
ParADE: An OpenMP Programming Environment for SMP
Cluster Systems

Yang-Suk Kee
Institute of Computer Technology

Seoul National University
Seoul 151-742, Korea

+82-2-880-7292

yskee@iris.snu.ac.kr

Jin-Soo Kim
Division of Computer Science

KAIST
Daejeon 305-701, Korea

+82-42-869-3545

jinsoo@cs.kaist.ac.kr

Soonhoi Ha
School of Computer Science and

Engineering
Seoul National University

Seoul 151-742, Korea
+82-2-880-8382

sha@iris.snu.ac.kr

ABSTRACT
Demand for programming environments to exploit clusters of
symmetric multiprocessors (SMPs) is increasing. In this paper, we
present a new programming environment, called ParADE, to
enable easy, portable, and high-performance programming on
SMP clusters. It is an OpenMP programming environment on top
of a multi-threaded software distributed shared memory (SDSM)
system with a variant of home-based lazy release consistency
protocol. To boost performance, the runtime system provides
explicit message-passing primitives to make it a hybrid-
programming environment. Collective communication primitives
are used for the synchronization and work-sharing directives
associated with small data structures, lessening the
synchronization overhead and avoiding the implicit barriers of
work-sharing directives. The OpenMP translator bridges the gap
between the OpenMP abstraction and the hybrid programming
interfaces of the runtime system. The experiments with several
NAS benchmarks and applications on a Linux-based cluster show
promising results that ParADE overcomes the performance
problem of the conventional SDSM-based OpenMP environment.

Keywords
programming environment, SMP cluster, software distributed
shared memory, hybrid programming, OpenMP, MPI

1. INTRODUCTION
Currently, commodity off-the-shelf microprocessors and network
components are widely used as building blocks for parallel
computers. This trend has made cluster systems consisting of
symmetric multiprocessors (SMPs) attractive platforms for high-
performance computing. Even though it is easy to configure
cluster systems, specifically of small scale, it is challenging to
utilize them easily and fully.

Message-passing (MP) and shared address space (SAS) [1] are
two leading parallel programming models. An MP model assumes

a distributed memory system in which a processor is an
independent processing unit with private memory. In this model,
inter-processor communication is accomplished by explicit
message passing. MPI [2] is the most popular MP model and it
provides both functional and performance portability. MPI uses
consistent MP interfaces not only for inter-node communication
but also for intra-node communication. Despite high performance,
however, the application programmers have hard time in
developing parallel programs in MPI; they should handle too
many details about communication and synchronization. This
makes SAS more appealing to application programmers.

An SAS model provides a simple abstraction of parallel
computers in which all processors share the same address space.
As an SAS model, OpenMP [3] is gaining its popularity. OpenMP
consists of a small set of compiler directives for shared memory
parallelism and it provides high-level interfaces to thread
programming. The directives define how to share workloads
among threads, how to synchronize threads, and how to determine
the scope of variables. The application programmers can easily
implement a parallel program just by inserting directives into time
critical sequential codes incrementally. Furthermore, OpenMP
anticipates high performance in scientific applications on a shared
memory system.

Even though OpenMP is originally designed for shared memory
multiprocessor system, this model can be applicable to cluster
systems with a middleware support, e.g. software distributed
shared memory (SDSM) [4]. However, there are two obstacles to
integrating the OpenMP model with an SDSM system. The first is
to support multi-threading for intra-node parallelism. Even though
most conventional SDSM systems are single-threaded, an SDSM
system for OpenMP should be multi-threaded. The second issue is
to overcome the poor performance of SDSM. An SDSM program
moves much larger amount of data between nodes than an
equivalent MPI program. Moreover, SDSM has the poor
performance of synchronization operations. This means that an
inefficient integration of OpenMP and SDSM will lead to
disappointing results. The previous studies of OpenMP on SMP
clusters [5-7] have mainly focused on how to extend the OpenMP
model to clusters but they did not deal with the performance
issues being left for future work.

From the viewpoint of programming easiness, the application
programmers prefer SAS to MP. In contrast, MP or hybrid models
are desirable for high performance. To escape from this dilemma,
we separate the programming model and execution model. Our

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SC ’03, November 15-21, 2003, Phoenix, Arizona, USA.
Copyright 2003 ACM 1-58113-695-1/03/0011...$5.00.

approach is to use an SAS model for programming and to use a
hybrid model for execution.

In this paper, we propose an efficient OpenMP-based
programming environment for SMP clusters, called ParADE
(Parallel Application Development Environment). ParADE
consists of an OpenMP translator and a runtime system. The
runtime system provides a single system image through a multi-
threaded SDSM. However, it is augmented with explicit message-
passing primitives to reduce the synchronization overhead of
conventional SDSM systems. Hence, the ParADE runtime system
provides a hybrid execution model of MP and SAS. Those
message-passing primitives are invisible to the application
programmers who write a standard OpenMP program. The
OpenMP translator automatically replaces several synchronization
and work-sharing directives associated with small data structures
in OpenMP programs with explicit collective communication
primitives. This explicit use of message-passing primitives avoids
the conventional lock-based synchronization processes and barrier
operations imposed implicitly by the OpenMP standard.

The rest of this paper is organized as follows. First, we review
related work on programming models and methodologies for SMP
cluster and discuss our motivation of this study in section 2. We
overview the ParADE architecture in section 3 and discuss the
details of two main components, the OpenMP translator and the
ParADE runtime system, in sections 4 and 5. We give
experimental results of several microbenchmarks, NAS
benchmarks, and real applications in section 6. In section 7, we
introduce several programming guidelines to achieve better
performance. Section 8 concludes this paper discussing our
ongoing and future work.

2. RELATED WORK AND MOTIVATION
2.1 Related Work
Programming models for SMP clusters can be categorized into a
unified programming model and a hybrid programming model. In
a unified programming model, the programmers use a single set of
programming interfaces to describe the inter-node and intra-node
communication. For example, a pure MPI model regards an SMP
cluster as a shared nothing architecture while a pure SDSM model
regards an SMP cluster as a shared everything architecture. Shan
et al. [8] compared the performance of the pure MPI model with
the pure SDSM model for several applications. They found that
the SDSM versions achieve only half the performance of the
corresponding MPI versions for many applications.

In a hybrid model, the programmers mix an MP model and an
SAS model. It is intuitive to use an SAS model for intra-node
communication and an MP model for inter-node communication.
Especially, the mixture of OpenMP and MPI draws attraction and
the performance comparison with the pure MPI model has been
studied [9,10]. Cappello et al. [9] extensively compared the
performance of the hybrid model and the pure MPI model on an
IBM SP machine. In the paper, they found that the pure MPI
model is better for most of the NAS benchmarks. On the other
hand, Shan concluded in [8] that the hybrid of SDSM and MPI
has small advantage over pure MPI even though the programming
complexity increases very highly.

As another unified programming model, there have been
several studies of OpenMP on SMP clusters. The main focus of

the studies is how to provide a multi-threading environment by
modifying existing SDSM. Hu et al. [7] extended TreadMarks for
OpenMP and compared the performance of the NAS benchmarks
under three programming environments: original TreadMarks,
OpenMP on multi-threaded TreadMarks, and MPI. A key lesson
from the study is that developing OpenMP applications requires
intensive cares. Compared to the MPI versions, the OpenMP
programs experience more barriers and suffer from higher
network traffic. In OpenMP, the fork-join execution model and
work-sharing directives include the implicit barriers at the end of
execution. Moreover, the memory consistency protocol using
virtual memory management techniques incurs unnecessary page
transfers. Hence, we should optimize mappings of the OpenMP
directives to the SDSM interfaces. Their main contribution is to
first develop a multi-threaded SDSM system for OpenMP; they
extended the original TreadMarks system to a multi-threaded one,
and implemented a new OpenMP translator for the target system.

Since the main focus of prior SDSM systems was how to
efficiently emulate a shared address space, they did not consider
any specific programming model like OpenMP. This ignorance of
programming model introduces extra overhead in integrating them
with OpenMP. Basumallik et al. [6] discussed the performance
issues of OpenMP on SDSM. In the paper, they presented several
ideas on optimization techniques to improve performance. They
pointed out frequent synchronizations, specifically barriers, as the
main obstacle to high performance but they have not presented
any real system to demonstrate their ideas.

2.2 Motivation
The previous studies of OpenMP on SDSM raise a demand for a
new runtime system to achieve the goal of easy and high-
performance programming. As addressed in [6], efficient
implementation of synchronization directives is crucial to overall
performance since the directives themselves are time consuming
and suppress concurrency in applications. Therefore, we need to
reduce the cost and the number of synchronization operations.

At first, we have observed that many code blocks protected by
synchronization directives are statically analyzable at compile
time and they can be replaced with cheap message-passing
primitives. In conventional SDSM systems, a process is allowed
to enter a critical section only after it has acquired the lock for the
critical section. To acquire the lock, the process requests a lock of
the lock home and the home grants the lock piggybacking with
consistency information. This lock mechanism is expensive and
the process experiences long latency. However, exploiting
message-passing primitives has several benefits. In an MP model,
message-passing primitives can replace the costly locks since
mutual exclusion between processes is implicit. They also
eliminate the memory consistency mechanism in the critical path
of memory access; twin and diff creation are not required.
Moreover, collective communications contribute to reducing the
number of barriers imposed by the work-sharing directives since
they perform a kind of global synchronization implicitly.

These observations motivate us to design a new multi-threaded
SDSM system augmented with message-passing primitives. To
convert the OpenMP directives to a hybrid style of MP and SAS,
we also need a new OpenMP translator. ParADE successfully
covers these issues overcoming the poor performance of the
conventional SDSM-based approaches.

3. PARADE ARCHITECTURE
Figure 1 depicts the architecture of the ParADE programming
environment. Two key components are the OpenMP translator
and the ParADE runtime system.

Communication Protocol
(VIA, TCP/IP)

Communication Protocol
(VIA, TCP/IP)

Multi-Threaded SDSM
(POSIX threads)

Multi-Threaded SDSM
(POSIX threads)

Message Passing Library
(MPI)

Message Passing Library
(MPI)

ParADE APIsParADE APIs

OpenMP ApplicationOpenMP Application

OS KernelOS Kernel

System Calls
(Page fault and Protection)

System Calls
(Page fault and Protection)

Communication Protocol
(VIA, TCP/IP)

Communication Protocol
(VIA, TCP/IP)

Multi-Threaded SDSM
(POSIX threads)

Multi-Threaded SDSM
(POSIX threads)

Message Passing Library
(MPI)

Message Passing Library
(MPI)

ParADE APIsParADE APIs

OpenMP ApplicationOpenMP Application

OS KernelOS Kernel

System Calls
(Page fault and Protection)

System Calls
(Page fault and Protection)

OpenMP
translator

Runtime
system

Kernel

Figure 1. Architecture of the ParADE parallel programming
environment

A multi-threaded SDSM and a message-passing library
comprise the runtime system. To provide thread-safe
communication, we implemented a subset of MPI library for
Virtual Interface Architecture (VIA) [11] while we use MPI/Pro
by MPI Software Technology for TCP/IP protocols [12]. We also
developed our own SDSM system, which provides a home-based
lazy release consistency (HLRC) [13] with migratory home to
exploit data locality. The lock mechanism is eliminated from the
SDSM system in the critical path to shared memory access by
utilizing explicit message-passing primitives. ParADE classifies
data structures according to their size and applies different
protocols: update protocol for small data structures by using
message-passing and invalidate protocol for large data structures
by using HLRC.

The OpenMP translator converts an OpenMP program to a
multi-threaded program by the hybrid communication interfaces
of the ParADE runtime library and enables the program to be
executable on the SMP cluster. Especially, the translator focuses
on how to exploit the message-passing operations in converting
synchronization and work-sharing directives. In the following
sections, we will discuss the details of two main components.

4. PARADE OPENMP TRANSLATOR
The basic role of OpenMP translator is to bridge the gap between
the OpenMP specification and the programming interfaces of the
underlying runtime system. The ParADE OpenMP translator
converts an OpenMP program into the C codes using POSIX
threads and MPI libraries: the ParADE APIs encapsulate the
details of POSIX threads and MPI. Our OpenMP translator is
based on the Omni OpenMP compiler [5]. We modified the C-
front program in the Omni package. The original use of C-front is
to analyze a preprocessed C program and then to make a parse
tree. Instead, we modified it to reconstruct the original C program
from the parse tree in reverse. Similar to the Omni compiler, the
OpenMP translator consists of three steps. In the first step, the
translator invokes the installed preprocessor and expands macros
and header files. Then, C-front reads these preprocessed codes
and builds a parse tree, which contains the information about the
OpenMP directives. In the last step, C-front reconstructs another
C program from the parse tree replacing the directives with the

corresponding ParADE APIs. The current implementation of the
OpenMP translator follows the OpenMP standard version 1.0 for
C and C++ application programming interface [3]. In the
following subsections, we explain how some important OpenMP
directives are translated by using the ParADE APIs.

4.1 Parallel Directive
A parallel directive is the basic directive that starts parallel
execution. A code block annotated with the parallel directive
is encapsulated into a thread function and the directive is replaced
with the ParADE runtime interfaces to realize the fork-join
execution model. The pointers to the variables declared as
shared, firstprivate, lastprivate, and reduction
are passed to the thread function while the private variables
are declared automatic inside the thread function.

According to the OpenMP standard, the default scope of
variables in a parallel block is shared since threads in a
process share all data structures except thread stacks. However,
this assumption is inappropriate to MP architectures: the variables
on different nodes cannot be shared for free. For better
performance, it is highly recommended to explicitly annotate all
the variables used in parallel blocks to avoid unnecessary
network traffic between nodes.

4.2 Synchronization Directives
There are several directives for synchronization. A critical
directive provides mutual exclusion between threads and
commonly used to reduce non-scalar variables. When a thread
enters a critical section, it is guaranteed to see all previous
modifications. The directive can be translated to a collective
communication operation together with a pthread lock. Figure 2
illustrates how a critical directive is translated for ParADE
and for a conventional SDSM system, respectively. In ParADE,
the mutual exclusion is hierarchically performed: the pthread lock
ensures mutual exclusion between threads in a process and the
collective communication operation performs synchronization
between processes. For the SDSM system, however, the lock
primitives are used for the intra-node and inter-node mutual
exclusion. The collective communication operations update
modified variables immediately avoiding the overhead due to
creating memory consistency information and perform mutual
exclusion implicitly eliminating the lock for inter-process mutual
exclusion.

#pragma omp critical
sum += 1;

#pragma omp critical
sum += 1;

acquire(lock);
sum += 1;
release(lock);

acquire(lock);
sum += 1;
release(lock);

pthread_mutex_lock(&lock);
sum += 1;
if(is this thread last in this node)

MPI_Allreduce(&sum, …, MPI_SUM, …);
pthread_mutex_unlock(&lock);

pthread_mutex_lock(&lock);
sum += 1;
if(is this thread last in this node)

MPI_Allreduce(&sum, …, MPI_SUM, …);
pthread_mutex_unlock(&lock);

SDSM ParADE

Figure 2. Translated codes of the critical directive for a
conventional SDSM system and for ParADE

An atomic directive ensures the atomic update of a specific
memory location and the atomic code block must be one of the

predefined expression statements. We regard the atomic
directive as a special case of the critical directive. The code
block can be exactly mapped to a collective communication
primitive.

There is a clause to exploit message-passing primitives. The
reduction clause performs a reduction on the scalar variables.
Similar to the atomic directive, a reduction variable is
exactly mapped to a collective communication primitive. If there
are more than one reduction variables, they are merged into a
structure-type variable and reduced at once with a user-defined
reduction operation. To exploit the benefits of message-passing as
much as possible, the programmers are guided to use the
reduction clause or the atomic directive instead of the
critical directive. In the case of the critical directive, it is
highly recommended to write a lexically analyzable code block.

4.3 Work-Sharing Directives
Work-sharing directives distribute workloads among threads. A
for directive divides the iterations of a loop into smaller slices
and assigns them to threads. The translator extracts the range and
the increment information of the loop and the loop scheduler in
the runtime system determines the range of iterations for threads
at run time. Current implementation supports only static
scheduling: the iterations are evenly distributed to threads. As of
now, nested for directives are ignored.

A single directive identifies a code block to be executed by
the earliest thread. This directive is mainly used to initialize
shared variables. Figure 3 illustrates the translated codes of a
single directive for a conventional SDSM system and for
ParADE. Similar to the critical directive, synchronization
within a node is replaced with a pthread lock and synchronization
between nodes is replaced with an explicit message-passing
operation; this contributes to reducing the number of inter-process
barriers and to eliminating the inter-node lock in the critical
access path to the variable.

#pragma omp single
sum = 0;

#pragma omp single
sum = 0;

acquire(lock);
if(is this thread first in cluster)

sum = 0;
release(lock);
if(!nowait)

barrier(bar);

acquire(lock);
if(is this thread first in cluster)

sum = 0;
release(lock);
if(!nowait)

barrier(bar);

pthread_mutex_lock(&lock);
if(is this thread first in this node) {

if(is this thread is the master)
sum = 0;

MPI_Bcast(&sum, …);
}
pthread_mutex_unlock(&lock);
if(!nowait)

parade_intra_barrier();

pthread_mutex_lock(&lock);
if(is this thread first in this node) {

if(is this thread is the master)
sum = 0;

MPI_Bcast(&sum, …);
}
pthread_mutex_unlock(&lock);
if(!nowait)

parade_intra_barrier();

SDSM ParADE

Figure 3. Translated codes of the single directive for a
conventional SDSM system and for ParADE

5. PARADE RUNTIME SYSTEM
The ParADE runtime system provides users a single, unified
abstraction of clusters. ParADE is a kind of multi-threaded SDSM.
A major issue of SDSM systems is how to preserve memory
consistency in distributed memory systems. In this section, we
address two issues on memory management in the ParADE

runtime system: thread-safe page update and memory consistency
protocol.

5.1 Atomic Page Update
Conventional SDSM systems are implemented at the user-level by
using a page-based virtual memory protection mechanism. This
kind of SDSM system detects an application's access to an invalid
shared memory region by catching a SIGSEGV signal generated
by the operating system when the application violates memory
access privilege. Then, the SDSM system carries out a series of
operations to fetch the most up-to-date page from a remote node
in a user-defined SIGSEGV signal handler. Since the series of
operations are performed sequentially, the SDSM system can
update the invalid page atomically from the application point of
view: program control is returned to the application only after the
signal handler completes the service on the protection fault.

However, this mechanism will not work any more in a multi-
threaded environment because other threads may try to access the
same page during the page update period. Figure 4 illustrates this
situation. On the first access to an invalid page, the system should
set the access permission of the page writable in order to replace it
with the most up-to-date page. Unfortunately, this change of
access permission also allows another application thread, T1 in
Figure 4, to access the same page without raising any protection
fault. This phenomenon is known as atomic page update and
change right problem [14] or mmap() race condition [15]. Simply,
we call this the atomic page update problem.

Read(A)

SIGSEGV

mprotect(A, PROT_READ)

Request

Page

SIGSEGV Handler SIGIO Handler
mmap(A, PROT_WRITE)

Read(A) : garbage

T2T1 T1

Process 1 Process 2

Figure 4. The atomic page update problem in a conventional
page-based SDSM system

This problem is caused by the fact that the system and the
application share the same address space. When the system
changes the access permission of a page, the application also
experiences the same change. A general solution to this problem
is to separate the application address space from the system
address space for the same physical memory, and to assign
different access permission to each of the address spaces. Since
the virtual memory protection mechanism is implemented in the
per-process page table, different virtual addresses (pages) can
have different access permissions even though they refer to the
same physical page. It means that the system address space can be
writable while the application address space is write-protected.
Therefore, the system can guarantee the atomic page update by
changing the access permission of a virtual page in the application
address space only after it completes the page update through the
system address space.

The conventional method to realize this solution is to use file
mapping. The mmap() system call allows a file to be mapped

multiple times to a process or several processes. When a file is
mapped multiple times, multiple independent access paths to a
physical page are provided because the same file is referred to by
multiple virtual addresses.

We have developed three other methods to solve the same
problem: System V shared memory, a new mdup() system call for
page table duplication, and child process creation. Since full
explanation of these methods [16] is beyond the scope of this
paper, we briefly summarize them. In the System V shared
memory solution, a process creates a shared memory object in the
kernel by the shmget() system call and attaches it to the address
space by the shmat() system call. A process can attach the shared
memory to its address space more than once and a different virtual
address is assigned to each attachment. In the second solution, we
have implemented a new system call, mdup(), which creates a
detour to an anonymous memory region. The basic operation is to
allocate new page table entries for the detour and to copy the page
table entries of the anonymous memory region to new ones. In the
child process creation method, we use the fact that the child
process inherits the execution image of the parent process when a
process forks a child process. Especially, the content of the child
process page table is copied from that of the parent process. Since
the Copy-On-Write policy is not applied to the shared memory
area, we can create two different access paths to a shared physical
page by making two processes access the same page.

Through extensive experiments, we observe that all the
methods achieve comparable performance on an SMP Linux
cluster system while it is not always possible to implement them
in a certain operating system due to various constraints of the
operating system. In particular, the conventional file mapping
method shows poor performance on IBM SP Night Hawk system
with an AIX 4.3.3 PSSP 3.2 version.

5.2 Memory Consistency Protocol
A key feature of ParADE is to utilize message-passing primitives
explicitly for some synchronization and work-sharing directives
associated with small data structures. The OpenMP translator
identifies these directives and replaces them with collective
communication primitives while the runtime system takes care of
the other shared variables by using a variant of the conventional
HLRC protocol.

5.2.1 Message-passing for small data structures
Most page-based SDSM systems use locks to exclusively access
shared variables. The lock mechanism must guarantee that the
lock acquirer views the most up-to-date values of the variables in
the critical section. Instead, ParADE ensures mutual exclusion
implicitly by using message-passing operations in accessing small
shared variables in a critical section. ParADE preserves memory
consistency of the small data structures guarded by
synchronization and work-sharing directives on the basis of object,
which is similar to the entry consistency protocol [17].

ParADE adopts a kind of update protocol and the values
modified in a critical section are propagated to other processes
immediately. The ParADE runtime system does not have to create
a twin and to calculate the diffs for the modified page where the
small size data structures reside. Moreover, the explicit use of
message-passing primitives reduces the number of barriers: some

collective communication operations imply barrier at the end of
the operations.

Consistency mechanism switches from the HLRC mode to the
message-passing mode when the code block enclosed by a
synchronization or work-sharing directive is lexically analyzable
and the total size of the shared data structures in the code block is
smaller than a certain threshold. The threshold is dependent on the
startup cost of message-passing operations and the overhead of
creating a twin and diffs for a page. For example, we set the
threshold to 256 bytes for our Linux cluster.

5.2.2 HLRC with migratory home
Except small data structures, ParADE ensures memory
consistency by using a variant of conventional HLRC protocol.
When a thread tries to access a page not in its local memory, the
runtime system fetches the page from its home. Once the page is
brought to the local memory, the subsequent accesses to the page
are localized until the next barrier. Home-based protocols like
HLRC and scope consistency [18] have a fixed home that has the
most up-to-date page. Home-based protocols are preferable to
homeless protocols in that they reduce the number of control
messages and the page fetch latency because every node knows
where to fetch the most up-to-date pages. In addition, the home
can avoid creating a twin for the modified page because all diffs
are merged into its page.

However, the fixed home approach may incur unnecessary
network traffic when the modifier of page does not coincide with
the home. The main target of OpenMP is scientific applications
with regular computing patterns. Typically, these applications
consist of several loops with numerous iterations accessing huge
arrays. When the iterations are distributed over the processes on
different nodes, locality of arrays is crucial to overall performance.
We try to increase locality by dynamically designating the
modifier as home. Home migration occurs only at barrier time. If
there is only one modifier of a page between two consecutive
barriers, the node becomes the new home. Otherwise, the node
with the highest priority becomes home. The current home node
has the highest priority and the node with the smallest node id has
priority. This is another feature different from the original HLRC.

A potential overhead of home migration is to notify new homes
to all nodes. To reduce the number of control messages, all the
write-notices are combined into a single message, and the message
is piggybacked with a barrier message; the master node gathers
write-notices piggybacked with barrier arrival messages and
notifies the new homes with barrier departure messages.

5.2.3 Page management
Each node maintains a page table for the pages in the shared
memory pool. Illustrated in Figure 5, there are five possible states
for a page: INVALID, TRANSIENT, BLOCKED, READ_ONLY,
DIRTY. When a page is not in the local memory, the state of the
page is INVALID. The access to this page violates page
protection and the runtime system should prepare a valid page.
The two states, TRANSIENT and BLOCKED, are introduced
because ParADE is a multi-threaded system. The TRANSIENT
state tells other threads that a thread is trying to update the page
but the update is not completed. The BLOCKED state tells the
runtime system that there are threads waiting for the completion
of the page update and the runtime system should wake them up
after the page update is completed. The page state is

READ_ONLY when a page is valid and clean, and the page state
is DIRTY when a page is valid and modified.

READ_ONLYREAD_ONLY

BLOCKEDBLOCKED

TRANSIENTTRANSIENT

INVALIDINVALID

DIRTYDIRTY

read/write fault
block

read/write fault
block

read/write fault
block

page
wakeup

page
wakeup

read fault
-

write fault
create twin

write fault
-

invalidate
-

diff
create diff

home
-

Figure 5. State transition diagram for the pages in the shared
memory pool

Similar to conventional page-based SDSM systems, the unique
entry point of application to the system is the page fault handler,
which is a user-defined reliable SIGSEGV handler. The signal
handler supervises shared memory. The handler determines the
address where the protection violation occurs and the fault type.
When the current state of the page is INVALID, the handler
fetches the most up-to-date page from the home. Otherwise, it
changes the state and the access permission of the page.

In the beginning, all shared pages in the non-master nodes are
initialized as INVALID and the home of all pages is set as the
master node while the page states of the master node are
READ_ONLY. Coherence misses occur when incoming write-
notices invalidate a page. Invalidation involves changing the page
state from READ_ONLY to INVALID, and removing the access
right from the page. A coherent miss indicates that more than one
node has modified the page and the modification should be
reflected in the local copy before the page is accessed again. In
response to a write fault, the handler prepares a valid page,
changes the page state to DIRTY, and creates a twin for the page.

5.3 Parallel Library
In ParADE, each node has a thread dedicated to communication
to handle asynchronous incoming control messages. Since
application threads and the communication thread can issue
communication requests simultaneously, a communication library
should be thread-safe. However, most MPI libraries in public
domains are not thread-safe. Moreover, a high-performance
communication library with respect to latency and bandwidth is
desirable. We adopt the TCP/IP version of MPI/Pro by MPI
Software Technology and implement a minimal set of MPI
routines on top of VIA to exploit the full performance of VIA.
ParADE uses only send/receive point-to-point communication and
two collective communication primitives: MPI_Bcast() and
MPI_Allreduce().

6. EXPERIMENTS
In this section, we present the preliminary experimental results of
the ParADE system. Our experimental platform is a Linux cluster
consisting of four dual-Pentium III 550Mhz SMP nodes and four
dual-Pentium III 600Mhz SMP nodes. Each node has 512 MB
main memory, connected to a 3Com Fast Ethernet switch and a
Giganet's cLAN VIA switch. Redhat 8.0 of a 2.4.18-14 SMP

kernel runs on each node. We used a GNU gcc compiler with the
–O2 option. Even though we made our best efforts to compare
ParADE with OpenMP programs on other SDSM systems like
Score/Scash, we could not get such systems working. Therefore,
we measured the performance of the ParADE system with respect
to synchronization latency and scalability.

6.1 OpenMP Microbenchmarks
To evaluate the performance benefit of using explicit message-
passing operations, we compared the performance of the
critical and the single directives on ParADE and on an
HLRC-based SDSM system. The translated codes for both the
systems are shown in Figure 2 and 3 and the experimental results
are shown in Figure 6 and 7. We took the average execution time
of the micro-benchmark program [19] after running over 100
times varying the number of nodes. We used an HLRC-based
SDSM system called KDSM [20] and MPI/Pro TCP/IP version.

0.00

0.50

1.00

1.50

2.00

2.50

2 4 6 8

of nodes

E
xe

cu
tio

n
T

im
e

(m
s)

ParADE KDSM

Figure 6. Performance comparison of the critical directive
between ParADE and KDSM

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00

2 4 6 8

of nodes

E
xe

cu
tio

n
T

im
e

(m
s)

ParADE KDSM

Figure 7. Performance comparison of the single directive
between ParADE and KDSM

The ParADE versions of the critical and single
directives outperform the SDSM versions and the gap becomes
wider as the number of nodes increases; the number of control
messages to get locks and the amount of data moving around
increases with the number of nodes. The abnormal result of the
single directive for KDSM with 2 nodes results from busy
waiting to get the lock.

6.2 Benchmark Performance
In this section, we present the performance of the ParADE system
by measuring the execution times of two NAS benchmarks and

two real applications. The CG and EP kernels of class-A are
adopted from the NAS 2.3 benchmarks [21]. The CG kernel
solves an unstructured sparse linear system by the conjugate
gradient method and the EP kernel measures the capability of
floating-point operations. Meanwhile, two real applications are
adopted from OpenMP sample programs [22,23]. The Helmholtz
program solves a wave equation on a regular mesh using an
iterative Jacobi method with over-relaxation and the MD program
implements a simple molecular dynamics simulation in
continuous real space. We use the following three configurations
to measure the programs.

• 1Thread-1CPU Start the operating system using the
uniprocessor kernel: a single processor should handle both
computation and communication.

• 1Thread-2CPU Start the operating system using the SMP
kernel but create only one computational thread per node:
one processor is dedicated to the computational thread and
the other to the communication thread.

• 2Thread-2CPU Start the operating system using the SMP
kernel and create two computational threads per node: two
computational threads and a communication thread share two
processors.

Figure 8 and figure 9 show the execution times of the NAS
benchmarks on our VIA-based Linux cluster. The CG program
experiences relatively larger page migration with 64-megabyte
shared memory than other programs. The configuration of
1Thread-1CPU suffers from high communication delay because a
single processor is responsible for both computation and
communication. There is little overlapped communication, which
serializes the execution of processes on other nodes. The
performance gap between 1Thread-1CPU and 1Thread-2CPU
becomes wider as the number of nodes increases. These results
demonstrate that overlapped communication is a crucial factor in
high-performance of cluster system. In the case of EP, there is
little shared memory and communication between nodes occurs at
the end of the program just once. Hence, it is natural that ParADE
is highly scalable.

The experimental results of the Helmholtz and MD programs
are shown in figure 10 and in figure 11. The Helmholtz program
repeats about one thousand iterations until the calculated value
become smaller than a certain threshold. Nodes communicate with
only the adjacent nodes. However, each node updates a shared
variable competitively to check the value satisfying the threshold.
In the ParADE system, the OpenMP translator replaces this code
with a reduction operation and the overall performance is nearly
linear. Meanwhile, the MD program repeats one thousand
iterations and determines the dynamics of molecules. With respect
to communication pattern, MD is similar to Helmholtz but the
amount of shared memory and inter-node communication of MD
is less than that of Helmholtz. Hence, ParADE is scaled well for
all the configurations.

7. PROGRAMMING GUIDELINES
OpenMP is originally proposed for shared memory multi-
processors but we have extended the use of OpenMP to SMP
clusters. The main difference between OpenMP on cluster and
OpenMP on multiprocessors is communication cost. Accessing
shared variables in a cluster may cause page migration between
nodes. Since the inter-node communication cost is very expensive,

the programmers should make efforts to avoid unnecessary page
migration.

The main feature of ParADE is to utilize message-passing
primitives for synchronization and work-sharing directives. An
atomic directive or a reduction clause is directly mapped to
a collective communication primitive. In addition, the critical
directive that does not enclose any function call is mapped to a
collective communication primitive. Therefore, using these
directives or clause for mutual exclusion eliminates page
migration and simplifies the conventional locking mechanism.
Especially, applications like equation solver repeating iterations
until satisfying a certain termination condition take significant
advantage of explicit message-passing primitives.

Since the default scope of variables in a parallel block is
shared, careless development of applications increases network
traffic due to inter-node communication. Therefore, programmers
are recommended to annotate the scope information of small data
structures explicitly. For example, we can annotate local variables
as private, read-only shared variables as firstprivate,
writable shared variables associated with a critical directive
as reduction, and so on.

The last consideration is to reduce page migration due to large
arrays. In ParADE, the consistency unit of large arrays is page. An
idea is to reduce the number of shared pages at the expense of
additional memory. For example, we can reduce the number of
shared page by declaring the arrays used temporarily to store
intermediate values as local variables within a parallel block.

8. CONCLUSION AND FUTURE WORK
In this paper, we present a new programming environment called
ParADE to enable easy, portable, and high-performance
programming for SMP clusters. It is an OpenMP programming
environment on top of a multi-threaded SDSM system. A variant
of HLRC protocol is adopted for memory consistency. To boost
performance, the ParADE runtime system provides MPI-like
explicit message-passing primitives to make it a hybrid-
programming environment at this level of abstraction. However,
the OpenMP abstraction hides the details of hybrid programming
and the OpenMP translator bridges the gap between the
application specification and the underlying runtime system.

The experimental results with two NAS kernels and two real
applications on a Linux cluster demonstrate the benefits of the
proposed environment, easy and portable programming, and high-
performance execution. Even when applications are designed
without application specific optimization, the ParADE system
shows the performance between those of an SDSM application
and a pure MPI application.

However, we have several issues to improve our system. In
many cases, processes wait a long time at barrier due to load-
imbalance in executing the for blocks since the current version
of ParADE supports only the static loop scheduling. Even
though the OpenMP standard describes various loop-scheduling
policies, they are not all appropriate for SMP cluster systems.
Further studies on loop scheduling for SMP cluster systems will
promise significant improvement in system performance.

Another issue is to adapt the system configuration during
runtime. As the experimental results show, more processors do
not always give better performance. For a given problem, we want

29.37

36.07

43.85
46.7

27.4

16.1

12.1

30.7

18.8

12.1 13.6

0
5

10
15
20
25
30
35
40
45
50

1 2 4 8

of nodes

E
xe

cu
tio

n
T

im
e

(s
)

1Thread-1CPU 1Thread-2CPU 2Thread-2CPU

Figure 8. Execution time of the CG kernel on cLAN (A class)

162.5

236.59

154.53

222.5

146.9

79.6

47.1

142.8

100.5

55.0

34.1

0

50

100

150

200

250

1 2 4 8

of nodes

E
xe

cu
tio

n
T

im
e

(s
)

1Thread-1CPU 1Thread-2CPU 2Thread-2CPU

Figure 10. Execution time of the Helmholtz program on cLAN
to find the best configuration to extract the best performance. The
current ParADE system creates a fixed number of threads
according to the number of processors available in the system. We
may dynamically determine a proper number of processors and
threads by measuring the idle time of threads between subsequent
iterations.

The last problem is related to the OpenMP translator. More
intelligent translator may accelerate ParADE significantly. For
example, the translator can analyze locality of arrays. If arrays are
partitioned across nodes, then the synchronization for the arrays is
not required. Moreover, if the arrays are used temporarily as
buffers, then we can skip memory consistency process for the
arrays.

9. ACKNOWLEDGMENTS
This work was supported by National Research Laboratory
Program (No. M1-0104-00-0015) and Brain Korea 21 Project.
The ICT at Seoul National University provides research facilities
for this study.

10. REFERENCES
[1] David E. Culler, Jaswinder Pal Singh, and Anoop Gupta,

Parallel Computer Architecture, Morgan Kaufmann, San
Francisco, CA, 1999.

[2] Message-passing Interface Forum, "MPI: A Message-Passing
Interface Standard," International Journal of Supercomputer
Applications and High Performance Computing, vol. 8, no.
3/4, Fall/Winter 1994, pp. 159-416.

200.0

99.9

54.7

197.5

98.7

53.8

107.9

53.8
29.2

394.9

214.2

0

50

100

150

200

250

300

350

400

1 2 4 8

of nodes

E
xe

cu
tio

n
T

im
e

(s
)

1Thread-1CPU 1Thread-2CPU 2Thread-2CPU

Figure 9. Execution time of the EP kernel on cLAN (A class)

275.1

144.4

83.3

533.6

269.2

136.5

76.2

282.3

77.1
45.2

145.0

0

100

200

300

400

500

600

1 2 4 8

of nodes

E
xe

cu
tio

n
T

im
e

(s
)

1Thread-1CPU 1Thread-2CPU 2Thread-2CPU

Figure 11. Execution time of the MD program on cLAN

[3] OpenMP C and C++ Application Programming Interface,
Version 1.0, http://www.openmp.org, Oct. 1998

[4] Kai Li and Paul Hudak, “Memory coherence in shared
virtual memory systems,” ACM Transactions on Computer
Systems, vol. 7, no. 4, Nov. 1989, pp. 321-359.

[5] Mitsuhisa Sato, Shigehisa Satoh, Kazuhiro Kusano, and
Yoshio Tanaka, Design of OpenMP Compiler for an SMP
Cluster, In Proceedings of European Workshop on OpenMP
(EWOMP’99), Sep. 1999.

[6] Ayon Basumallik, Seung-Jai Min, and Rudolf Eigenmann,
“Towards OpenMP execution on software distributed shared
memory systems,” Int'l Workshop on OpenMP: Experiences
and Implementations (WOMPEI'02), Lecture Notes in
Computer Science, #2327, Springer Verlag, May, 2002, pp.
457-468.

[7] Y. Charlie Hu, Honghui Lu, Alan L. Cox, and Willy
Zwaenepoel, “OpenMP for Networks of SMPs,” Journal of
Parallel and Distributed Computing, vol. 60, no.12, Dec.
2000, pp. 1512-1530.

[8] Hongzhang Shan, Jaswinder P. Singh, Leonid Oliker, and
Rupak Biswas, “Message Passing and Shared Address Space
Parallelism on an SMP Cluster,” Parallel Computing, vol. 29,
no. 2, Feb. 2003, pp. 167-186.

[9] Franck Cappello and Daniel Etiemble, “MPI versus MPI +
OpenMP on IBM SP for the NAS benchmarks,“ In
proceedings of ACM/IEEE Conference on Supercomputing,
Nov. 2000.

[10] Lorna Smith and Paul Kent, “Development and Performance
of a Mixed OpenMP/MPI Quantum Monte Carlo Code,”
Concurrency: Practice and Experience, vol. 12, no. 12, Dec.
2000, pp. 1121-1129.

[11] Dave Dunning, Greg Regnier, Gary McAlpine, Don Cameron,
Bill Shubert, Frank Berry, Anne Marie Merritt, Ed Gronke,
Chris Dodd, “The Virtual Interface Architecture,” IEEE
Micro, vol. 18, no. 2, Mar./Apr. 1998, pp. 66-76.

[12] http://www.mpi-softtech.com

[13] L. Iftode. ”Home-based Shared Virtual Memory”. Ph.D.
thesis, Princeton Univ., Aug. 1998.

[14] Frank Mueller, "Distributed Shared-Memory Threads: DSM-
Threads," Workshop on RunTime systems for Parallel
Programming, Apr. 1997, pp. 31-40.

[15] Markus Pizka and Christian Rehn, “Murks-A POSIX
Threads Based DSM System,” In Proceedings of The
International Conference on Parallel and Distributed
Computing Systems, Aug. 2001. pp. 642-648.

[16] Yang-Suk Kee, Jin-Soo Kim, and Soonhoi Ha, “Atomic Page
Update Methods for OpenMP-Aware Software DSM,”
submitted for publication.

[17] Brian N. Bershad, Matthew J. Zekauskas, and Wayne A.
Sawdon, The Midway Distributed Shared Memory System,
CMU Technical Report CMU-CS-93-119, School of
Computer Science, Carnegie Mellon Univ., 1993.

[18] Liviu Iftode, Jaswinder Pal Singh, and Kai Li, “Scope
Consistency: A Bridge Between Release Consistency and
Entry Consistency,” ACM Symposium on Parallel
Algorithms and Architectures (SPAA’96), Jun. 1996, pp.
277-287.

[19] J. M. Bull, “Measuring Synchronization and Scheduling
Overheads in OpenMP,” In Proceedings of European
Workshop on OpenMP (EWOMP’99), Sep. 1999.

[20] Hee-Chul Yun, Sang-Kwon Lee, Joonwon Lee, Seungryoul
Maeng, “An Efficient Lock Protocol for Home-based Lazy
Release Consistency,” International Workshop on Software
Distributed Shared Memory System, May 2001, pp.527-532.

[21] David Bailey, Tim Harris, William Saphir, Rob van der
Wijngaart, Alex Woo, and Maurice Yarrow, ”The NAS
Parallel Benchmarks”. Technical Report, NAS-95-020, 1995.

[22] Joseph Robicheaux, http://www.openmp.org/samples/jacobi.f,
1998.

[23] Bill Magro, Kuck, and Associates,
http://www.openmp.org/samples/md.f, 1998.

