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ABSTRACT 
This paper studies the memory system behavior of Java 
programs by analyzing memory reference traces of several 
SPECjvm98 applications running with a Just- In-Time (JIT) 
compiler.  Trace information is collected by an exception- 
based tracing tool called JTRAeE, without  any instrumenta-  
tion to the Java programs or the J IT  compiler. 

First ,  we find tha t  the overall cache miss ratio is increased 
due to garbage collection, which suffers from higher cache 
misses compared to the application. We also note tha t  going 
beyond 2-way cache associativity improves the cache miss 
ratio marginally. Second, we observe tha t  Java programs 
generate a substantial  amount of short-lived objects. How- 
ever, the size of frequently-referenced long-lived objects is 
more important  to the cache performance, because it tends 
to determine the application's  working set size. Finally, we 
note that  the default heap configuration which s tar ts  from 
a small initial heap size is very inefficient since it invokes 
a garbage collector frequently. Although the direct costs of 
garbage collection decrease as we increase the available heap 
size, there exists an optimal heap size which minimizes the 
total  execution t ime due to the interaction with the virtual  
memory performarLce. 

1. INTRODUCTION 
Although the Java programming language [7] is rapidly gain- 
ing in populari ty and importance for the development of 
serious applications, very litt le is known about  the execu- 
tion characteristics and the architectural  requirements of the 
Java programs. Most of the architectural evaluations have 
been performed using scientific or commercial workloads [14; 
1], which are writ ten in C, C + + ,  or Fortran languages. Un- 
like those languages, Java has several distinctive features 
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such as automat ic  memory management,  a support  for mul- 
t i threading, the existence of architecture-neutral  intermedi- 
ate codes (bytecodes), etc. Thus, it is very interesting to see 
whether Java applications share similar characteristics with 
the t radi t ional  applications or not. 

Wi th  the increasing gap between the speeds of CPU and 
memory, memory system has become a major  performance 
bottIeneck in modern computer  systems. Java has a poten- 
tial to stress the underlying memory system further because 
of its automat ic  memory management  and the accompany- 
ing garbage collection (GC). Typically, Java applications al- 
locate a substantial  amount  of objects in a heap memory. 
Since the size of heap memory is limited, it is quickly ex- 
hausted and a garbage collector is invoked to reclaim mem- 
ory allocated to objects tha t  will not be used again. De- 
pending on the characteristics of the application and the 
available heap size, Java applications can spend consider- 
able t ime on garbage collection. The applicat ion's  cache 
and virtual  memory performance will be also affected by 
the heap size. This paper  examines the memory system be- 
havior of Java programs focusing on the various factors tha t  
affect the memory system performance under the different 
heap memory configurations. 

Java programs can be executed either by a virtual  ma- 
chine interpreter  or by a Just- In-Time (JIT) compiler. Al- 
ternatively, they can be t ransla ted into native codes by tra-  
ditional ahead-of-time compilers. In this paper,  however, 
we only consider Java programs executed with a J IT com- 
piler for the following reasons. First ,  the interpreter  turns 
an applicat ion's  instruction reference stream into da ta  ref- 
erence stream, which makes it hard to s tudy the applica- 
t ion's  original da t a  reference behavior. I t  is also noted in 
[17] tha t  application-specific behavior is overwhelmed by 
the performance of the interpreter  itself if the application 
is interpreted. Second, a J IT compiler promises some signif- 
icant speedup and there is no argument tha t  J IT  compilers 
help [21]. For the benchmark programs studied in this pa- 
per, running them with a J IT  compiler was faster than  with 
an interpreter  by 1.7 to 14.3 times. Finally, using a J IT 
compiler is a more general way to run the Java programs, 
because the J IT compiler is already becoming an integral 
par t  of the Java Virtual  Machine (JVM). 

In spite of the wide acceptance of J IT compilers as a 
mechanism to run the Java applications, the characteristics 
of JIT-compiled Java programs has not been investigated 
thoroughly. We think the main reason is due to the lack 
of suitable ins t rumentat ion methodology for JIT-compiled 
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Table 1: The general characteristics of SPECjvm98 benchmarks. 
[ COMPRESS JESS DB JAVAC MTRT [ JACK 

classes loaded (user/ total)  27 / 87 1 5 4 /  219 156 / 220 40 / 102 
methods called (x 10 a) 
bytecodes executed (× 10 ~) 
Number of objects allocated 
Average object size (Byte) 
Heapmin (MB) 
Heapm~ (MB) 

225,961 
12,474,021 

7,446 
14,823 

15 
106 

101,884 
1,820,852 
8,131,609 

40 

308 

18 / 81 
114,282 

3,700,062 
3,262,899 

31 
12 
98 

89,887 
1,953,961 
6,244,896 

i 36  
12 

217 

280,340 
2,122,522 
6,695,116 

25 

161 

67 / 131 
43,795 

2,996,618 
6,955,528 

31 

203 

programs. The existing trace-driven simulators, such as 
ATOM [18] or EEL [12], rely on static code annotations 
inserted to the target program at the object or the binary 
level. However, when a J IT compiler is present, it takes the 
Java bytecodes and compiles them into native codes at run 
time. Because the actual executable codes are generated dy- 
namically, the approaches based on stat ic instrumentat ion 
fail to handle them. Instead, we use an exception-based 
approach that  can trace virtually every instruction without 
any instrumentat ion to Java programs or the J IT compiler. 

The rest of the paper is organized as follows. Section 2 
summarizes the related work and Section 3 presents our 
evaluation methodology including descriptions of the bench- 
mark programs and the exception-based tracing tool called 
JTRACE. In section 4, we analyze the cache performance, the 
behavior of objects, and the performance impact  of garbage 
collection and heap size. We conclude in section 5. 

2. R E L A T E D  W O R K  
Romer et al. [17] and Hsieh et al. [8] evaluate the perfor- 
mance of Java programs, but  their studies are limited to the 
interpreted Java programs and/or  stat ic executable images 
generated by a bytecode to native code translator.  Radhakr-  
ishnan et al. [15] compare the characteristics of both the 
J IT and the interpreter and their interaction with the ar- 
chitectural features such as the cache and branch prediction 
hardware. None of the previous studies, however, examined 
the behavior of Java objects and its implication on the cache 
performance, nor did they analyze the performance impact 
of garbage collection and heap size. 

The impact of garbage collection has been studied mainly 
for functional languages such as Lisp [22], Scheme [16] or 
Standard ML [6; 3]. Some observations from functional pro- 
grams can be applicable to Java programs. However, all 
the run-time systems of functional languages employ a sort 
of generational garbage collectors, while the Sun's s tandard  
implementation of JDK 1.1 uses a simple mark-and-sweep 
garbage collector. In addition, there is no notion of native 
methods in functional languages. Due to these differences, it 
is hard to draw any conclusion for Java programs from the 
results of functional programs. 

3. M E T H O D O L O G Y  

3.1 B e n c h m a r k s  
We use SPECjvm98 [19] as our benchmark programs. The 
SPECjvm98 benchmark suite is the result of an effort to 
defiiae an industry s tandard benchmark for Java programs. 
Most applications are derived from real applications and de- 
signed to evaluate the performance of both hardware and 
software aspects of the JVM. Among eight applications in 

SPECjvm98, we exclude _200_cheek, which i s  a synthetic 
benchmark to check various features of the JVM and the 
Java language. . . 222_mpegaud io  is found to use a very 
small amount  of heap memory (less than 1MB), and thus it 
is not s tudied either. We now briefly describe the structures 
and input  da ta  of benchmark programs used in this paper 1. 

_201_compress  COMPRESS is a Java port  of the 129.corn-  
p r e s s  benchmark from SPEC CPU95. The benchmark 
compresses and decompresses each input  file in mem- 
ory using two buffers whose sizes are equal to the input  
file size. I t  makes five loops over five input  files, hence 
handles 25 files. 

_202_jess JESS is the Java Exper t  Shell System based on 
NASA's  CLIPS system. The benchmark solves a word 
puzzle and 14 number puzzles. For the number puz- 
zles, each t ime it asserts a new set of facts represent- 
ing the same puzzle but  With different literals. Thus, 
the inference engine must  search through progressively 
larger rule sets as execution proceeds. 

_209_db DB emulates multiple database  operations on mem- 
ory resident database.  The database is normally ac- 
cessed via an index structure,  where the references to 
database records are sorted based on a certain field. 
Each database  record consists of 8 fields. 

_213_javac 3AVAC is a Java compiler from the JDK 1.0.2. 
The same Java source file is compiled four times. 

_227_rntr t  MTRT is a mul t i threaded raytracer  that  works 
on a scene depicting a dinosaur. The main thread 
forks two threads and each thread is responsible for 
generating rendering results to the left or the right 
half of the output  canvas. 

_228_jack JACK is a Java parser generator tha t  is based on 
the Purdue Compiler Construction Tool Set (PCCTS).  
The input  file contains instructions for the generation 
of JACK itself, and is fed to JACK 17 times. 

In the experiments,  we ran the above benchmarks as 
stand-alone applications rather  than as applets, using IBM 
JDK 1.1.6 with a J IT  compiler on an AIX platform. To 
minimize nondeterminist ic behavior of Java programs across 
multiple runs, we turn off the asynchronous garbage collec- 
tor. Also, all the synchronous garbage collection calls in the 
benchmarks are disabled so tha t  the garbage collector is in- 
voked only if there is not enough space in the heap memory. 

1Three different da ta  set sizes are available for each bench- 
mark, but  we always used full scale benchmarks by specify- 
ing - s l 0 0  at  the command line. 
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Table 1 shows the general characteristics of benchmark pro- 
grams including the number of objects allocated, dynamic 
bytecode counts, and the average object size. In table 1, 
H e a p ~  denotes the minimum heap size that should be 
provided to run the application, while Heapma~ means the 
heap size that the application begins to have no garbage col- 
lection. In contrast to the Sun's standard implementation, 
IBM JDK uses an enhanced object layout to improve the 
performance of the JVM. In the new object layout, handles 
axe removed, and each object has two-word header instead 
of a handle. Therefore, the average object size in table 1 
includes 12 bytes of the space overhead; two words for a 
header and one word for heap maintenance [20]. We can 
see that most objects are very small except for COMPRESS, 
where a small number of large buffers increase the average 
object size. 

3.2 Tracing tool 
To collect memory reference traces of Java programs, we 
have built an exception-based tracing tool called JTRACE. 
Some implementations of PowerPC architecture have a built- 
in capability to generate a trace exception whenever a single 
instruction is successfully completed, by turning on a special 
flag in MSR (Machine Status Register) [10]. The main ad- 
vantage of the exception-based approach is that  it is possible 
to trace virtually every instruction including system activity 
without any modification to executable images. Moreover, 
no instrumentation to Java programs or a JIT compiler is 
required to trace dynamic codes generated by the JIT com- 
piler. 

The type of instruction and the effective address of an 
operand for a load or a store instruction are available to 
the exception handler. The exception handler can save this 
information into a trace buffer for future analysis. There 
is, however, one serious restriction when we use trace excep- 
tions; normally operating system requires that  the exception 
handler should not cause any page fault [9]. In other words, 
all the codes and data structures used by the exception han- 
dler should be pinned. This means that  the amount of traces 
we can capture is essentially limited by the amount of phys- 
ical memory of the machine on which traces are collected. 

To overcome this problem, JTRACE dynamically controls 
the execution of the workload process. JTRACE consists of 
three components as shown in figure 1; (1) a kernel exten- 
sion, (2) JTRACE process, and (3) a backend process. The 
kernel extension contains the exception handler, system call 
routines and control information shared by all the compo- 
nents. Initially, JTRACE reserves a small portion of physical 
memory as a trace buffer and forks two processes, a target 
workload (Java) process and a backend process. And then 
JTRACE itself becomes idle waiting for the completion of the 
workload process. 

Only the tracing flag of the workload process is enabled 
when it is created by JTRACE. As soon as the workload 
process starts its execution, it generates a trace exception for 
each instruction. If the current instruction is either a load 
or a store, the exception handler places the corresponding 
data address on the trace buffer. JTRACE also provides the 
workload process with several system calls. These system 
calls can be used to turn on or off the tracing selectively, or 
to insert special tracing records into £he trace buffer, in case 
the source code of the workload is available. 

When the exception handler detects the trace buffer is 

trace bt 

trace 
records 

backend WOrKIOEIO uava) 
process Jtrece process 

Figure 1: The organization of JTRACE. 

near full, it sends a signal to the backend process, which was 
sleeping till then. To avoid the buffer overrun, the backend 
process first suspends the execution of the workload using 
a standard UNIX signal (SIGSTOP). It is a responsibility 
of the backend to consume the trace records in the buffer, 
either by running a trace-driven simulator on-the-fly or by 
storing them into a file. Eventually, the state of the trace 
buffer is reset t o  be empty and the execution of the work- 
load is resumed for another set of tracing records. This re- 
peats until  the workload finishes its execution, in which case 
JTRACE wakes up and asks the backend to finalize the cur- 
rent tracing. By reusing the small trace buffer in this way, 
we are able to trace long-running applications regardless of 
the l~hysical memory size. 

Because the tracing significantly slows down the execu- 
tion of the workload, a special care has been taken so that  
the workload receives roughly the same number of clock in- 
terrupts during its scheduling quantum. This is done by 
compensating timing related registers according to the ac- 
tual number of instructions traced. Otherwise, the tracing 
results will exaggerate the kernel activity due to excessive 
context switches. 

The hardware platform used for tracing is an RS/6000 
model 7043-140 running IBM AIX 4.3.2, with 332MHz Pow- 
erPC 604e microprocessor and 768MB of main memory. The 
slowdown factor of tracing is about 100 to 200, with the 
backend simulating a stack algorithm (described in the next 
section). The size of the trace buffer was generally indepen- 
dent of the tracing speed and a small trace buffer (64MB - 
128MB) worked quite well. 

3.3 Evaluation methodology 
Several clifferent backends are used to study, various aspects 
of Java programs. For cache performance, we have con- 
structed a backend Simulating the stack algorithm [5] that  
can generate miss ratios for different sizes of fully-associative 
caches in one pass. Our implementation of the stack sim- 
ulation algorithm is based on [11], where the algorithm is 
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Figure 2: Data  cache miss ratios with different heap configurations. DEF and INF correspond to the default and the infinite 
heap configuration, respectively. 

accelerated by considering cache sizes that  are powers of 
2 only. For comparison, direct-mapped and set-associative 
caches are simulated using another backend built  from a 
conventional cache simulator, diner•  IV [4]. We use a fixed 
line size of 32 bytes for the cache simulation. 

Additionally, we instrument the JVM so tha t  it malces 
system calls before and after garbage collection, which noti- 
fies the exception handler if the Java program is in the mid- 
dle of garbage collection. This enables us to count the exact 
number of instructions, da ta  references, and cache misses 
that  took place during garbage collection. We find out tha t  
the percentage of system activity is small in most applica- 
tions, and only user da ta  references are used in this paper. 

We are also interested in the memory system behavior of 
Java programs at the object level. Memory reference traces 
alone, however, do not carry any information on the ob- 
jects. To collect object-level statistics, we modify the JVM 
to produce a file which contains the s tar t  address and the 
size of each object by traversing the entire heap memory at 
the end of the execution. During tracing, a backend simply 
keeps track of the number of references and the first and the 
last reference for each 8-byte heap memory block 2. When 
the backend receives a finalization signal from JTRACE, it 
identifies which memory blocks belong to the same object 
by reading through the file generated by the JVM. Then, 
the backend merges the statistics for those memory blocks 
and converts it into that  of the object. The first and the last 
reference are t imestamped with the number of total  mem- 
ory references (including non-heap references) instead of the 
actual time. Also, for this measurement,  we provide enough 
heap space (320MB) to prevent objects from being moved 
or reclaimed by the garbage collector. 

2This is an allocation unit used for heap memory in JDK 
1.1.6. 

Finally, we quanti tat ively analyze the impact of garbage 
collection on the performance of Java programs. We take 
into account the instruction overhead of garbage collection, 
cache performance, and virtual  memory performance caused 
by TLB misses a~d page faults. TLB misses and the number 
of page faults are obtained in the same way as cache misses 
by setting the line size to 4KB. An LRU policy is assumed 
for page replacements. 

The JVM has two run-t ime flags, "-ms" and "-tax", which 
specify the initial and the maximum size of heap mem- 
ory. On JDK 1.1.6 for AIX, default values for these flags 
are 1MB and 32MB, respectively. We consider the follow- 
ing six heap configurations in this paper; default (-mslM 
-mx32M), 16MB (-msl6M -mxl6M), 32MB (-ms32M -mx32M), 
48MB (-ms48M -mx48M), 64MB (-ms64M -mx64M), and in- 
finite (-ms320M -rax320M). Wi th  the infinite heap configu- 
ration, no benchmark has any garbage collection, because 
we provide 320MB of heap memory, which is larger than 
Heapma~ values in table 1. 

4. ANALYSIS 
We analyze the various memory system behavior of Java pro- 
grams using memory reference traces collected by ../TRACE. 
First ,  we s tudy the cache performance of Java programs in- 
cluding temporal  locality and the effects of cache associativ- 
ity. Second, we investigate the behavior of objects and their 
lifetime characteristics. Finally, the instruction overhead of 
garbage collection and the performance impact of heap size 
are studied. 

4.1 Cache performance 
T e m p o r a l  loca l i ty .  Figure 2 displays the fully-associative 
da ta  cache miss ratios of SPECjvm98 applications under 
different heap configurations, where the miss ratios during 
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compress (32MB heap, 32B line size) jess (32MB heap, 32B line size) db (32MB heap, 32B l ine dzo)  
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Figure 3: Effects of the cache associativity (with 32MB of heap memory).  

garbage collection are separately plot ted in dot ted  lines (la- 
beled as GC). 

First,  we observe tha t  the miss ratios during garbage col- 
lection axe generally higher than the overall miss ratios and 
appear to be insensitive to the cache sizes. This is likely 
because the garbage collector should sweep through the en- 
tire heap memory and its working set size will be connected 
to the total  heap size. However, the garbage collector shows 
the first working set at near 2KB in most applications which 
is independent of the heap size. Since the garbage collector 
suffers from higher cache miss ratios than the application 
itself, all the SPECjvm98 applications studied in this pa- 
per show the lowest cache miss ratios with the infinite heap 
configuration, where the applications do not experience any 
garbage collection (marked as diamonds with a solid line in 
figure 2). 

As observed in. [16], the garbage collector imposes both 
direct and indirect costs on the overall performance. Di- 
rectly, the garbage collector itself executes its own instruc- 
tions and causes cache misses. Indirectly, it interferes with 
the application's  temporal  locality, making the application 
suffer from cache misses right after the garbage collection. 
In addition, the garbage collector can move objects, which 
may improve (or degrade) the application's  locality. Indirect  
costs of garbage collection are, however, found to be negligi- 
ble; if we exclude da ta  references issued by the collector, all 
the applications show the same curves as with the infinite 
heap, regardless of the heap size used. This means tha t  the 
differences in overall cache miss ratios mostly result from 
the cache misses occurred in garbage collection. Since the 
variations in the miss ratios during garbage collection are 
small across different heap sizes, usually it is the percentage 
of the garbage collector's da ta  references tha t  determines 
how much the ow;rall miss ratios are affected. For example, 
in the default heap configuration, 37.3% of da ta  references 
are from the garbage collector in JAVAC, while 10.8% in DB. 

Hence, the overall miss ratio of JAVAC is more affected com- 
pared to DB. We will see in section 4.3 tha t  the overhead of 
garbage collection is decreasing as we increase the heap size. 
Therefore, the curves of overall miss ratios approach toward 
tha t  of the infinite heap with the increased heap size. 

Note tha t  JESS and JACK exhibit  noticeably lower miss ra- 
tios during garbage collection with the default heap config- 
uration. This is because, under the default heap configura- 
tion, the JVM uses less than 2MB of heap memory for these 
applications, which improves the garbage collector's locality. 
In spite of the improvement,  the actual  miss ratios are still 
worst with the default heap configuration for JESS and JACK, 
since the garbage collector is more frequently invoked due 
to the small heap size (cf. section 4.3). The large miss ra- 
tios in garbage collection for COMPRESS are not meaningful, 
because the absolute number of cache misses is very small. 
In COMPRESS, the garbage collector only accounts for 0.3% 
(with the default heap size) or less than  0.04% (otherwise) 
of total  da t a  references. The impact  of garbage collection 
will be discussed in more detail  in section 4.3. 
P e r f o r m a n c e  o n  d i r e c t - m a p p e d  a n d  s e t - a s s o c l a t i v e  
caches .  The results presented in figure 2 are the miss ra- 
tios for fully-associative caches obtained via the stack simu- 
lation. We now consider more realistic caches such as direct- 
mapped  and set-associative (2-way and 4-way) caches. 

Figure 3 shows tha t  the miss ratios during garbage col- 
lection are finally converged to the same level, no mat ter  
which cache associativity is used. In fully-associative caches, 
the garbage collector has about  2KB (64 cache entries) of 
the working set size in most applications (cf. figure 2). I t  
appears tha t  this small number of memory blocks causes 
many conflicts when the cache size is small, especially in 
the d i rec t -mapped caches. As the cache size increases, these 
blocks are more evenly dis t r ibuted over the entire cache, and 
the conflict misses become insignificant. 

Looking at the overall miss ratios in figure 3, 2-way set- 
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Figure 4: Changes in the number and the space of objects which last more than 1 million references. 

associative caches perform very well under practical cache 
sizes; 2-way set-associative caches lead to a large improve- 
ment over direct-mapped caches, while the additional advan- 
tages of 4-way set-associative caches are small. The similar 
observation has been reported for several SPEC95 bench- 
marks [2] and for standard ML programs [6]. 

4.2 The behavior of objects 
We define an object is live with respect to the memory ref- 
erence, if it is being actively referenced by the application. 
We call an object long-lived (short-lived), if it is live for a 
relatively long (short) time. On the other hand, we define 
an object is reachable, if it is accessible by following object 
links from the root set. The root set usually includes the lo- 
cal variables in run-time stacks and static variables defined 
in loaded classes. We will call an object long-resident, if it 
is reachable for a relatively long time, to distinguish it from 
a long-lived object. In this section, we analyze the char- 
acteristics of live objects and its implication on the cache 
performance. The reachable objects are more important to 
understand and model the cost of garbage collection, and 
will be discussed in section 4.3. 
T h e  b e h a v i o r  of l ive ob jec t s .  As mentioned in sec- 
tion 3.3, we timestamp the first and the last reference to 
an object with the number of total data references made up 
to that point. Assume that  the first reference to an object 
is made at the t l - th  data reference and the last one at the 
t2-th data reference. According to our definition, the object 
is live from tl to t2 and the lifetime of the object is the du- 
ration that it remains live, i.e., t2 - tl .  If an object is not 
referenced anymore, it is not visible to the memory system 
and we consider the object is dead even though it is still 
occupying a heap space. 

Figure 4 plots the changes of live objects and their sizes, 
as each program executes. To reduce the number of data 
points, every 1 million references are grouped together and 
we exclude the objects whose lifetimes are less than 1 rail- 

lion references. The upper solid line in figure 4 represents 
the cumulative percentage of objects which come into ex- 
istence, while the lower dotted line denotes the cumulative 
percentage of dead objects. These lines are associated with 
the right-hand scale. The difference between two lines is the 
percentage of live objects and the gray region indicates the 
size of heap memory occupied by the live objects. 

The repeated patterns of COMPRESS, JAVAC, and JACK 
clearly demonstrate the benchmarks'  loop structures over 
the same input data. In COMPRESS, most of live spaces come 
from two buffers allocated for each input file, while the com- 
pression phase uses some additional tables. The number of 
live objects is roughly constant and only 12 - 15 objects 
are newly created and destroyed for each (de)compression 
phase. For JESS, the first peak is for the word puzzle, and 
the remaining 14 peaks for the number puzzles. Because 
the older sets are not retracted during the number puzzles, 
the number of live objects are slightly increasing and it takes 
longer to solve the same puzzle. However, the amount of ob- 
jects kept across the iterations is quite small. In DB, there 
are several points that  many objects suddenly die, which is 
due to the ceased access to a certain database field. For 
example, the size of live objects drops quickly around the 
870 millionth reference when the benchmark sorts database 
records on the second field. All the objects that store the 
second field of database records become dead, since the field 
is not used anymore after this sort operation. The live spaces 
are gradually decreasing in MTRT, probably because some of 
scene data are not referenced as the rendering proceeds. We 
note that,  unlike other benchmarks, most of live objects are 
allocated at the very beginning in DB and MTRT. 

Our measurements show that  the size of live objects re- 
mains very small compared to the total heap memory al- 
located. For instance, JACK demands about 14MB of heap 
memory up to the 200 millionth reference, but only less than 
0.7MB are used for the objects which survive more than 1 
million references. This suggests that  Java programs gener- 
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Figure 5: The distribution of lifetimes and the number of references. 

ate a significant number of short-lived objects during their 
execution which last less than 1 million references. From the 
cumulative percentages shown in figure 4, we can estimate 
that  65% to 99% of the total objects are such short-lived 
objects. With the exception of COMPRESS, 71% to 99% of 
the heap memory is used for them. In the case of COMPRESS, 
although 65% of the total objects are short-lived, they only 
occupy 0.2% of the heap memory because some of other ob- 
jects (buffers) are; relatively huge in their sizes. 
T h e  l i fe t ime cha rac t e r i s t i c s .  Figure 5 illustrates the 
distribution of the objects which have the same lifetime. 
The lifetime is calculated in the unit  of 1 million references 
and is arranged in ascending order; short-lived objects are 
on the left, while long-lived objects are on the right. Note 
that the number of objects, on the left y-axis, is displayed 
in log scale. 

As we observed in figure 4, a large percentage of objects 
have lifetimes less than 1 million references and are located 
at the leftmost of the graph (x = 0). For the programs which 
have a loop structure (COMPRESS, JAVAC, and JACK), the 
lifetimes of most objects are less than the duration of each 
loop. For example, figure 4 shows that  each iteration of JACK 
makes about 110 million references. Nearly all objects are 
created, used, and dead inside of each iteration, which makes 
them located in the region less than 110 million references 
in figure 5. In DB and MTRT, more objects are distributed 
toward the right-hand side of the graph. 

The dotted curves in figure 5, associated with the right 
y-axis, show the cumulative distribution of  data references. 
A point on the curve indicates, in its y value, the fraction 
of references to the objects whose lifetimes are less than or 
equal to x. We note that  although most of objects are short- 
lived, a substantial number of references are still going to the 
long-lived objects in some applications. This is plausible be- 
cause long-lived objects tend to hold essential information 
such as database records (o13) or scene data (MTRT), and 
have more chances to get referenced. DB is one of the ex- 
treme cases; 92°£ of objects have the lifetimes less than 1 

million references, but  only account for 4% of total data 
references. The final value of the dotted curve in figure 5 
gives us the percentage of heap references to the total data 
references, which ranges from 29% to 80%. 

Table 2 summarizes the lifetime characteristics of studied 
applications including the number of (native) instructions 
and data references. Also, the table shows the percentage of 
short-lived objects in terms of the number of objects, heap 
spaces, and data references, whose lifetimes are less than 1 
million references. We note that  the studied applications 
allocate 10 - 60 bytes in every 1,000 instructions. This allo- 
cation rate is much slower than that  of Standard ML, which 
is known to allocate about one word for each six user instruc- 
tions [6; 3], but  quite similar to Scheme's rate (10 - 54 bytes 
per 1,000 instructions [16]). The reason of higher allocation 
rate in Standard ML is that  it allocates function activation 
records (closures) on the heap, instead of using a stack as 
do most other languages including Java and Scheme. 

In most SPECjvm98 applications, only less than half of 
the total data references are going to the heap memory, as 
shown in table 2. The rest of data references will go either 
to Java stacks or to C stacks. A Java stack is used for local 
variables, operand stacks, and method invocation, while a 
C stack supports native methods writ ten in languages other 
than Java [13]. The JIT compiler itself also makes data ref- 
erences when it compiles bytecodes to native instructions. 
Table 2 shows 2.4% to 35.5% of (user) instructions are spent 
on the shared library routines which include the standard 
Java native methods, the JVM run-t ime system, and the 
JIT compiler. The highest percentage of JAVAC is, in part, 
due to the translation overhead of the JIT compiler, since 
JAVAC has the largest number of (static) bytecodes to com- 
pile among SPECjvm98 applications. 
T h e  i m p l i c a t i o n  o n  t he  cache  p e r f o r m a n c e .  We now 
explore the implication of the behavior of live objects on the 
cache performance. First, we consider JESS and JACK. As 
we can see in table 2, most of objects in JESS and JACK die 
young. We can expect such short-lived objects have good 
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Table 2: The dynamic statistics of SPECjvm98 benchmarks (with the infinite heap configuration). 
C O M P R E S S  JESS DB JAVAC MTRT J A C K  

11,100,907 5,327,589 9,167,372 7,716,669 3,916,519 6,552,677 Instructions executed (x  10 u) 
Data  references (x 10 '~) 4,121,794 

% heap references 
% instructions from shared lib. 2.41% 

80.27% 
Heap memory allocated (KB) 107,787 
Average allocation rate 10 

(bytes/1000 instructions) 
Average lifetime (million refs.)  ~ 155.6 
Average number of references 

per each object 
per cache line (32B) 

Lifetime < 1 million references 
% objects 
% heap memory 
% heap references 
% total  da ta  references 

444,366 
959 

64.40% 
0.21% 

0.0061% 
0.0049% 

1,797,615 
21.99% 
39.40% 
314,533 

60 

113 

87 
70 

99.19% 
98.88% 
37.15% 
14.64% 

3,211,373 
13.25% 
45.61% 
99,927 

11 

129.5 

449 
458 

92.33% 
71.15% 

4.14% 
1.89% 

2,515,695 
35.53% 
28.71% 
221,206 

29 

55.2 

116 
102 

66.20% 
68.64% 
26.47% 

7.60% 

1,129,016 
14.92% 
50.97% 
164,444 

43 

10.8 

86 
109 

98.03% 
97.60% 
42.91% 
21.87% 

2,014,066 
31.04% 
50.74% 
207,550 

32 

1.6 

147 
154 

97.33% 
95.48% 
67.97% 
34.48% 

temporal locality, and do not cause capacity misses. How- 
ever, they touch more than 95% of the total  heap memory 
and the average number of references per cache line is rel- 
atively small (70 in JEss and 154 in J A C K  for 32-byte line 
size). Consequently, the short-lived objects produce a large 
amount of cold misses. I t  is possible to reduce the num- 
ber of cold misses by decreasing the available heap size and 
reusing the same line for different objects. But in this case, 
the cache misses during garbage collection quickly offset the 
benefit of reduced cold misses, as we can see in figure 2. 

JESS and JACK also have some frequently-referenced long- 
lived objects. Although these objects can cause capacity 
misses by interfering with short-lived objects, their total  size 
is very small. Therefore, if the cache size is big enough to 
accommodate them, the capacity misses almost disappear. 
For instance, 244 objects (33KB in size) account for about  
9% of da ta  references in JACK, with the lifetime of around 
1950 million references (cf. figure 5). Once the cache size is 
larger than 32KB, the miss ratio of JACK does not change, as 
shown in figure 2. Most of cache misses in these cache sizes 
result from the cold misses of short-lived objects. Similarly, 
in JESS, long-lived objects, whose lifetimes are more than 
1690 million references, are responsible for 12% of the total  
references. They can fit into a 16KB cache and consti tute 
the first working set. Another  8% of da ta  references are dis- 
t r ibuted over the objects with the lifetimes ranging from 140 
million to 1690 million references. Wi th  the caches larger 
than 256KB, these objects can stay in the cache and they 
determine the second working set of JESS, as can be seen in 
figure 2. In any case, the size of frequently-referenced long- 
lived objects is closely related to the application's  working 
set size. Long-lived objects which are not referenced fre- 
quently do not contribute to the overall cache miss ratio, 
and can be ignored. 

The same observation holds for DB, JAVAC and MTRT. 
However, these applications have more long-lived objects 
and keep a larger amount of live objects (3MB - 8MB) com- 
pared to JESS and JACK. Thus, even with a 1MB of cache, it 
is not possible to accommodate all the frequently-referenced 
long-lived objects and some capacity misses are inevitable. 
For JAVAC a n d  MTRT, the most-frequently-referenced long- 
lived objects appear  to fit into about 64KB and 256KB re- 

spectively, where the applications exhibit  the first working 
set sizes (cf. figure 2). Still, a significant number of refer- 
ences are made to other long-lived objects, thereby resulting 
in capacity misses. In DB, 33% of the total  references are 
going to the objects that  exist throughout  the lifetime of the 
application. Their total  size is larger than 1MB and this is 
the reason the miss ratio of DB is continuously decreasing 
in figure 2. Among the cache misses caused by heap refer- 
ences at a 512KB cache, 28% and 35% of misses are due to 
capacity misses for JAVAC and MTRT respectively, while the 
percentage for DB is 96%. 

When the cache is not fully-associative, the application 
experiences conflict misses, which explain the differences 
between the miss ratios of fully-associative cache and set- 
associative caches in figure 3. Reinhold [16] showed that  the 
sequential allocation scheme is natural ly suited to direct- 
mapped  caches, because it tends to spread the objects spa- 
tially throughout  the cache. He also noted, when most ob- 
jects are short-lived, they are dead by the t ime their cache 
lines are reused for newer dynamic objects, based on his ob- 
servation of garbage-collected Scheme programs. Among our 
benchmark programs, JESS and JACK have similar character- 
istics as Scheme programs in the sense tha t  they have few 
frequently-referenced long-lived objects and tha t  most ob- 
jects are allocated rather  linearly and short-lived. However, 
when comparing the miss ratio curves of JESS and JACK to 
other Java applications in figure 3, we do not see any signif- 
icant benefit of d i rect -mapped caches in these applications. 
One possible explanation is that ,  unlike Scheme programs, 
many conflict misses are produced by the interferences from 
non-heap references, which are mostly to Java stacks and 
C stacks. As we move to 2-way set-associative caches, such 
conflict misses are reduced significantly. 

Finally, we mention that  the characteristics of COMPRESS 
is very different from other benchmark programs; the com- 
putat ion is done with the small number of large objects 
without creating many temporary  objects. The garbage col- 
lection can be done quickly, hence the performance of the 
application is not affected by the heap size. In the perspec- 
tive of the memory usage patterns,  we believe COMPRESS 
is not much different from the corresponding C version in 
SPEC95. 
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Table 3: The number of garbage collections and the instruction overhead (shown in parentheses). 
~ JESS DB JAVAC MTRT 

I 
)efault 687 (116.7%) 38 (16.0%) 90 (72.2%) 71 (62.6%) 
L6MB 21 (10.1%) 11 (5.8%) 29 (28.4%) 17 (25.7%) 
}2MB 10 (7.9%) 3 (2.9%) 9 (11.1%) 6 (15.7%) 
18MB 6 (6.6%) 2 (2.7%) 5 (7.3%) 3 (11.6%) 
i4MB 4 (5.6%) 1 (1.1%) 3 (4.9%) 2 (10.4%) 

JACK 

301 (36.9%) 
13 (5.2%) 

6 (4.3%) 
4 (4.3%) 
3 (4.2%) 

4.3 I mp ac t  o f  garbage  col lect ion and heap  size 
T h e  i n s t r u c t i o n  o v e r h e a d  o f  g a r b a g e  co l l ec t i on .  Be- 
fore we analyze the performance impact  of garbage collection 
and heap size, we examine one of the direct costs of garbage 
collection, the instruction overhead. Note tha t  our analy- 
sis is highly dependent  on the garbage collection algorithm 
employed in the JVM. In this paper,  we only deal with the 
"mark-and-sweep" collection algorithm used in IBM JDK 
1.1.6. 

The mark-and-sweep algorithm collects garbages in three 
phases. The mark phase visits and marks all reachable ob- 
jects start ing from a special set of object links called the 
root set. After the reachable objects have been identified, 
the remaining objects are known to be garbages and can be 
reused. In the sweep phase, the collector sweeps sequentially 
through the heap memory, adding unmarked objects to the 
free list of objects. Finally, the compaction phase relocates 
the reachable objects to eliminate dead space between them 
and to improve the spatial  locality of objects. In the current 
implementation, the compaction phase may not be called if 
the heap memory is not fully fragmented. 

Table 3 compares the number of garbage collections oc- 
curred with different heap configurations. The numbers in 
parentheses denote the ratio of the number of instructions 
executed for garbage collection to the number of instructions 
for the application itself. We exclude COMPRESS, because 
the overhead of garbage collection is too small. One notable 
thing in table 3 is tha t  the garbage collector is invoked very 
frequently in the default heap configuration, especially for 
JESS and JACK. Wi th  the default heap configuration, the 
JVM initially sets the available heap size to 1MB. The heap 
is increased incrementally up to 32MB if the collector fails 
to satisfy a new allocation request after garbage collection. 
For JESS and JACK, the collector does not increase the heap 
beyond 2MB, because the size of reachable objects is very 
small and the collector can still find some space after garbage 
collection. However, the available space after garbage collec- 
tion is usually less than 1MB and this small space is quickly 
exhausted, which leads to another garbage collection. Due 
to this problem, the default heap configuration results in 
great inefficiency, especially when the size of reachable ob- 
jects is small. As we can see in table 3, setting the initial 
heap size to at least 16MB significantly reduces the number 
of garbage collections. The default heap configuration may 
improve the cache (cf. figure 2) and the virtual  memory 
performance because the application has smaller da ta  foot- 
prints. The benefit is, however, easily overwhelmed by the 
additional costs of garbage collection. 

The instruction overhead of garbage collection, Igc, can 
be given by: 

/~o = N~c x W~ = N~ × (Wma~k + W,~.~ + W ~ o ~ , )  

where Nat and W~c denote the number of garbage collec- 

tions (shown in table 3) and the average number of in- 
structions executed for each garbage collection, respectively. 
Wm~k,  Wsw~p, and W~ompact represent the average number 
of instructions spent on each mark, sweep, and compaction 
phase. Figure 6 shows the changes in Igc (figure 6(a)) and 
Wgc (figure 6(b)) with different heap sizes. Even though 
Wgc increases with the larger heap size, the increasing rate  
of Wgc is slower than the decreasing rate  of Ngc. Thus, Igc 
is always decreased as we increase the heap size. 

Figure 6 also breaks down the cost of each garbage col- 
lection phase. The collector has to visit every reachable ob- 
jects during the mark phase, which makes Wmark depend on 
the number of reachable objects. Our measurements show 
the size of reachable objects remains constant  or changes 
very regularly for s tudied applications, and this is the rea- 
son Wm~rk is roughly independent  of the heap size for a 
given application in figure 6(b). 

On the contrary, the cost of the sweep phase, W ~ p ,  is 
directly proport ional  to the heap size. More specifically, it  
appears tha t  W s ~ p  depends on the total  number of objects 
(the reachable objects plus garbages) in the heap memory, 
because the collector should check every object  to see if it  
is marked or not. Therefore, MTRT, which has the smallest 
average object  size (cf. table 1), spends longer t ime on the 
sweep phase than  any other applications. 

For the cost of the compaction phase, we have two trends; 
for DB and MTRT, the total  cost of the compaction phase 
(Ngc x Wcompa~t) is roughly constant,  while the average cost 
(W~ompa~t) is constant  for JESS, JAVAC, and JACK. We have 
observed in figure 4 tha t  most of long-resident objects in 
DB and MTRT are created at the beginning of the execu- 
tion. Once the long-resident objects are compacted,  they do 
not have to be compacted again in the subsequent garbage 
collections, which makes the to ta l  cost of the compaction 
phase constant.  Other applications, however, have a loop 
structure,  in which new objects are generated and replace 
the current reachable objects. Therefore, the garbage col- 
lector finds uncompacted reachable objects every t ime it is 
invoked. Since the size of reachable objects does not change 
much, the average cost of each compaction phase is constant. 
Note tha t  in DB with 64MB of heap memory, the garbage 
collector skipped the compaction phase because it thought 
the heap was not fragmented yet. 

Overall, the decrease in Igc with the  larger heap size is 
mainly due to the decrease in the cost of the mark phase 
(Ngc x Wmark) and sometimes in the cost of the compaction 
phase (Ngc × Wco~p~ct). When the size of reachable objects 
is very small, the garbage collector spends most of its t ime 
on the sweep phase, as can be seen in JESS and JACK. While 
the results presented in this 'section are obtained by turning 
off the asynchronous garbage collector, we have verified tha t  
the results with the asynchronous garbage collector are also 
similar. 
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Figure 6: The breakdown of the number of instructions executed for garbage collection. 

T h e  p e r f o r m a n c e  i m p a c t  o f  g a r b a g e  c o l l e c t i o n  a n d  
h e a p  size.  The cache miss ratios shown in section 4.1 
axe sometimes misleading when we analyze the performance 
impact of garbage collection and heap size. The lower cache 
miss ratio does not always guarantee the faster execution 
time due to the direct and indirect costs of garbage col- 
lection. Instead, Reinhold [16] used the CPI (Cycles per in- 
struction) contribution of memory system overheads (Om~m) 
as a performance metric, which can be rephrased as follows: 

Om,m = (M~pp + Mgc) × P + Igc + AIapp 
Iapp 

where Iapp and Iac represent the total  number of instruc- 
tions executed by the program and by the garbage collector, 
respectively. P is the cache miss penalty in processor cycles. 
Mapp and Mgc denote the number of cache misses for the 
application itself and for the garbage collector,respectively. 
Al~pp is the change in lapp due to the garbage collector or 
the different heap size 3. 

In Java programs, Alapp can be caused by initializing 
such data  structures as mark and allocation bits, whose sizes 
are dependent on the heap size. However, we find AI~pp is 
negligible compared to the other factors. We have observed 
in section 4.1 that  Mapp does not change much as we use the 
different heap sizes. Therefore, the direct costs of garbage 
collection, Mac and lac , are the dominant factors that  deter- 
mine the changes in Omem with different heap sizes. Because 
these direct costs are decreasing as we increase the heap size 
(cf. figure 6), the larger heap size is always favored to get 
the smaller O~e~.  

When considering the virtual  memory performance, this 
is not true. If the heap size is increased beyond the certain 
point, the virtual memory performance begins to play an 
important  role in the overall performance. Table 4 shows 
the number of pages touched by the applications. The num- 
bers in parentheses display the number of page faults when 
we assume only 32MB (8K pages) of physical memory is 

3When we assume a perfect instruction cache and an ideal 
pipeline which completes one instruction in every cycle, the 
memory system overhead, O,,em, is the only source tha t  
increases the CPI. In this case, the overall CPI is given by 
C P I  = 1 + Om~m. The similar performance metric has been 
also used for [6; 3]. 

available for data. Normally, our Java applications touch 
another 900 to 3,200 pages for non-heap data. These pages 
will include the  Java stacks, C stacks, run-t ime da ta  struc- 
tures used by the JVM and native code pages managed by 
the J IT compiler. The number of these addit ional pages is 
slightly increasing as we increase the heap size. 

Even when we have enough physical memory, the first 
access to each page incurs a zero-filled page fault, where 
the page fault handler simply allocates a free physical page 
frame and zero-out the page. We find that  the cycle penal- 
ties due to zero-filled page faults are also comparable to Ig¢ 
and cache penalties. Therefore, on the real machines, there 
exists an opt imal  heap size for a given application which 
minimizes the total  execution t ime due to the interaction 
between these factors. The studied applications show 0.43% 
to 0.90% of miss ratios for 64-entry fully-associative TLBs. 
However, their impact  on the overall CPI is very small for 
the simulated heap sizes. 

From table 4, it is apparent  tha t  the heap size should 
not be increased beyond the available physical memory. An 
interesting point is that  sometimes it is bet ter  to continue 
allocating new objects through virtual  memory rather  than 
to invoke the garbage collector. In all applications, the infi- 
nite heap configuration (320MB) shows less number of page 
faults than the case with 64MB. This is a natural  conse- 
quence of the current simple mark-and-sweep garbage col- 
lector, which is not optimized for the virtual  memory per- 
formance unlike the generational garbage collectors. Be- 
cause most objects are short=lived, many pages need not 
be accessed again once they are evicted from the physical 
memory. However, the mark-and-sweep collector re-touches 
every page during garbage collection. This will not only in- 
crease the number of page faults, but  also increase the traffic 
between the memory and the secondary storage. 

5. CONCLUDING REMARKS 
This paper  studies the memory system behavior of JIT- 
compiled Java programs based on the memory reference 
traces obtained by an exception-based tracing tool. Specifi- 
cally, we examine the cache performance, the lifetime char- 
acteristics of Java objects, and the performance impact  of 
gaxbage collection and heap size. 
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Table 4: The number of pages touched by the SPECjvm98 applications and the number of page faults when we assume only 
32MB of physical memory is available for data (shown in parentheses). 

Default 1541 (0) 
16MB 5284 (0) 
32MB 9572 (58403) 
48MB 13860 (95130) 
64MS 18148 (118464) 

320MB 83484 (85103) 

JESS DB JAVAC MTRT I JACK 

3804 (0) 
4995 (0) 
9282 (18832) 

13570 (39015) 
17858 (37664) 
29557 (30253) 

5538 (0) 
6533 (0) 

10823 (69110) 
15110 (156946) 
19399 (115102) 
61400 (79404) 

5421 (0) 
6818 (0) 

11047 (56939) 
15334 (83164) 
19622 (82613) 
47431 (51128) 

1626 (0) 
5381 (0) 
9669 (47361) 

13956 (87869) 
18245 (94305) 
56820 (57988) 

All the SPECjvm98 applications studied in this paper 
show the lowest data miss ratios with the infinite heap con- 
figuration. This is because the garbage collector suffers from 
higher cache misses and tends to inflate the overall cache 
miss ratios. Additionally, we find that  going beyond 2-way 
cache associativity improves the cache miss ratio marginally. 
We also observe that  Java programs generate a substantial 
amount of short-lived objects, but in general, the size of 
frequently-referenced long-lived objects is closely related to 
the application's working set size and is critical to the cache 
performance. Finally, the direct costs of the garbage collec- 
tion are the dominant factors that  affect the overall perfor- 
mance with different heap sizes. These costs are decreasing 
as we increase the heap size, but  the optimal heap size which 
minimizes the total execution time can be determined by 
considering cache performance, the instruction overhead of 
garbage collection, and the virtual memory performance. 

Since the SPECjvm98 benchmark suite can not be a sin- 
gle representative of all the Java programs and Java is an 
evolving language mad environment, the characterization of 
Java programs should be an on-going effort. In this paper, 
we only studied the mark-and-sweep garbage collector, orig- 
inally come from the Sun's standard implementation of JDK 
1.1. Recently, Sun has announced the HotSpot technology 
(JDK 1.2), which employs an improved generational copying 
collector. Therefore, it is necessary to compare and contrast 
the performance of these garbage collectors. In addition, 
since most of our benchmark programs are single-threaded, 
the characteristics of multithreaded Java programs needs to 
be investigated further to completely understand the behav- 
ior of Java programs. We believe the methodology used in 
this paper is directly applicable to other Java applications 
and environments, and we plan to continue our study of 
characterizing Java programs. 
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