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ABSTRACT

This paper studies the memory system behavior of Java
programs by analyzing memory reference traces of several
SPECjvm98 applications running with a Just-In-Time (JIT)
‘compiler. Trace information is collected by an exception-
based tracing tool called JTRACE, without any instrumenta-
tion to the Java programs or the JIT compiler.

First, we find that the overall cache miss ratio is increased
due to garbage collection, which suffers from higher cache
misses compared to the application. We also note that going
beyond 2-way cache associativity improves the cache miss
ratio marginally. Second, we observe that Java programs
generate a substantial amount of short-lived cbjects. How-
ever, the size of frequently-referenced long-lived objects is
more important to the cache performance, because it tends
to determine the application’s working set size. Finally, we
note that the default heap configuration which starts from
a small initial heap size is very ineflicient since it invokes
a garbage collector frequently. Although the direct costs of
garbage collection decrease as we increase the available heap
size, there exists an optimal heap size which minimizes the
total execution time due to the interaction with the virtual
memory performance.

1. INTRODUCTION

Although the Java programming language [7) is rapidly gain-
ing in popularity and importance for the development of
serious applications, very little is known about the execu-
tion characteristics and the architectural requirements of the
Java programs. Most of the architectural evaluations have
heen performed using scientific or commercial workloads [14;
1), which are written in C, C++, or Fortran languages. Un-
like those languages, Java has several distinctive features
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such as automatic memory management, a support for mul-
tithreading, the existence of architecture-neutral intermedi-
ate codes {bytecodes), etc. Thus, it is very interesting to see
whether Java applications share similar characteristics with
the traditional applications or not.

With the increasing gap between the speeds of CPU and
memory, memory system has become a major performance
bottleneck in modern computer systems. Java has a poten-
tial to stress the underlying memory system further because
of its automatic memory management and the accompany-
ing garbage collection (GC). Typically, Java applications al-
locate a substantial amount of objects in a heap memory.
Since the size of heap memory is limited, it is quickly ex-
hausted and a garbage collector is invoked to reclaim mem-
ory allocated to objects that will not be used again. De-
pending on the characteristics of the application and the
available heap size, Java applications can spend consider-
able time on garbage collection. The application’s cache
and virtual memory performance will be also affected by
the heap size. This paper examines the memory system be-
havior of Java programs focusing on the various factors that
affect the memory system performance under the different
heap memory configurations.

Java programs can be executed either by a virtual ma-
chine interpreter or by a Just-In-Time (JIT) compiler. Al-
ternatively, they can be translated into native codes by tra-
ditional ahead-of-time compilers. In this paper, however,
we only consider Java programs executed with a JIT com-
piler for the following reasons. First, the interpreter turns
an application’s instruction reference stream into data ref-
erence stream, which makes it hard to study the applica-
tion's original data reference behavier. It is also noted in
[17] that application-specific behavior is overwhelmed by
the performance of the interpreter itsclf if the application
is interpreted. Second, a JIT compiler promises some signif-
icant speedup and there is no argument that JIT compilers
help [21]. For the benchmark programs studied in this pa-
per, running them with a JIT compiler was faster than with
an interpreter by 1.7 to 14.3 times. Finally, using a JIT
compiler is a more general way to run the Java programs,
because the JIT compiler is already becoming an integral
part of the Java Virtual Machine (JVM).

In spite of the wide acceptance of JIT compilers as a
mechanism to run the Java applications, the characteristics
of JIT-compiled Java programs has not been investigated
thoroughly. We think the main reason is due to the lack
of suitable instrumentation methodology for JIT-compiled



Table 1: The general characteristics of SPECjvm98 benchmarks.

| COMPRESS JEss | DB | JAvaC MTRT JACK |
classes loaded (user/total) 27787 | 164 /210 | 18 /81 | 156 / 220 | 40 / 102 | 67 / 131
methods called (x10%) 225,961 101,884 114,282 89,8387 280,340 43,795
bytecodes executed (x10°) | 12,474,021 | 1,820,852 | 3,700,063 | 1,053,961 | 2,192,522 | 2,006,618
Number of objects allocated 7,446 | 8,131,609 | 3,262,899 | 6,244,896 [ 6,695,116 | 6,955,528
Average object size {Byte) 14,823 40 31 36 25 31
HeaPrmin (MB) i5 2 12 12 9 2
Heapma: (MB) 106 308 98 217 161 203

programs. The existing trace-driven simulators, such as
ATOM [18] or EEL f12], rely on static code annotations
inserted to the target program at the ohject or the binary
level. However, when a JIT compiler is present, it takes the
Java bytecodes and compiles them into native codes at run
time. Because the actual executable codes are generated dy-
namically, the approaches based on static instrumentation
fail to handle them. Instead, we use an exception-based
approach that can trace virtually every instruction without
any instrumentation to Java programs or the JIT compiler.
The rest of the paper is organized as follows. Section 2
summarizes the related work and Section 3 presents our
evaluation methodology including descriptions of the bench-
mark programs and the exception-based tracing tool called
JTRACE. In section 4, we analyze the cache performance, the
behavior of objects, and the performance impact of garbage
collection and heap size. We conclude in section 5.

2. RELATED WORK

Romer et al. [17] and Hsieh et al. [8] evaluate the perfor-
mance of Java programs, but their studies are limited to the
interpreted Java programs and/or static executable images
generated by a bytecode to native code translator. Radhakr-
ishnan et al. [15] compare the characteristics of both the
JIT and the interpreter and their interaction with the ar-
chitectural features such as the cache and branch prediction
hardware. None of the previous studies, however, examined
the behavior of Java objects and its implication on the cache
performance, nor did they analyze the performance impact
of garbage collection and heap size.

The impact of garbage collection has been studied mainly
for functional languages such as Lisp [22], Scheme [16] or
Standard ML [6; 3]. Some abservations from functional pro-
grams can be applicable to Java programs. However, all
the run-time systems of functional languages employ a sort
of generetional garbage collectors, while the Sun’s standard
implementation of JDK 1.1 uses a simple mark-and-sweep
garbage collector. In addition, there is no notion of native
methods in functional languages. Due to these differences, it
is hard to draw any conclusion for Java programs from the
results of functional programs.

3. METHODOLOGY

3.1 Benchmarks

We use SPECjvm98 [19] as our benchmark programs. The
SPECjvm98 benchmark suite is the result of an effort to
define an industry standard benchmark for Java programs.
Most applications are derived from real applications and de-
signed to evaluate the performance of both hardware and
software aspects of the JTVM. Among eight applications in
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SPECjvm98, we exclude _200_check, which is a synthetic
benchmark to check various features of the JVM and the
Java language. _222_mpegaudio is found to use a very
small amount of heap memory (less than 1MB), and thus it
is not studied either. We now briefly describe the structures
and input data of benchmark programs used in this paper®.

_201_compress COMPRESS is a Java port of the 129.com-
press benchmark from SPEC CPU95, The benchmark
compresses and decompresses each input file in mem-
ory using two buffers whose sizes are equal to the input
file size. It makes five loops over five input files, hence
handles 25 files.

-202_jess JFSS is the Java Expert Shell System based on
NASA’s CLIPS system. The benchmark solves a word
puzzle and 14 number puzzles. For the number puz-
zles, each time it asserts a new set of facts represent-
ing the same puzzle but with different literals. Thus,
the inference engine must search through progressively
larger rule sets as execution proceeds.

-209_db DB emulates multiple database operations on mem-
ory resident database. The database is normally ac-
cessed via an index structure, where the references to
database records are sorted based on a certain field.
Each database record comnsists of 8 fields.

-213_javac JAVAC is a Java compiler from the JDK 1.0.2.
The same Java source file is compiled four times.

-227_mtrt MTRT is a multithreaded raytracer that works
on a scene depicting a dinosaur. The main thread
forks two threads and each thread is responsible for
generating rendering results to the left or the right
half of the output canvas.

-228 _jack JACK is a Java parser generator that is based on
the Purdue Compiler Construction Tool Set (PCCTS).
The input file contains instructions for the generation
of JAcK itself, and is fed to JACK 17 times.

In the experiments, we ran the above benchmarks as
stand-alone applications rather than as applets, using IBM
JDK 1.1.6 with a JIT compiler on an AIX platform. To
minimize nondeterministic behavior of Java programs across
multiple runs, we turn off the asynchronous garbage collec-
tor. Also, all the synchronous garbage collection calls in the
benchmarks are disabled so that the garbage collector is in-
voked only if there is not enough space in the heap memory.

'Three different data set sizes are available for each bench-
mark, but we always used full scale benchmarks by specify-
ing -s100 at the command line.



Table 1 shows the general characteristics of benchmark pro-
grams including the number of objects allocated, dynamic
bytecode counts, aud the average object size. In table 1,
Heapmir denotes the minimum heap size that should be
provided to run the application, while Heapma- means the
heap size that the application begins to have no garbage col-
lection. In contrast to the Sun's standard implementation,
IBM JDK uses an enhanced object layout to improve the
performance of the JVM. In the new object layout, handles
are removed, and each object has two-word header instead
of a handle. Therefore, the average object size in table 1
includes 12 bytes of the space overhead; two words for a
header and one word for heap maintenance [20]. We can
see that most objects are very small except for COMPRESS,
where a small number of large buffers increase the average
object size. )

3.2 Tracing tool

To collect memory reference traces of Java programs, we
have built an exception-based tracing tool called JTRACE.
Some implementations of PowerPC architecture have a built-
in capability to generate a trace exception whenever a single
instruction is successfully completed, by turning on a special
flag in MSR (Machine Status Register) [10]. The main ad-
vantage of the exception-based approach is that it is possible
to trace virtually every instruction including system activity
without any modification to executable images. Moreover,
no instrumentation to Java programs or a JIT compiler is
required to trace dynamic codes generated by the JIT com-
piler. . .

The type of instruction and the effective address of an
operand for a load or a store instruction are available to
the exception handler. The exception handler can save this
information into a trace buffer for future analysis. There
is, however, one serious restriction when we use trace excep-
tions; normally operating system requires that the exception
handler should not cause any page fault [9]. In other words,
all the codes and data structures used by the exception han-
dler should be pinned. This means that the amount of traces
we can capture is essentially limited by the amount of phys-
ical memory of the machine on which traces are collected.

To overcome this problem, JTRACE dynamically controls
the execution of the workload process. JTRACE consists of
three components as shown in figure 1; (1) a kernel exten-
sion, (2) JTRACE process, and (3) a backend process. The
kernel extension contains the exception handler, system call
routines and control information shared by all the compo-
nents. Initially, JTRACE reserves a small portion of physical
memory as a trace buffer and forks two processes, a target
workload {Java) process and a backend process. And then
JTRACE itself becomes idle waiting for the completion of the
workload process.

Only the tracing flag of the workload process is enabled
when it is created by JTRACE. As soon as the workload
process starts its execution, it penerates a trace exception for
each instruction. If the current instruction is either a load
or a store, the exception handler places the corresponding
data address on the trace buffer. ITRACE also provides the
workload process with several system calls. These system
calls can be used to turn on or off the tracing selectively, or
to insert special tracing records into the trace buffer, in case
the source code of the workload is available.

When the exception handler detects the trace buffer is
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Figure 1: The organization of JTRACE.

near full, it sends a signal to the backend process, which was
sleeping till then. To avoid the buffer overrun, the backend
process first suspends the execution of the workload using
a standard UNIX signal (SIGSTOP). It is a responsibility
of the backend to consume the trace records in the buffer,
either by running a trace-driven simulator on-the-fly or by
storing them into a file. Eventually, the state of the trace
buffer is reset to be empty and the execution of the work-
load is resumed for another set of tracing records. This re-
peats until the workload finishes its execution, in which case
JTRACE wakes up and asks the backend to finalize the cur-
rent tracing. By reusing the small trace buffer in this way,
we are able to trace long-running applications regardless of
the physical memory size.

Because the tracing significantly slows down the execu-
tion of the workload, a special care has been taken so that
the workload receives roughly the same number of clock in-
terrupts during its scheduling quantum. This is done by
compensating timing related registers according to the ac-
tual number of instructions traced. Otherwise, the tracing
results will exaggerate the kernel activity due to excessive
context switches. .

The hardware platform used for tracing is an RS/6000
model 7043-140 running IBM AIX 4.3.2, with 332MHz Pow-
erPC 604e microprocessor and 768MB of main memory. The
slowdown factor of tracing is about 100 to 200, with the
backend simulating a stack algorithm (described in the next
section). The size of the trace buffer was generally indepen-
dent of the tracing speed and a small trace buffer (64MB -
128MB) worked quite well.

3.3 Evaluation methodology

Several different backends are used to study various aspects
of Java programs. For cache performance, we have con-
structed a backend simulating the stack algorithm [5] that
can generate miss ratios for different sizes of fully-associative
caches in one pass. Our implementation of the stack sim-
wlation algerithm is based on [11], where the algorithm is
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Figure 2: Data cache miss ratios with different heap configurations. DEF and INF correspond to the default and the infinite

heap configuration, respectively.

accelerated by considering cache sizes that are powers of
2 only. For comparison, direct-mapped and set-associative
caches are simulated using another backend built from a
conventional cache simulator, dinero IV [4]. We use a fixed
line size of 32 bytes for the cache simulation.

Additionally, we instrument the JVM so that it makes
system calls before and after garbage collection, which noti-
fies the exception handler if the Java program is in the mid-
dle of garbage collection. This enables us to count the exact
number of instructions, data references, and cache misses
that took place during garbage collection. We find out that
the percentage of system activity is small in most applica-
tions, and only user data references are used in this paper.

We are also interested in the memory system behavior of
Java programs at the object level. Memory reference traces
alone, however, do not carry any information on the ob-
jects. To collect object-level statistics, we modify the JVM
to produce a file which contains the start address and the
size of each object by traversing the entire heap memory at
the end of the execution. During tracing, a backend simply
keeps track of the number of references and the first and the
last reference for each 8-byte heap memory block?. When
the backend receives a finalization signal from JTRACE, it
identifies which memory blocks belong to the same object
by reading through the file generated by the JVM. Then,
the backend merges the statistics for those memory blocks
and converts it into that of the object. The first and the last
reference are timestamped with the number of total mem-
ory references (including non-heap references) instead of the
actual time. Also, for this measurement, we provide enough
heap space (320MB) to prevent objects from being moved
or reclaimed by the garbage collector.

2This is an allocation unit used for heap memory in JDK
1.1.6.
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Finally, we quantitatively analyze the impact of garbage
collection on the performance of Java programs. We take
into account the instruction overhead of garbage collection,
cache performance, and virtual memory performance caused
by TLB misses and page faults. TLB misses and the number
of page faults are obtained in the same way as cache misses
by setting the line size to 4KB. An LRU policy is assumed
for page replacements.

The JVM has two run-time flags, “-ms” and “-mx", which
specify the initial and the maximum size of heap mem-
ory. On JDK 1.1.6 for AIX, default values for these flags
are IMB and 32MB, respectively. We consider the follow-
ing six heap configurations in this paper; default {-msiM
-mx32M), 16MB (-ms16M -mx16M), 32MB (-ms32M -mx32M),
48MB (-ms48M -mx48M), 64MB (-ms€4M -mx64M), and in-
finite (-ms320M -mz320M). With the infinite heap configu-
ration, no benchmark has any garbage collection, because
we provide 320MB of heap memory, which is larger than
Heapmez values in table 1.

4. ANALYSIS

‘We analyze the various memory system behavior of Java pro-
grams using memaory reference traces collected by JTRACE.
First, we study the cache performance of Java programs in-
cluding temporal locality and the effects of cache associativ-
ity. Second, we investigate the behavior of cbjects and their
lifetime characteristics. Finally, the instruction overhead of
garbage collection and the performance impact of heap size
are studied.

4.1 Cache performance

Temporal locality. Figure 2 displays the fully-associative
data cache miss ratios of SPECjvm98 applications under
different heap configurations, where the miss ratios during
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Figure 3: Effects of the cache associativity (with 32MB of heap memory).

garbage collection are separately plotted in dotted lines (la-
beled as GC).

First, we observe that the miss ratios during garbage col-
lection are generally higher than the overall miss ratios and
appear to be insensitive to the cache sizes. This is likely
because the garbage collector should sweep through the en-
tire heap memory and its working set size will be connected
to the total heap size. However, the garbage collector shows
the first working set at near 2KB in most applications which
is independent of the heap size. Since the garbage collector
suffers from higher cache miss ratios than the application
itself, all the SPECjvm98 applications studied in this pa-
per show the lowest cache miss ratios with the infinite heap
configuration, where the applications do not experience any
garbage collection (marked as diamonds with a solid line in
figure 2).

As observed in [16], the garbage collector imposes both
direct and indirect costs on the overall performance. Di-
rectly, the garbage collector itself executes its own instruc-
tions and causes cache misses. Indirectly, it interferes with
the application’s temporal locality, making the application
suffer from cache misses right after the garbage collection.
In addition, the garbage collector can move objects, which
may improve (or degrade) the application’s locality. Indirect
costs of garbage collection are, however, found to be negligi-
ble; if we exclude data references issued by the collector, all
the applications show the same curves as with the infinite
heap, regardless of the heap size used. This means that the
differences in overall cache miss ratios mostly result from
the cache misses occurred in garbage collection. Since the
variations in the miss ratios during garbage collection are
small across different heap sizes, usually it is the percentage
of the garbage collector’s data references that determines
how much the overall miss ratios are affected. For example,
in the default heap configuration, 37.3% of data references
are from the garbage collector in Javac, while 10.8% in DB.
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Hence, the overall miss ratioc of JAvAC is more affected com-
pared to nB. We will see in section 4.3 that the overhead of
garbage collection is decreasing as we increase the heap size.
Therefore, the curves of overall miss ratios approach toward
that of the infinite heap with the increased heap size.

Note that eSS and JACK exhibit noticeably lower miss ra-
tios during garbage collection with the default heap config-
uration. This is because, under the default heap configura-
tion, the JVM uses less than 2MB of heap memory for these
applications, which improves the garbage collector’s locality.
In spite of the mmprovement, the actual miss ratios are still
worst with the default heap configuration for JESS and JACK,
since the garbage collector is more frequently invoked due
to the small heap size {cf. section 4.3). The large miss ra-
tios in garbage collection for COMPRESS are not meaningful,
because the absolute number of cache misses is very small.
In COMPRESS, the garbage collector only accounts for 0.3%
(with the default heap size) or less than 0.04% (otherwise)
of total data references. The impact of garbage collection
will be discussed in more detail in section 4.3.
Performance on direct-mapped and set-associative
caches. The results presented in figure 2 are the miss ra-
tios for fully-associative caches obtained via the stack simu-
lation. We now consider more realistic caches such as direct-
mapped and set-associative (2-way and 4-way) caches.

Figure 3 shows that the miss ratios during garbage col-
lection are finally converged to the same level, no matter
which cache associativity is used. In fully-associative caches,
the garbage collector has about 2KB (64 cache entries) of
the working set size in most applications (cf. figure 2). It
appears that this small number of memory blocks causes
many conflicts when the cache size is small, especially in
the direct-mapped caches. As the cache size increases, these
blocks are more evenly distributed over the entire cache, and
the conflict misses become insignificant.

Looking at the overall miss ratios in figure 3, 2-way set-
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Figure 4: Changes in the number and the space of objects which last more than 1 million references.

associative caches perform very well under practical cache
sizes; 2-way set-associative caches lead to a large improve-
ment over direct-mapped caches, while the additional advan-
tages of 4-way set-associative caches are small. The similar
observation has been reported for several SPEC95 bench-
marks [2] and for standard ML programs [6].

4,2 The behavior of objects

We define an object is live with respect to the memory ref-
erence, if it is being actively referenced by the application.
We call an object long-lived (short-lived), if it is live for a
relatively long (short) time. On the other hand, we define
an object is reachable, if it is accessible by following object
links from the rogt set. The root set usually includes the lo-
cal variables in run-time stacks and static variables defined
in loaded classes. We will call an object long-resident, if it
is reachable for a relatively long time, to distinguish it from
a long-lived object. In this section, we analyze the char-
acteristics of live objects and its implication on the cache
performance. The reachable objects are more important to
understand and model the cost of garbage coliection, and
will be discussed in section 4.3.

The behavior of live objects. As mentioned in sec-
tion 3.3, we timestamp the first and the last reference to
an object with the number of total data references made up
to that point. Assume that the first reference to an object
is made at the £1-th data reference and the last one at the
ta-th data reference. According to our definition, the object
is live from £, to t; and the lifetime of the object is the du-
ration that it remains live, i.e., tz — ¢;. If an object is not
referenced anvmore, it is not visible to the memory system
and we consider the object is dead even though it is still
occupying a heap space.

Figure 4 plots the changes of live objects and their sizes,
as each program executes. To reduce the number of data
points, every 1 million references are grouped together and
we exclude the objects whose lifetimes are less than 1 mil-
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lion references. The upper solid line in figure 4 represents
the cumulative percentage of objects which come into ex-
istence, while the lower dotted line denotes the cumulative
percentage of dead objects. These lines are associated with
the right-hand scale. The difference between two lines is the
percentage of live objects and the gray region indicates the
size of heap memory occupied by the live objects.

The repeated patterns of COMPRESS, JAVAC, and JACK
clearly demonstrate the benchmarks’ loop structures over
the same input data. In COMPRESS, most of live spaces come
from two buffers allocated for each input file, while the com-
pression phase uses some additional tables. The number of
live objects is roughly constant and only 12 — 15 objects
are newly created and destroyed for each (de)compression
phase. For JESS, the first peak is for the word puzzle, and
the remaining 14 peaks for the number puzzles. Because
the older sets are not retracted during the number puzzles,
the number of live objects are slightly increasing and it takes
longer to solve the same puzzle. However, the amount of ob-
jects kept across the iterations is quite small. In DB, there
are several points that many objects suddenly die, which is
due to the ceased access to a certain database field. For
example, the size of live objects drops quickly around the
870 millionth reference when the benchmark sorts database
records on the second field. All the objects that store the
second field of database records become dead, since the field
is not used anymore after this sort operation. The live spaces
are gradually decreasing in MTRT, probably because some of
scene data arc not referenced as the rendering proceeds. We
note that, unlike other benchmarks, most of live objects are
allocated at the very beginning in DB and MTRT.

Our measurements show that the size of live objects re-
mains very small compared to the total heap memory al-
located. For instance, JACK demands about 14MB of heap
memory up to the 200 millionth reference, but only less than
0.7MB are used for the objects which survive more than 1
million references. This suggests that Java programs gener-
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Figure 5: The distribution of lifetimes and the number of references.

ate a significant number of short-lived objects during their
execution which last less than 1 million references. From the
cumulative percentages shown in figure 4, we can estimate
that 65% to 99% of the total objects are such short-lived
objects. With the exception of COMPRESS, 71% ta 99% of
the heap memory is used for them. In the case of COMPRESS,
although 65% of the total objects are short-lived, they only
occupy 0.2% of the heap memory because soine of other ob-
jects (buffers) are relatively huge in their sizes.

The lifetime characteristics.  Figure § illustrates the
distribution of the objects which have the same lifetime.
The lifetime is calculated in the unit of 1 million references
and is arranged in ascending order; short-lived objects are
on the left, while long-lived objects are on the right. Note
that the number of objects, on the left y-axis, is displayed
in log scale.

As we observed in figure 4, a large percentage of objects
have lifetimes less than 1 million references and are located
at the leftmost of the graph (x = 0}. For the programs which
have a loop structure {COMPRESS, JAVAC, and JACK), the
lifetimes of most objects are less than the duration of each
leop. For example, figure 4 shows that each iteration of 1ACK
makes about 110 million references. Nearly all objects are
created, used, and dead inside of each iteration, which niakes
them located in the region less than 110 million references
in figure 5. In DB and MTRT, more objects are distributed
toward the right-hand side of the graph.

The dotted curves in figure 5, associated with the right
y-axis, show the cumulative distribution of data references.
A point on the curve indicates, in its y value, the fraction
of references to the objects whose lifetimes are less than or
equal to z. We note that although most of objects are short-
lived, a substantial number of references are still going to the
long-lived objects in some applications. This is plausible be-
cause long-lived objects tend to hold essential information
such as database records {DB) or scene data (MTRT), and
have more chances to get referenced. DB is one of the ex-
treme cases; 92% of objects have the lifetimes less than 1
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million references, but only account for 4% of total data
references. The final value of the dotted curve in figure 5

" gives us the percentage of heap references to the total data

references, which ranges from 29% to 80%.

Table 2 summarizes the lifetime characteristics of studied
applications including the number of (native) instructions
and data references. Also, the table shows the percentage of
short-lived objects in terms of the number of objects, heap
spaces, and data references, whose lifetimes are legss than 1
million references. We note that the studied applications
allocate 10 — 60 bytes in every 1,000 instructions. This allo-
cation rate is much slower than that of Standard ML, which
is known to allocate about one word for each six user instruc-
tions [6; 3], but quite similar to Scheme’s rate (10 - 54 bytes
per 1,000 instructions [16]). The reason of higher allocation
rate in Standard ML is that it allocates function activation
records (closures) on the heap, instead of using a stack as
do most other languages including Java and Scheme.

In most SPECjvm98 applications, only less than half of
the total data references are going to the heap memory, as
shown in table 2. The rest of data references will go either
to Java stacks or to C stacks. A Java stack is used for local
variables, operand stacks, and method invocation, while a
C stack supports native methods written in languages other
than Java {13]. The JIT compiler itself also makes data ref-
erences when it compiles bytecodes to native instructions.
Table 2 shows 2.4% to 35.5% of (user) instructions are spent
on the shared library routines which include the standard
Java native methods, the JVM run-time system, and the
JIT compiler. The highest percentage of JAVAC is, in part,
due to the translation overhead of the JIT compiler, since
1avac has the largest number of (static) bytecodes to com-
pile among SPECjvm98 applications.

The implication on the cache performance. We now
explore the implication of the behavior of live objects on the
cache performance. First, we consider JESS and JACK. As
we can see in table 2, most of objects in JESS and JACK die
young. We can expect such short-lived objects have good



Table 2: The dynamic statistics of SPECjvm98 benchmarks (with the infinite heap configuration).

{ COMPRESS | JESS DE | JAVAC [ MTRT IacK |
Tnstructions executed (x10°) | 11,100,907 | 5,327,580 | 9,167,372 | 7,716,660 | 3,916,510 | 6,652,677
Data references (x10%) 4,121,794 | 1,797,615 | 3,211,373 | 2,515,695 | 1,129,016 | 2,014,066
% instructions from shared [ib. 2.41% 21.99% 13.25% 35.53% 14.92% 31.04%
% heap references 80.27% 39.40% 45.61% 28.71% 50.97% 50.74%
Heap memory allocated (KB) 107,787 314,533 99,927 221,206 164,444 207,550
Average allocation rate 10 60 11 29 43 32

(bytes/1000 instructions)
Average lifetime (million refs.) 155.6 1.3 129.5 55.2 10.8 1.6
Average number of references
per each object 444,366 87 449 116 86 147
per cache line (32B) 959 70 458 102 109 154
Lifetime < 1 million references
% objects 64.40% 99.19% 92.33% 66.20% 98.03% 97.33%
% heap memory 0.21% 98.88% 71.15% 68.64% a7.60% 95.48%
% heap references 0.0061% 37.15% 4.14% 26.47% 42.91% 67.97%
% total data references 0.0049% 14.64% 1.89% 7.60% 21.87% 34.48%

temporal locality, and do not cause capacity misses. How-
ever, they touch more than 95% of the total heap memory
and the average number of references per cache line is rel-
atively small (70 in JESS and 154 in JACK for 32-byte line
size). Consequently, the short-lived objects produce a large
amount of cold misses. It is possible to reduce the num-
ber of cold misses by decreasing the available heap size and
reusing the same line for different objects. But in this case,
the cache misses during garbage collection quickly offset the
benefit of reduced cold misses, as we can see in figure 2.

JESS and JACK also have some frequently-referenced long-
lived objects. Although these objects can cause capacity
misses by interfering with short-lived objects, their total size
is very small. Therefore, if the cache size is big enough to
accommodate them, the capacity misses almost disappear.
For instance, 244 objects (33KB in size) account for about
9% of data references in JACK, with the lifetime of around
1950 million references (cf. figure 5). Once the cache size is
larger than 32KB, the miss ratio of JACK does not change, as
shown in figure 2. Most of cache misses in these cache sizes
result from the cold misses of short-lived objects. Similarly,
in JESS, long-lived cbjects, whose lifetimes are more than
1690 million references, are responsible for 12% of the total
references. They can fit into a 16KB cache and constitute
the first working set. Another 8% of data references are dis-
tributed over the objects with the lifetimes ranging from 140
million to 1690 million references. With the caches larger
than 256KB, these objects can stay in the cache and they
determine the second working set of JESS, as can be seen in
figure 2. In any case, the size of frequently-referenced long-
lived objects is closely related to the application’s working
set size. Long-lived objects which are not referenced fre-
quently do not contribute to the overall cache miss ratio,
and can be ignored.

The same observation holds for pB, JAVAC and MTRT.
However, these applications have more long-lived objects
and keep a larger amount of live objects (3MB — 8MB) com-
pared to JEss and JACK. Thus, even with a 1MB of cache, it
is not possible to accornmodate all the frequently-referenced
long-lived ohjects and some capacity misses are inevitable.
For JAVAC and MTRT, the most-frequently-referenced long-
lived objects appear to fit into about 64KB and 256KB re-
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spectively, where the applications exhibit the first working
set sizes (cf. figure 2). Still, a significant number of refer-
ences are made to other long-lived objects, thereby resulting
in capacity misses. In DB, 33% of the total references are
going to the objects that exist throughout the lifetime of the
application. Their total size is larger than 1MB and this is
the reason the miss ratio of DB is continuously decreasing
in figure 2. Among the cache misses caused by heap refer-
ences at a 512KB cache, 28% and 35% of misses are due to
capacity misses for JAVAC and MTRT respectively, while the
percentage for DB is 96%.

When the cache is not fully-associative, the application
experiences conflict misses, which explain the differences
between the miss ratios of fully-associative cache and set-
associative caches in figure 3. Reinhold [16] showed that the
sequential allocation scheme is naturally suited to direct-
mapped caches, because it tends to spread the objects spa-
tially throughout the cache. He also noted, when most ob-
jects are short-lived, they are dead by the time their cache
lines are reused for newer dynamic objects, based on his ob-
servation of garbage-collected Scheme programs. Among our
benchmark prograins, JESS and JACK have similar character-
istics as Scheme programs in the sense that they have few
frequently-referenced long-lived objects and that most ob-
jects are allocated rather linearly and short-lived. However,
when comparing the miss ratio curves of JESS and JACK to
other Java applications in figure 3, we do not see any signif-
icant benefit of direct-mapped caches in these applications.
One possible explanation is that, unlike Scheme programs,
many conflict misses are produced by the interferences from
non-heap references, which are mostly to Java stacks and
C stacks. As we move to 2-way set-associative caches, such
conflict misses are reduced significantly.

Finally, we mention that the characteristics of COMPRESS
is very different from other benchmark programs; the com-
putation is done with the small number of large objects
without creating many temporary objects. ‘The garbage col-
lection can be done quickly, hence the performance of the
application is not affected by the heap size. In the perspec-
tive of the memory usage patterns, we believe COMPRESS
is not much different from the corresponding C version in
SPEC25.



Table 3: The number of garbage collections and the instruction overhead {shown in parentheses).

[ JESS DB JAVAC MTRT JACK |
Default | 687 (116.7%) | 38 (16.0%) | 90 (72.2%) | 71 (62.6%) | 301 (36.0%)
16MB | 21 (10.1%) |11 (5.8%) | 29 (284%) | 17 (25.7%) | 13 (5.2%)
32MB | 10 (79%) | 3 (29%) | 9 (11L.1%) | 6 (167%) | 6 (4.3%)
18MB 6 (66%) | 2 (27%)| 5 (7.3%) | 38 (11.6%) | 4 (4.3%)
64MB 4 G6%) | 1 Q1% | 3 (@R[ 2 (104%) 3 (4.2%)

4.3 TImpact of garbage collection and heap size
The instruction overhead of garbage collection. Be-
fore we analyze the performance impact of garbage collection
and heap size, we examine one of the direct costs of garbage
collection, the instruction overhead. Note that our analy-
sis is highly depencdent on the garbage collection algorithm
employed in the JVM. In this paper, we only deal with the
“mark-and-sweep” collection algorithm used in IBM JDK
1.1.6.

The mark-and-sweep algorithm collects garbages in three
phases. The mark phase visits and marks all reachable ob-
Jjects starting from a special set of object links called the
root set. After the reachable objects have been identified,
the remaining objects are known to be garbages and can be
reused. In the sweep phase, the collector sweeps sequentially
through the heap memory, adding unmarked objects to the
free list of objects. Finally, the compaclion phase relocates
the reachable objects to eliminate dead space between them
and to improve the spatial locality of objects. In the current
implementation, the compaction phase may not be called if
the heap memory is not fully fragmented.

Table 3 comparas the number of garbage collections oc-
curred with different heap configurations. The numbers in
parentheses denote the ratio of the number of instructions
executed for garbage collection to the number of instructions
for the application itself. We exclude COMPRESS, because
the overhead of garbage collection is too small. One notable
thing in table 3 is that the garbage collector is invoked very
frequently in the default heap configuration, especially for
JESs and JACK. With the default heap configuration, the
JVM initially sets the available heap size to IMB. The heap
is increased incrementally up to 32MB if the collector fails
to satisfy a new allocation request after garbage collection.
For JESs and JACK, the collector does not increase the heap
beyond 2MB, because the size of reachable ocbjects is very
small and the collector can still find some space after garbage
collection. However, the available space after garbage collec-
tion is usually less than 1MB and this small space is quickly
axhausted, which leads to another garbage collection. Due
to this problem, the default heap configuration results in
great inefficiency, especially when the size of reachable ob-
jects is small. As we can see in table 3, setting the initial
heap size to at least 16 MB significantly reduces the number
of garbage collections. The default heap configuration may
improve the cache (cf. figure 2) and the virtual memory
performance because the application has smaller data foot-
prints. The benefit is, however, easily overwhelmed hy the
additional costs of garbage collection.

The instruction overhead of garbage collection, I,., can
be given by: :

Igc = Ngc X Wgc

where Ny, and Wy, denote the number of garbage collec-

Ngc X (Wmav-k'. + Wsmeep + WcOmPﬂCt)
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tions (shown in table 3) and the average numhber of in-
structions executed for each garbage collection, respectively.
Winark, Waween, and Weompac: Tepresent the average number
of instructions spent on each mark, sweep, and compaction
phase. Figure 6 shows the changes in Ty (figure 6(a)) and
W, (figure 6(b)) with different heap sizes. Even though
Wy increases with the larger heap size, the increasing rate
of Wy, is slower than the decreasing rate of Nyc. Thus, {4
is always decreased as we increase the heap size.

Figure 6 also breaks down the cost of each garbage col-
lection phase. The collector has to visit every reachable ob-
jects during the mark phase, which makes Wo,,-; depend on
the number of reachable objects. Our measurements show
the size of reachable objects remains constant or changes
very regularly for studied applications, and this is the rea-
son Wy,erk 18 roughly independent of the heap size for a
given application in figure 6(b).

On the contrary, the cost of the sweep phase, Weweep, is
directly proportional to the heap size. More specifically, it
appears that Wiyeep depends on the total number of objects
(the reachable objects plus garbages) in the heap memory,
becaunse the collector should check every object to see if it
is marked or not. Therefore, MTRT, which has the smallest
average object size (cf. table 1), spends longer time on the
sweep phase than any other applications.

For the cost of the compaction phase, we have two trends;
for DB and MTRT, the total cost of the compaction phase
(Nge X Weampact) is roughly constant, while the average cost
(Weompnet) 18 constant for IBSS, JAVAC, and JACK. We have
observed in figure 4 that most of long-resident objects in
DB and MTRT are created at the beginning of the execu-
tion. Once the long-resident objects are compacted, they do
not have to be compacted again in the subsequent garbage
collections, which makes the total cost of the compaction
phase constant. Other applications, however, have a loop
structure, in which new objects are generated and replace
the current reachable objects. Therefore, the garbage col-
lector finds uncompacted reachable objects every time it is
invoked. Since the size of reachable objects does not change
much, the average cost of each compaction phase is constant.
Note that in DB with 64MB of heap memory, the garbage
collector skipped the compaction phase because it thought
the heap was not fragmented vyet.

Overall, the decrease in Ig; with the larger heap size is
mainly due to the decrease in the cost of the mark phase
(Nge x Wnarr) and sometimes in the cost of the compaction
phase (Nge X Weompact). When the size of reachable objects
is very small, the garbage collector spends most of its time
on the sweep phase, as can be seen in JESS and JACK. While
the results presented in this'section are obtained by turning
off the asynchronous garbage collector, we have verified that
the results with the asynchronous garbage collector are also
similar.
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Figure 6: The breakdown of the number of instructions executed for garbage collection.

The performance impact of garbage collection and
heap size.  The cache miss ratios shown in section 4.1
are sometimes misleading when we analyze the performance
impact of garbage collection and heap size. The lower cache
miss ratio does not always guarantee the faster execution
time due to the direct and indirect costs of garbage col-
lection. Instead, Reinhold [16] used the CPI (Cycles per in-
struction) contribution of memory system overheads (Omem )
as a performance metric, which can be rephrased as follows:

- (Mapp + Mgc) X P+ Igc + Alapy
Tapp

Omam

where I;p, and I,. represent the total number of instruc-
tions executed by the program and by the garbage collector,
respectively. P is the cache miss penalty in processor cycles.
Mapp and M. denote the number of cache misses for the
application itself and for the garbage collector;-respectively.
Alapp 1s the change in L., due to the garbage collector or
the different heap size®.

In Java programs, Al,p, can be caused by initializing
such data structures as mark and allocation bits, whose sizes
are dependent on the heap size. However, we find Al,y, is
negligible compared to the other factors. We have observed
in section 4.1 that M,,; does not change much as we use the
different heap sizes. Therefore, the direct costs of garbage
collection, M, and Iy, are the dominant factors that deter-
mine the changes in O, with different heap sizes. Because
these direct costs are decreasing as we increase the heap size
(cf. figure 8), the larger heap size is always favored to get
the smaller Cpem.

When considering the virtual memory performance, this
is not true. If the heap size is increased beyond the certain
point, the virtual memory performance begins to play an
important role in the overall performance. Table 4 shows
the number of pages touched by the applications. The num-
bers in parentheses display the number of page faults when
we assume only 32MB (8K pages) of physical memory is

3When we assame a perfect instruction cache and an ideal
pipeline which completes one instruction in every cycle, the
memory system overhead, Omem, is the only source that
increases the CPI. In this case, the overall CPI is given by
CPI =14 Omem. The similar performance metric has been
also used for [6; 3].
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available for data. Normally, our Java applications touch
another 900 to 3,200 pages for non-heap data. These pages
will include the Java stacks, C stacks, run-time data struc-
tures used by the JVM and native code pages managed by
the JIT compiler. The number of these additional pages is
slightly increasing as we increase the heap size.

Even when we have enough physical memory, the first
access to each page incurs a zero-filled puge faull, where
the page fault handler simply allocates a free physical page
frame and zerc-out the page. We find that the cycle penal-
ties due to zero-filled page faults are also comparable to Iy,
and cache penalties. Therefore, on the real machines, there
exists an optimal heap size for a given application which
minimizes the total execution time due to the interaction
between these factors. The studied applications show 0.43%
to 0.90% of miss ratios for 64-entry fully-associative TLBs.
However, their impact on the overall CPI is very small for
the simulated heap sizes.

From table 4, it is apparent that the heap size should
not be increased beyond the available physical memory. An
interesting point is that sometimes it is better to continue
allocating new objects through virtual memory rather than
to invoke the garbage collector. In all applications, the infi-
nite heap configuration (320MB) shows less number of page
faults than the case with 64MB. This is a natural conse-
quence of the current simple mark-and-sweep garbage col-
lector, which is not optimized for the virtual memory per-
formance unlike the generational garbage collectors. Be-
cause most objects are short-lived, many pages need not
be accessed again once they are evicted from the physical
memory. However, the mark-and-sweep collector re-touches
every page during garbage collection. This will not only in-
crease the number of page faults, but also increase the traffic
between the memory and the secondary storage.

5. CONCLUDING REMARKS

This paper studies the memory system behavior of JIT-
compiled Java programs based on the memory reference
traces obtained by an exception-based tracing tool. Specifi-
cally, we examine the cache performance, the lifetime char-
acteristics of Java objects, and the performance impact of
garbage collection and heap size.



Table 4: The number of pages touched by the SPECjvm98 applications and the number of page faults when we assume only

32MB of physical memory is available for data {shown in parentheses).

( ! JESS i DB | JAVAC [ MTRT | JACK
Default | 1541 0 | 3804 0) | 5538 ) | 5421 ©) | 1626 ©)
T6MB | 5284 (©) | 4995 (0) | 6533 (0) | 6818 (0) | 5381 (0)
32MB 0572  (58403) | 9282 (18832) | 10823  (69110) | 11047 (56939) | 9669 (47361)
48MB [ 13860  (95130) | 13570 (39015) | 15110 (156946) | 15334 (83164) | 13956 (87869)
64MB | 18148 (118464) [ 17858 ({37664) | 19399 (115102) | 19622 (82613) | 18245 (94305)
320MB | 83484  (85103) [ 29557 (30253) | 61400  (79404) | 47431 (51128) | 56820 (57988)

All the SPECjvm98 applications studied in this paper
show the lowest data miss ratios with the infinite heap con-
figuration. This is because the garbage collector suffers from
higher cache misses and tends to inflate the overall cache
miss ratios. Additionally, we find that going beyond 2-way
cache associativity improves the cache miss ratic marginally.
We also observe that Java programs generate a substantial
amount of short-lived objects, but in general, the size of
frequently-referenced long-lived objects is closely related to
the application’s working set size and is critical to the cache
performance. Finally, the direct costs of the garbage collec-
tion are the dominant factors that affect the overall perfor-
mance with different heap sizes. These costs are decreasing
as we increase the heap size, but the optimal heap size which
minimizes the total execution time can be determined by
considering cache performance, the instruction overhead of
garbage collection, and the virtual memory performance.

Since the SPECjvm98 benchmark suite can not be a sin-
gle representative of all the Java programs and Java is an
evolving language and environment, the characterization of
Java programs should be an on-going effort. In this paper,
we only studied the mark-and-sweep garbage collector, crig-
inally come from the Sun’s standard implementation of JDK
1.1. Recently, Sun has announced the HotSpot technology
(JDK 1.2), which employs an improved generational copying
collector. Therefore, it is necessary to compare and contrast
the performance of these garbage collectors. In addition,
since most of our benchmark programs are single-threaded,
the characteristics of multithreaded Java programs needs to
be investigated further to completely understand the behav-
ior of Java programs. We believe the methodology used in
this paper is directly applicable to other Java applications
and environments, and we plan to continue our study of
characterizing Java programs.
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