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Abstract. The popularity of mobile and multimedia applications made
real-time support a mandatory feature for embedded operating systems.
However, the current situation is that the overall performance is signifi-
cantly degraded due to the real-time support. This paper suggests a novel
scheme to minimize the performance degradation in embedded operat-
ing systems with real-time support. Especially, we propose transparent
and selective real-time interrupt services which transparently monitor
the system and postpone interrupt handling that are not relevant to
real-time tasks. The proposed scheme was implemented on the Linux
2.6 kernel and the experimental results show that our scheme improves
the throughput by up to 86% for Hackbench benchmark while providing
almost the same scheduling latency compared to the previous work.

Keywords: Real-time, Scheduling algorithm, Interrupt handling, Em-
bedded operating systems, Latency, Throughput.

1 Introduction

Due to the digital convergence phenomenon [1], consumer electronics devices, such
as cell phones, PDAs (Personal Digital Assistants), and PMPs (Portable Media
Players), run many sophisticated applications beyond their original purposes. For
example, a typical cell phone is equipped not only with the phone tasks for call-
ing and SMS (Short Message Service), but also with PIMS (Personal Information
Management System), still pictures management system, and simple games. The
number of these extra applications, as well as the size and the complexity of the
individual application, will continue to grow rapidly in the near future.

Pure real-time operating systems are not adequate for those consumer electron-
ics devices because of its limited functionality and the lack of generality. As a re-
sult, more general embedded operating systems, such as Windows CE and Embed-
ded Linux, are becoming widely used in the area of portable embedded systems.

Many tasks in portable embedded systems are time sensitive [2] or require
prompt response to external stimuli. Notable examples include call processing
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tasks in PDAs or video streaming tasks in PMPs. To make these real-time tasks
run harmoniously with other normal tasks, a certain level of real-time support
is essential in embedded operating systems. In spite of this requirement, many
embedded operating systems which are rooted in general-purpose operating sys-
tems do not fully support the real-time constraint.

Recently, Ingo Molnar has proposed a Linux kernel patch called Complete Pre-
emption [3] for the improved real-time support in embedded devices. Although
Complete Preemption is quite effective in improving the responsiveness of the
system [4], the problem is that the system throughput is notably degraded due
to the real-time support. We find that the excessive context switching between
tasks to provide prompt response to real-time tasks is the main source of the
performance degradation.

To resolve this problem, we propose a novel scheme to minimize context
switching without sacrificing the responsiveness of the system. The proposed
scheme suppresses the preemption by normal tasks so that only the interrupts
associated with real-time tasks are rapidly serviced. The interrupts associated
with real-time tasks are transparently identified by the system, thus requiring
no manual intervention. The proposed scheme was implemented in the Linux
kernel 2.6 and evaluated using various benchmarks. Our result shows that the
proposed scheme improves the throughput up to 86% for Hackbench benchmark
on VIA C3 embedded board.

The rest of the paper is organized as follows. The following section reviews the
previous work for real-time support. Section 3 explains Complete Preemption in
detail and analyzes the source of performance degradation. Section 4 discusses
the proposed scheduling policy of real-time and normal tasks. Section 5 shows the
evaluation results compared to the existing solutions in the aspects of scheduling
latency and throughput. The final section summarizes our work and concludes
the paper.

2 Related Work

Although widely used in embedded systems, Linux is hardly classified into real-
time operating system (RTOS) since it does not support full preemption and
priority inheritance. Two approaches, sub-kernel and preemptible kernel, are
proposed to make Linux support real-time applications.

RTLinux [5] from FSMLabs and RTAI [6] are the representative examples of
the sub-kernel approach [7]. The kernel is divided into core-kernel and sub-kernel.
When some real-time tasks exist, the core-kernel executes those real-time tasks.
Otherwise, the control is transferred to the sub-kernel and normal tasks are
executed. In the sub-kernel structure, the scheduling latency of real-time tasks
becomes lower than tens of microseconds. However, the sub-kernel approach has
a disadvantage that only normal tasks can fully exploit the features provided by
the Linux kernel.

A preemptible kernel [8] denotes the kernel which can be preempted either at
certain preemption points or everywhere inside the kernel. For example, RED
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Linux [9] inserts preemption points in the kernel, while Timesys Linux/RT [10]
supports full kernel preemption. The Linux kernel 2.6 also supports kernel pre-
emption originally developed by the preemptible kernel project [11]. In the pre-
emptible Linux kernel, the kernel can be preemptible if it is not in critical sec-
tions, which enhances the responsiveness of real-time tasks. Unlike the sub-kernel
approach, real-time tasks can make full use of kernel features. The scheduling
latency, however, becomes more or less unstable.

Ingo Molnar’s Complete Preemption [3,4] makes preemption possible even
when the kernel is in critical sections using mutex-based spin locks. ISRs (In-
terrupt Service Routines) are also made preemptible by implementing them as
kernel threads. Consequently, the scheduling latency of real-time tasks is further
reduced below tens of microseconds. This means that a real-time task can react
to interrupts more quickly. The priority inheritance mechanism is also imple-
mented. Thus, Ingo Molnar’s modified Linux kernel meets all the functionalities
of RTOS [12].

The performance of Complete Preemption was under investigation by pre-
vious studies [13,14]. The evaluation results show that Complete Preemption
was quite effective in real-time support because of its outstanding scheduling
latency. However, our study reveals that Complete Preemption decreases the
system throughput considerably due to many preemption points. The next sec-
tion investigates Complete Preemption in more detail.

3 Linux Complete Preemption

In the preemptible Linux kernel, preemption is not possible inside critical sec-
tions due to synchronization. Consequently, a long scheduling delay for a real-
time task is inevitable because the scheduling of the real-time task is postponed
until the lock is released. Ingo Molnar’s Complete Preemption replaced almost
all the spin locks in the kernel with mutex-based spin locks. Using mutex-based
spin locks, the real-time task can preempt any tasks even if those tasks are in
a critical section. Other tasks trying to enter the critical section are enqueued
in the waiter list of the lock. ISRs can be also preempted by real-time tasks
in Complete Preemption since they are implemented using kernel threads. As
a result, almost all the kernel codes are preemptible by real-time tasks. Com-
plete Preemption also provides the priority inheritance mechanism which further
enhances the responsiveness of real-time tasks.

One of the problems in Complete Preemption is that it sacrifices the sys-
tem throughput in favor of shorter scheduling latency. Our preliminary study
reveals that PREEMPT-RT, the Linux kernel patched using Complete Preemp-
tion, degrades the throughput considerably. Figure 1 shows the execution time of
Hackbench [15] 50 and the number of context switchings during the benchmark
tests on Pentium 2.4GHz machine. As shown in the figure, PREEMPT-RT takes
about five times of the execution time compared to the Vanilla Linux kernel.

The significant decrease in the throughput is mainly due to excessive context
switchings. In PREEMPT-RT, almost all kernel codes are preemptible by any
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Fig. 1. Hackbench results of Vanilla and PREEMPT-RT

interrupt even though the interrupt has nothing to do with real-time tasks.
Unnecessary context switchings not only waste CPU cycles but also incur hidden
costs such as TLB (Translation Lookaside Buffer) flush and cache misses.

4 Transparent and Selective Real-Time Interrupt
Services

PREEMPT-RT provides fast and stable scheduling latency. However, allowing
a lot of preemption points adversely affects the overall performance since only
real-time tasks need to preempt other normal tasks. In the following subsections,
we describe our scheme to selectively service interrupts that are associated with
real-time tasks.

4.1 Suppressing the Preemptions by Normal Tasks

In Linux, all tasks are classified into two classes, a real-time class and a normal
class. The Linux scheduler is based on the priority scheduling and tasks in the
real-time class have always higher priorities than normal tasks.

PREEMPT-RT allows any task whose priority is higher than the currently run-
ning task to acquire the CPU even if the current task is in a critical section. This
helps to reduce the scheduling latency for real-time tasks. However, the problem
is that normal tasks are also able to preempt other normal tasks due to Complete
Preemption. Since normal tasks are not so sensitive to the scheduling latency, con-
text switchings from a normal task to another normal task take up the CPU cycles
unnecessarily with additional overhead such as TLB flush and cache misses.

To remedy this problem, our scheme suppresses the preemptions caused by
normal tasks as much as possible. Any higher-priority normal task does not
preempt the current normal task immediately. Instead, the execution of the
current normal task is guaranteed until the end of its time quantum in order
to avoid frequent context switchings between normal tasks. Note that real-time
tasks still can preempt other tasks for the minimal scheduling latency.

In our implementation, when the Linux scheduler is invokeddue to the change in
the runnable task set, the scheduler first chooses the next task based on the Linux
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scheduling algorithm. If the next task is in the real-time class, the scheduler per-
forms the preemption immediately. If not, however, the previous task is resumed to
rununtil the end of the remaining time quantum, thus suppressing the preemption.

4.2 Selective Handling of Real-Time Interrupt Threads

Because ISRs are implemented as kernel threads in PREEMPT-RT, they are
scheduled by the Linux scheduler with their own priorities just like the other
tasks. These interrupt threads are treated as real-time tasks. An interrupt thread
can cause many context switchings, because it is able to preempt other tasks with
the real-time priority.

In the proposed scheme, we basically treat interrupt threads as normal tasks.
Although they have real-time priorities, we do not allow them to preempt other
normal tasks in order to avoid the situation that the execution of a normal task
is interrupted by non-critical interrupts.

The previous scheduling policy, however, may increase the scheduling latency
considerably when some interrupt thread triggers a real-time task. Therefore,
there should be a mechanism that we can somehow differentiate interrupt threads
according to their relevance to real-time tasks. If we know a specific interrupt is
associated with real-time tasks, we can set a special RT flag in the task structure
of the corresponding interrupt thread. The RT flag indicates that the correspond-
ing thread triggers a real-time task, hence it should be scheduled urgently.

Now the scheduling algorithm presented in Section 4.1 is modified as follows to
deliver one or more predefined interrupts fast to real-time tasks. When the next
candidate task is an interrupt thread, the Linux scheduler first checks whether
the RT flag is marked in the task structure or not. If the RT flag is not set,
the preemption is suppressed as explained in Section 4.1. On the other hand, if
the RT flag is set, the interrupt thread is scheduled immediately to make the
scheduling latency for real-time tasks short and stable.

4.3 Transparent Association of Interrupts with Real-Time Tasks

The selective handling of real-time interrupt threads is effective to achieve the
short and stable scheduling latency for real-time tasks while minimizing unnec-
essary context switchings between normal tasks. In the previous subsection, we
assume that interrupts associated with real-time tasks are specified in advance
by application developers. Often this assumption is reasonable in many real-
time systems since real-time tasks are usually associated with specific sensors
and actuators. However, it is annoying for application developers to specify the
associated interrupts every time since they may not be familiar with hardware
details. Annotating the source code with a special system call not only low-
ers the application portability but also makes the application dependent on the
hardware configuration on which it is running. Sometimes, it may not unclear
which are right interrupts for the real-time tasks and the association may even
change over time for complex real-time applications. In this subsection, we pro-
pose a way to transparently discover the relationship between real-time tasks
and interrupts without any hints from application developers.
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In PREEMPT-RT, a task is waken up in the function try_to_wake_up()
when it is called by an interrupt thread. This means that if a real-time task is
awakened by an interrupt thread, we can transparently identify those interrupts
that are associated with real-time tasks without adding any kernel interface. The
identified interrupt handler is marked with the RT flag in the task structure and
the RT flag is later used by the Linux scheduler as described in Section 4.2.

In the Linux kernel, a part of interrupt handling can be delayed to bottom
halves. The kernel thread called the soft-irq thread is usually used to perform the
remaining work left by the interrupt handler. Since the PREEMPT-RT kernel
also follows the same structure, the relationship between real-time tasks and
interrupt threads may not be correctly recognized in try_to_wake_up() function
if real-time tasks are waken up by bottom halves. We pay special attention to
this case so that the original interrupt can be associated with the real-time task
although the real-time task is awakened by the soft-irq thread.

The RT flag in the interrupt thread is removed when the associated real-time
task either terminates or voluntarily turns into the normal task. Even though
a real-time task terminates, some interrupt thread can be still marked with the
RT flag since two real-time tasks may share the same interrupt. In this case,
the RT flag is not removed until all the real-time tasks that share the interrupt
terminate. Similarly, a single real-time task may be triggered by more than one
interrupts, in which case all the interrupts are marked with the RT flag.

5 Evaluation

In real-time systems, the scheduling latency is one of the most important fac-
tors [13]. The overall throughput under limited computing resources is also an
important characteristic of the system. Accordingly, the following two metrics
are major concerns of our evaluation:

– Latency. The scheduling latency is the time between the event time and
the start time of the task. In real-time systems, a stable scheduling latency
must be guaranteed in various environments.

– Throughput. The throughput denotes the total amount of work that can be
done in the given interval. In real-time systems, it is desirable to achieve the
throughput as high as possible, while guaranteeing the predictable scheduling
latency.

We describe our evaluation methodology in Section 5.1. Section 5.2 and Sec-
tion 5.3 present our experimental results in detail.

5.1 Methodology

In this paper, we evaluate the following four Linux kernels:

– Vanilla kernel. The standard Linux kernel. Tasks are not preemptible while
in the kernel.
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– Preemptible kernel. The Linux kernel. Tasks are preemptible in the kernel
area except critical sections.

– PREEMPT-RT kernel. The Linux kernel modified with Ingo Molnar’s
Complete Preemption.

– Selective IRQ kernel. The Linux kernel which implements the proposed
scheme.

Note that our work was not compared to traditional real-time operating sys-
tems, such as QNX and VxWorks, because those RTOSes are limited in their
functionality. The MontaVista Linux is largely similar to the Preemptible kernel.

We used an open source benchmark called Realfeel [16,13,17,18] to measure the
scheduling latency. We have also used two benchmark programs, Hackbench [15]
and Tbench [19] to evaluate the throughput of the system. Hackbench and Tbench
are executed as normal tasks. The experiments are performed on a 1GHz Nehemiah
C3 Core VIA board with 256MB of RAM and a 40GB, 5400RPM IDE disk drive.

5.2 Latency

We generate a 256Hz stream of interrupts using Realfeel to measure the schedul-
ing latency. The total 30 million interrupts are sampled by Realfeel, which run
as a real-time task. To see how the scheduling latency is affected by other normal
tasks, we give various stresses to the kernel. First, we executed two benchmark
programs, Hackbench and Tbench, together with Realfeel (denoted as light load).
To give heavier stress, one CPU bound task and one I/O bound task are added
to two benchmark programs (denoted as heavy load). The CPU bound task is a
matrix multiplication program and the I/O bound task is an FTP program that
downloads ten 700MBytes files.

Figure 2 shows the scheduling latency under two types of system loads. The x-
axis represents the scheduling latency in milliseconds and the y-axis the percent
of the samples. In Figure 2(a), Selective IRQ shows the similar distribution of the
scheduling latencies to that of PREEMPT-RT under the light load. Specifically,
in both kernels, all samples are scheduled within 100 microseconds. Under the
heavy load, the percent of the samples that have long scheduling latencies is
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Fig. 2. The distribution of the scheduling latencies with 256Hz RTC interrupt
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increased in case of the Vanilla kernel and the Preemptible kernel as shown in
Figure 2(b). Selective IRQ and PREEMPT-RT still have very stable latencies
even under the heavy load. The maximum scheduling latency is measured to be
less than 100 microseconds in both PREEMPT-RT and Selective IRQ.

5.3 Throughput

To observe the basic throughput without real-time tasks, we ran two benchmark
programs mentioned in Section 5.1 while the system is idle. The next evaluation
simulated a realistic workload, where the real-time task Realfeel is run simulta-
neously with other two benchmark programs. Recall that the scheduling latency
of Realfeel in the latter case is already shown in Section 5.2.

Figure 3(a) and (b) present the benchmark results without other interfering
tasks. All the values in the figure are normalized to the value of the Vanilla kernel.
In Figure 3(a), the x-axis and the y-axis denote the number of Hackbench groups
and the relative throughput of Hackbench respectively. PREEMPT-RT drops the
throughput about 30% compared to the Vanilla kernel. The Preemptible kernel
has the similar throughput to the Vanilla kernel but, as we have already seen
in Section 5.2, it fails to provide the stable scheduling latency. Selective IRQ
improves the Hackbench throughput by up to 40.3% compared to PREEMPT-
RT as the number of Hackbench group increases.

Hackbench generates a considerable number of context switchings when many
Hackbench groups run concurrently. The Selective IRQ improves the throughput

20%

40%

60%

80%

100%

120%

140%

5 10 20 40
The number of Hackbench groups

R
e
la

tiv
e
 t
h
ro

u
g
h
p
u
t

Vanilla
Preemptible
PREEMPT-RT
Selective IRQ

(a) Hackbench only

20%

40%

60%

80%

100%

120%

140%

20 40 80
The number of Tbench processes

R
el

at
iv

e 
th

ro
ug

hp
ut

Vanilla
Preemptible
PREEMPT-RT
Selective IRQ

(b) Tbench only

20%

40%

60%

80%

100%

120%

140%

5 10 20 40
The number of Hackbench groups

R
e
la

tiv
e
 t
h
ro

u
g
h
p
u
t

Vanilla
Preemptible
PREEMPT-RT
Selective IRQ

(c) Hackbench with Realfeel

20%

40%

60%

80%

100%

120%

140%

20 40 80
The number of Tbench processes

R
e
la

tiv
e
 t
h
ro

u
g
h
p
u
t

Vanilla
Preemptible
PREEMPT-RT
Selective IRQ

(d) Tbench with Realfeel

Fig. 3. Hackbench and Tbench results



Transparent and Selective Real-Time Interrupt Services 291

because the proposed scheme intends to suppress unnecessary preemptions
among normal tasks.

Figure 3(b) depicts the results of Tbench. The x-axis illustrates the num-
ber of Tbench tasks and the y-axis denotes the relative bandwidth of Tbench
normalized to the result of the Vanilla kernel. This result also indicates that
PREEMPT-RT achieves only 85% of the throughput of the Vanilla kernel. Se-
lective IRQ enhances the throughput by up to 3.2% compared to PREEMPT-RT.

Figure 3(c) and (d) show the results of Hackbench and Tbench when a real-
time task Realfeel is running together. From Figure 3(c), we can observe that
the throughput of PREEMPT-RT becomes even worse with the presence of a
real-time task. However, the proposed Selective IRQ scheme consistently shows
the better throughput compared to PREEMPT-RT. Especially in Hackbench,
PREEMPT-RT degrades throughput about 58% and Selective IRQ improves
throughput up to by 86% compared to PREEMPT-RT. In Figure 3(d), the
enhancement of the bandwidth under Selective IRQ is also increased from 3.2%
to 4.6%.

6 Conclusion

In this paper, we proposed a novel scheme to improve the performance of em-
bedded operating systems with real-time support. The performance degradation
was mainly caused by a lot of preemption and scheduling points. Kernel-threaded
interrupt service routines also contribute to the decrease in the performance. Ex-
cessive preemption and scheduling points yield many context switchings among
tasks. The increased TLB flush and cache misses following the context switching
are the direct sources of the performance degradation.

In the proposed scheme, the number of context switchings is reduced by the
following two methods. First, we suppress the kernel preemptions caused by
normal tasks as much as possible. Second, interrupts that are not relevant to real-
time tasks are delayed. In order to provide prompt response to real-time tasks,
our scheme transparently selects the interrupts that are related to real-time
tasks and boosts them selectively. Consequently, the proposed scheme improves
the system throughput significantly while exhibiting almost the same scheduling
latency for real-time tasks.

Our work was implemented in the Linux 2.6 kernel. The experimental results
show that the scheduling latency was below tens of microseconds. Moreover, the
throughput is enhanced by 40% compared to Complete Preemption when there
is no real-time task. If there is a real-time task, the throughput is increased by
up to 86%. We plane to optimize our scheme further to achieve better response
time and throughput.
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