data separation policies on a real SSD platform. After de-
vising a general framework where a different policy can be
easily plugged in, we have evaluated three hot/cold data sep-
aration policies: 2-level LRU (LRU), Multiple Bloom Filter
(MBF), and Dynamic dAta Clustering (DAC). Our evalu-
ation results show that DAC performs best, improving the
performance by up to 58% in real workloads with a reason-
able computation and memory overhead.

Categories and Subject Descriptors

D.4.2 [Operating Systems]: Storage Management—Sec-

ondary Storage

General Terms

Experiment, Measurement, Performance

Keywords

Hot/Cold data separation, 2-Level LRU, Multiple Bloom
Filter, Dynamic dAta Clustering

1. INTRODUCTION
Recently, solid state drives (SSDs) have been considered

as the potential alternative of traditional hard disk drives
(HDDs) in favor of faster performance, lower power con-
sumption, smaller size, and better shock resistance. These
benefits of SSDs are largely originated from their storage me-
dia, NAND flash memory [14]. NAND flash memory consists
of a series of blocks and each block in turn contains 64∼256
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pages, supporting three types of operations: read, write (or
program), and erase. Pages are the unit of read/write oper-
ations, while erase operations wipe out all the pages within
a block.

NAND flash memory has several restrictions to be used
as a conventional block device. First, data can be written
only in the clean page. The previously programmed page
cannot be overwritten until the block containing the page is
cleaned by the erase operation. Second, there is a limit in
the number of program/erase cycles that can be performed
on each block. If a block is used beyond this limit, the block
is regarded as being worn out and the reliability of the block
is not guaranteed.

To handle these problems, an intermediate layer called
Flash Translation Layer (FTL) [7, 11] is introduced. FTL
emulates the traditional block device on top of NAND flash
memory, hiding the aforementioned peculiarities of NAND
flash memory. Basically, FTL writes the incoming data into
one of clean pages and keeps track of the mapping informa-
tion between the logical address given by the host into the
physical flash address. The old data becomes obsolete and
it is later reclaimed by the procedure known as garbage col-
lection (GC). As the erase operation is performed on a block
basis, any valid pages contained in a block should be copied
to another clean pages before the victim block is erased. The
amount of valid pages copied during GC directly affects the
performance and lifetime of SSDs.

It is known that separating hot data (i.e., the data which
is likely to be updated soon) from cold data (i.e., the data
which is not updated frequently) is very effective in improv-
ing the efficiency of GC [9]. This is because the number of
valid pages within a victim block diminishes if we identify
hot data and gather them in the same block. There are vari-
ous studies which attempt to identify hot/cold data and use
this information during GC. However, most of them evalu-
ates their policies with the trace-driven simulations under
different workloads and testing conditions.

The aim of this paper is to empirically analyze the perfor-
mance of the existing hot/cold data separation policies on a
real SSD platform. The policies we have evaluated include
2-level LRU (LRU) [5], Multiple Bloom Filter (MBF) [12],
and Dynamic dAta Clustering (DAC) [6]. For fair compar-
ison, we have devised a general FTL framework, on which
only the hot/cold data management can be varied according
to each policy, fixing other parameters such as SSD capac-
ity, the amount of over-provisioned area, victim selection
policy, etc. Using six synthetic and four real workloads, we
have compared the performance, computation overhead, and



memory consumption of each policy. Our evaluation results
show that all the hot/cold data separation policies consid-
ered in this paper are helpful in most cases. In particular,
DAC shows the best performance improving the overhead
of GC, measured in WAF (Write Amplification Factor) [15],
by up to 58% for real workloads with a reasonable memory
and computation overhead.

The rest of this paper is organized as follows. Section 2
briefly overviews FTL. Section 3 describes LRU, MBF, and
DAC in detail. Our evaluation methodology and results are
presented in Section 4. Finally, Section 5 concludes the pa-
per.

2. BACKGROUND

2.1 Flash Translation Layer
Every SSD is equipped with a special firmware layer called

Flash Translation Layer (FTL). As in-place update is not
allowed in NAND flash memory, FTL relies on an address
mapping technique which translates the logical page num-
ber (LPN) from the host into the physical page address on
NAND flash. Although various address mapping techniques
are proposed for FTL, we only consider page-level map-
ping [8] where the mapping entry is maintained for each
logical page. Due to the flexibility in NAND flash man-
agement, page-level mapping exhibits higher performance,
resulting in wide spread adoption in commercial SSDs.

Algorithm 1 outlines the overall GC procedure in our gen-
eral FTL framework. We assume that there is a separate
update block BUpdate(h) associated with each data hotness

level h. For each write request on an LPN l, FTL esti-
mates the hotness level h of l and stores the incoming data
to BUpdate(h). If BUpdate(h) is full, FTL allocates a clean
block as the new BUpdate(h). In case all the clean blocks are
exhausted, the GC routine in Algorithm 1 is initiated. The
argument Type denotes the hotness level of the required up-
date block (set to 0 for FTLs which do not distinguish hot
data from cold data).

During GC, FTL first selects a victim block by calling
SelectVictim() and then reclaims it with ReclaimBlock().
The victim block is erased after each valid page is moved
to the update block corresponding to its hotness level. Re-
claimBlock() returns the number of clean blocks it actually
generates. FTL reserves a certain number of blocks to cope
with the situation where another clean block is needed while
copying valid pages. In such a case, the return value of Re-
claimBlock() can be less than one. The main GC routine
continues block reclamation until a total of nBlk (1 by de-
fault) new blocks are successfully generated without chang-
ing the number of reserved blocks. Note that IsFull() in
Algorithm 1 returns 1 when the block is full and 0 other-
wise.

2.2 Victim selection policies
The performance of GC greatly depends on which block

is selected as a victim of GC. A traditional and simple way
is the greedy policy [13] where a block with the smallest
number of valid pages is chosen. Another victim selection
policy is the cost-benefit policy [13] which considers not only
the amount of valid pages but also the age of each block. It
is based on the observation that pages in young blocks (i.e.,
recently written blocks) are very likely to be overwritten.
Under the cost-benefit policy, the block which maximizes

Algorithm 1 Garbage collection

1: function GarbageCollection(Type)
2: n← 0
3: while n < nBlk − 1+ IsFull(BUpdate(Type)) do
4: BV ictim ← SelectVictim()
5: n← n+ ReclaimBlock(BV ictim)

6: if IsFull(BUpdate(Type)) then
7: BUpdate(Type) ← Get a reserved block

8: function ReclaimBlock(BV ictim)
9: n← 1
10: for all valid page P in BV ictim do

11: H ← Hotness(LPN(P ))
12: if IsFull(BUpdate(H)) then
13: BUpdate(H) ← Get a reserved block
14: n← n− 1

15: Write P to BUpdate(H)

16: Erase(BV ictim)
17: Add BV ictim to reserved blocks for the next GC
18: return n

cb = 1−u

u
∗ age is selected as a victim, where u and age

denote the utilization of the block and the age (= current
time - last written time) of the block, respectively. Since the
cost-benefit policy is known to perform better when hot data
is mixed with cold data [13], we have used the cost-benefit
policy for all experiments described in Section 4.

3. HOT/COLD DATA SEPARATION POLI-

CIES
In this section, we briefly overview three hot/cold data

separation policies evaluated in this paper.

3.1 2-Level LRU
The 2-Level LRU (LRU) policy [5] uses two LRU-based

lists: the hot list and the candidate list. Each list contains
LPNs. Basically, only the LPNs that are on the hot list are
regarded as hot data. In this policy, when a write operation
is received, FTL finds the corresponding LPN in both lists.
If the LPN exists in the hot list, it is promoted to the front
of the hot list to reduce the chance of being evicted. If the
LPN is on the candidate list, it is deleted from the candi-
date list and inserted to the front of the hot list. When the
LPN does not exist in any list, it is inserted to the front of
the candidate list. The size of each list (hot size or can-

didate size) is fixed. If the hot list is full, the last LPN in
the hot list is evicted and inserted to the front of the can-
didate list. If the candidate list is full, the last LPN in the
candidate list is simply dropped.

This policy is quite simple but has some problems. The
fixed size of the hot list means that the amount of hot data is
always fixed and it cannot adapt to various workloads where
the amount of hot data exceeds the hot list size. Another
problem is that the lookup operation in the LRU-based list
for the given LPN takes a lot of time due to linear search.
Algorithm 2 presents the pseudo code of Hotness LRU()
and Write LRU() which are used in our FTL framework to
implement the 2-level LRU policy. Write LRU() is called
for every write operation to adjust the LRU lists. Hot-
ness LRU() replaces the Hotness() function shown in line
14 of Algorithm 1.



Algorithm 2 Hotness LRU() and Write LRU()

1: function Hotness LRU(Lpn)
2: if Lpn ∈ HotList then
3: return HOT
4: else

5: return COLD
6: function Write LRU(Lpn)
7: if Lpn ∈ HotList then
8: Move Lpn to the front of HotList
9: else if Lpn ∈ CandidateList then

10: if |HotList| ≥ hot size then

11: E Lpn← Evict the last one of HotList
12: Insert E Lpn to the front of CandidateList

13: Delete Lpn from CandidateList
14: Insert Lpn to the front of HotList
15: else

16: if |CandidateList| ≥ candidate list then

17: Evict the last one of CandidateList
18: Insert Lpn to the front of CandidateList

3.2 Multiple Bloom Filter
The Multiple Bloom Filter (MBF) policy [12] uses bloom

filters (BF) to test whether the current LPN belongs to a set
of hot data. A BF consists of a bit array of bloom filter s-

ize bits. Each LPN is hashed by num hash func different
hash functions and the corresponding bits in the BF are set
to one.

To minimize false positive errors where some cold data
are wrongly classified as hot data, the MBF policy utilizes
multiple BFs. The actual number of BFs (num filters)
is configurable and it is recommended to have at least four
BFs. At a certain point, one of BFs is designated as the
current filter or cur filter. For each write request, if the
corresponding bit in the current filter is already set to one,
the MBF policy tries to set the bit in the same location
of the next BF in a round-robin fashion. After every de-

cay period, the current filter is set to the BF that has not
been selected in the longest time interval and all bits in that
BF are erased to drop old information. Under the MBF
policy, the hotness of an LPN is estimated by hashing the
LPN with the same hash functions and then counting the
number of bits set to one in the corresponding bit position
of all BFs. If the count is over the predefined threshold

for all hashed locations, the LPN is classified as hot data.
One of the advantages of the MBF policy is that it con-

sumes a very small amount of memory. However, the perfor-
mance of the MBF policy significantly depends on various
factors such as the choice of hash functions, num filters,
bloom filter size, threshold, etc. In Algorithm 3, we
outline Hotness MBF() and Write MBF() functions imple-
mented in our FTL framework.

3.3 Dynamic dAta Clustering
In the LRU and MBF policies, the data is simply classified

as either hot or cold. However, the Dynamic dAta Cluster-
ing (DAC) policy [6] uses the notion of regions to provide
more fine-grained classification on the data. All LPNs are
initially set to the region 0 (coldest) and it will be gradually
promoted to upper regions as there are subsequent writes
into the same LPN. On the other hand, when a block is se-
lected as a victim during GC, all valid pages in the victim

Algorithm 3 Hotness MBF() and Write MBF()

1: function Hotness MBF(Lpn)
2: Hotness← HOT
3: for H from 0 to num hash func do

4: Bit← Hash(H,Lpn)
5: Cnt← 0
6: for F from 0 to num filters do

7: if TestBit(F,Bit) = TRUE then

8: Cnt← Cnt+ 1

9: if Cnt < threshold then

10: Hotness← COLD
11: return Hotness

12: function Write MBF(Lpn)
13: for H from 0 to num hash func do

14: Bit← Hash(H,Lpn)
15: F ← cur filter

16: loop

17: if TestBit(F,Bit) = FALSE then

18: SetBit(F,Bit)
19: Break
20: F ← (F + 1) % num filters

21: if F = cur filter then

22: Break
23: if CurrentTime() % decay period = 0 then

24: cur filter ← (cur filter + num filters - 1)
25: % num filters

26: Clear cur filter

block is downgraded to the lower region.
The number of regions (num regions) in the DAC pol-

icy is normally set to four or more, but that works best
varies from workload to workload. In addition, as a sep-
arate update block is allocated to each region, the DAC
policy may not perform well especially when the number of
clean blocks is tight. Algorithm 4 shows the pseudo code
of Hotness DAC() and Write DAC() functions. Note that
GetRegion(Lpn) returns the current region number of Lpn
and SetRegion(Lpn,Region) sets the region number of Lpn
to Region.

Algorithm 4 Hotness DAC() and Write DAC()

1: function Hotness DAC(Lpn)
2: Region← GetRegion(Lpn)
3: if Region > 0 then

4: Region← Region− 1

5: return Region

6: function Write DAC(Lpn)
7: Region← GetRegion(Lpn)
8: if Region < num regions then

9: Region← Region+ 1

10: SetRegion(Lpn,Region)

4. EVALUATION

4.1 Methodology
We evaluate each hot/cold data separation policy on a

real SSD called the Jasmine OpenSSD platform [1]. The
Jasmine OpenSSD platform consists of Indilinx’s Barefoot
SSD controller, 64MB Mobile SDRAM, and two flash mem-



Policy Name Value

LRU
hot list size(α) 512
cand list size (β) 1532

MBF

bloom filter size (γ) 4096
num filters (δ) 4
num hash func 2

threshold 2
decay period 512

DAC num regions (η) 4

Table 1: Parameter values of each policy.

ory modules attached to different flash channels. As each
flash module supports four 8GB NAND packages, the total
capacity is 64GB. We combine two flash memory dies to-
gether in each NAND package and enable 2-plane operation
with channel-level interleaving [4]. Hence, eight physical
pages (each 4KB) are read or programmed at once, effec-
tively forming a 32KB virtual page. The Jasmine OpenSSD
platform has been connected to a PC via the SATA2 inter-
face, which has Intel Core i5-3570 3.40GHz CPU and 8GB
RAM running Linux 3.5.0.

We develop six synthetic workloads named skew70, ske-
w90, skew95, skew99, skewinc, and skewdec. Each
skewX workload uniformly issues X% of the total writes to
the (100-X)% hot area of the logical disk area. The higher
skew rate indicates that write requests are much more con-
centrated on the smaller area. skewinc and skewdec work-
loads dynamically vary the amount of skewness from 70% to
99% and vice versa, respectively, to see whether each policy
is adaptive to changing workloads.

In addition to synthetic workloads, we replay four traces
of real workloads, financial, web, general, and tpc-c.
financial is the trace collected from OLTP (On-Line Trans-
action Processing) applications running at a financial insti-
tution [3]. Other traces are collected by in-house tools. web

is obtained while surfing the web during one day. general
models a general desktop computing workload where a user
runs office suite, downloads mp3 files, and plays music and
movies during five days. Finally, tpc-c is gathered from a
commercial DBMS while running the TPC-C benchmark [2]
for three hours.

We use Write Amplification Factor (WAF) [15, 10] as a
performance metric to evaluate each policy. WAF is calcu-
lated by dividing the actual amount data written to flash
memory by the amount of data written by the host. Since
FTL generates additional writes during GC, WAF becomes
greater than one and a smaller WAF value represents bet-
ter performance. As described in Section 3, each policy is
influenced by the setting of various parameters. Table 1
summarizes the parameters of each policy which are set to
the same values as in the original papers.

4.2 Synthetic Workloads
Figure 1 compares the WAF value of each policy in syn-

thetic workloads. The Baseline policy treats all LPNs equally
as cold. For comparison, we also evaluate the Oracle pol-
icy which statically determines those LPNs belonging to the
(100-X)% hot area as hot. Compared to Baseline, we can
observe that all the hot/cold separation policies are quite
effective in improving the WAF values. Not surprisingly,
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Oracle shows the best performance in most cases. Overall,
DAC closely catches up the performance of Oracle when the
skew rate is greater than 70%.

We note that WAF tends to be decreased as the skew
rate rises. This is because the higher skew rate invalidates
a smaller number of hot data fast, reducing the number of
valid pages in a victim block during GC. However, Baseline
does not perform well until the skew rate reaches 99%. We
can also see that Baseline fails to cope with workloads where
the amount of hot data varies.

MBF shows the worst performance among the evaluated
policies. Compared to Oracle, MBF has classified only 36%
of hot data as hot in skew99 and less than 36% in other
cases. This is due to the decay period parameter value
which seems to be too short. When decay period is too
short, most of data will be regarded as cold since the con-
tents of BFs are frequently cleared. Similar to MBF, the
performance of LRU depends on its parameter values. LRU
is based on fixed-size lists and only the data included in the
hot list is treated as hot. If the amount of hot data fits in the
hot list, which is the case in skew99, LRU exhibits compa-
rable performance to DAC. Otherwise, the performance of
LRU degrades severely.

4.3 Real Workloads
Figure 2 depicts the WAF values of real workloads nor-



Financial

Policy
Write GC Time elapsed (sec)

Ratio
Count Count Policy Total

LRU 4840118 37736 229.22 7151.90 3.21%
MBF 4959035 38673 47.95 7298.61 0.66%
DAC 4799136 37387 4.61 7074.66 0.07%

TPC-C

Policy
Write GC Time elapsed (sec)

Ratio
Count Count Policy Total

LRU 4588624 35736 52.88 7534.94 0.70%
MBF 4728355 36870 46.60 7795.48 0.60%
DAC 4658552 36279 1.41 7857.75 0.02%

Table 2: Computation overheads in financial and

tpc-c

Policy Usage
Memory Total
(bytes) (bytes)

LRU
Hot list α * 8

14360Candidate list β * 8
Misc. 56

MBF
Bloom filter γ / 8 * δ

2052
Misc. 4

DAC Region ID υ * ⌈log2 η⌉ / 8 2048

Table 3: Memory consumption

malized to the results of Baseline. Similar to synthetic work-
loads, hot/cold data separation policies are helpful in reduc-
ing the WAF values, and DAC performs reasonably well
improving the WAF value of general by 58%. The only
exception is the tpc-c workload; all policies were useless or
even harmful. The reason is that tpc-c has low skewness
and written LPNs are more uniformly distributed than other
workloads.

4.4 Overheads
To evaluate the computation overhead of each policy, we

measure the total elapsed time and the time for executing
Algorithms 2, 3, and 4 for LRU, MBF, and DAC, respec-
tively. Table 2 presents the results for financial and tpc-c.
The computation overhead of LRU is significant, spending
the total 229 seconds while replaying the financial trace.
This is because LRU manipulates LRU-based lists on each
write request and performs linear search on the hot list to
see whether the given LPN is hot or not. MBF also re-
quires considerable computation for calculating hash values
and accessing BFs. On the contrary, DAC has the lowest
computation overhead as it just needs to get or set a region
number for the given LPN. As Table 2 shows, the ratio of
the time taken for hot/cold data separation over the total
elapsed time is at most 3.2% and less than 0.1% for DAC.

Table 3 compares the amount of memory required to im-
plement each policy. The symbols α, β, γ, δ, and η represent
the corresponding parameters in Table 1 and υ indicates the
total number of blocks which is set to 8192 in our evalua-
tion platform. In LRU, most of memory is consumed by two
doubly-linked lists, where each entry contains 4-byte LPN
and two 2-byte pointers. The memory consumption of MBF
depends on the number of BFs and the size of each BF. DAC

is most efficient in terms of space overhead as it only needs
to save the region number for each block.

5. CONCLUSIONS
This paper aims at quantitatively evaluating three hot/cold

data separation policies, LRU, MBF, and DAC, on a real
SSD platform. We have devised a general FTL framework,
where each policy can be easily plugged in. Our evaluations
with six synthetic workloads and four real workloads indi-
cate that separating hot data from cold data is quite effective
in improving the performance and lifetime of SSDs. Among
the evaluated policies, DAC performs best improving the
WAF value by up to 58% in real workloads with a reason-
able computation and memory overhead. However, there is
still room for improvement especially when the workload has
low skewness and/or the amount of hot data changes over
time. We plan to pursue a more adaptive hot/cold data
separation policy that can handle these situations.
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