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ABSTRACT 
Demand for programming environments to exploit clusters of 
symmetric multiprocessors (SMPs) is increasing. In this paper, we 
present a new programming environment, called ParADE, to 
enable easy, portable, and high-performance programming on 
SMP clusters. It is an OpenMP programming environment on top 
of a multi-threaded software distributed shared memory (SDSM) 
system with a variant of home-based lazy release consistency 
protocol. To boost performance, the runtime system provides 
explicit message-passing primitives to make it a hybrid-
programming environment. Collective communication primitives 
are used for the synchronization and work-sharing directives 
associated with small data structures, lessening the 
synchronization overhead and avoiding the implicit barriers of 
work-sharing directives. The OpenMP translator bridges the gap 
between the OpenMP abstraction and the hybrid programming 
interfaces of the runtime system. The experiments with several 
NAS benchmarks and applications on a Linux-based cluster show 
promising results that ParADE overcomes the performance 
problem of the conventional SDSM-based OpenMP environment. 

Keywords 
programming environment, SMP cluster, software distributed 
shared memory, hybrid programming, OpenMP, MPI 

1. INTRODUCTION 
Currently, commodity off-the-shelf microprocessors and network 
components are widely used as building blocks for parallel 
computers. This trend has made cluster systems consisting of 
symmetric multiprocessors (SMPs) attractive platforms for high-
performance computing. Even though it is easy to configure 
cluster systems, specifically of small scale, it is challenging to 
utilize them easily and fully. 

Message-passing (MP) and shared address space (SAS) [1] are 
two leading parallel programming models. An MP model assumes 

a distributed memory system in which a processor is an 
independent processing unit with private memory. In this model, 
inter-processor communication is accomplished by explicit 
message passing. MPI [2] is the most popular MP model and it 
provides both functional and performance portability. MPI uses 
consistent MP interfaces not only for inter-node communication 
but also for intra-node communication. Despite high performance, 
however, the application programmers have hard time in 
developing parallel programs in MPI; they should handle too 
many details about communication and synchronization. This 
makes SAS more appealing to application programmers. 

An SAS model provides a simple abstraction of parallel 
computers in which all processors share the same address space. 
As an SAS model, OpenMP [3] is gaining its popularity. OpenMP 
consists of a small set of compiler directives for shared memory 
parallelism and it provides high-level interfaces to thread 
programming. The directives define how to share workloads 
among threads, how to synchronize threads, and how to determine 
the scope of variables. The application programmers can easily 
implement a parallel program just by inserting directives into time 
critical sequential codes incrementally. Furthermore, OpenMP 
anticipates high performance in scientific applications on a shared 
memory system. 

Even though OpenMP is originally designed for shared memory 
multiprocessor system, this model can be applicable to cluster 
systems with a middleware support, e.g. software distributed 
shared memory (SDSM) [4]. However, there are two obstacles to 
integrating the OpenMP model with an SDSM system. The first is 
to support multi-threading for intra-node parallelism. Even though 
most conventional SDSM systems are single-threaded, an SDSM 
system for OpenMP should be multi-threaded. The second issue is 
to overcome the poor performance of SDSM. An SDSM program 
moves much larger amount of data between nodes than an 
equivalent MPI program. Moreover, SDSM has the poor 
performance of synchronization operations. This means that an 
inefficient integration of OpenMP and SDSM will lead to 
disappointing results. The previous studies of OpenMP on SMP 
clusters [5-7] have mainly focused on how to extend the OpenMP 
model to clusters but they did not deal with the performance 
issues being left for future work. 

From the viewpoint of programming easiness, the application 
programmers prefer SAS to MP. In contrast, MP or hybrid models 
are desirable for high performance. To escape from this dilemma, 
we separate the programming model and execution model. Our 
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approach is to use an SAS model for programming and to use a 
hybrid model for execution. 

In this paper, we propose an efficient OpenMP-based 
programming environment for SMP clusters, called ParADE 
(Parallel Application Development Environment). ParADE 
consists of an OpenMP translator and a runtime system. The 
runtime system provides a single system image through a multi-
threaded SDSM. However, it is augmented with explicit message-
passing primitives to reduce the synchronization overhead of 
conventional SDSM systems. Hence, the ParADE runtime system 
provides a hybrid execution model of MP and SAS. Those 
message-passing primitives are invisible to the application 
programmers who write a standard OpenMP program. The 
OpenMP translator automatically replaces several synchronization 
and work-sharing directives associated with small data structures 
in OpenMP programs with explicit collective communication 
primitives. This explicit use of message-passing primitives avoids 
the conventional lock-based synchronization processes and barrier 
operations imposed implicitly by the OpenMP standard. 

The rest of this paper is organized as follows. First, we review 
related work on programming models and methodologies for SMP 
cluster and discuss our motivation of this study in section 2. We 
overview the ParADE architecture in section 3 and discuss the 
details of two main components, the OpenMP translator and the 
ParADE runtime system, in sections 4 and 5. We give 
experimental results of several microbenchmarks, NAS 
benchmarks, and real applications in section 6. In section 7, we 
introduce several programming guidelines to achieve better 
performance. Section 8 concludes this paper discussing our 
ongoing and future work. 

2. RELATED WORK AND MOTIVATION 
2.1 Related Work 
Programming models for SMP clusters can be categorized into a 
unified programming model and a hybrid programming model. In 
a unified programming model, the programmers use a single set of 
programming interfaces to describe the inter-node and intra-node 
communication. For example, a pure MPI model regards an SMP 
cluster as a shared nothing architecture while a pure SDSM model 
regards an SMP cluster as a shared everything architecture. Shan 
et al. [8] compared the performance of the pure MPI model with 
the pure SDSM model for several applications. They found that 
the SDSM versions achieve only half the performance of the 
corresponding MPI versions for many applications. 

In a hybrid model, the programmers mix an MP model and an 
SAS model. It is intuitive to use an SAS model for intra-node 
communication and an MP model for inter-node communication. 
Especially, the mixture of OpenMP and MPI draws attraction and 
the performance comparison with the pure MPI model has been 
studied [9,10]. Cappello et al. [9] extensively compared the 
performance of the hybrid model and the pure MPI model on an 
IBM SP machine. In the paper, they found that the pure MPI 
model is better for most of the NAS benchmarks. On the other 
hand, Shan concluded in [8] that the hybrid of SDSM and MPI 
has small advantage over pure MPI even though the programming 
complexity increases very highly. 

As another unified programming model, there have been 
several studies of OpenMP on SMP clusters. The main focus of 

the studies is how to provide a multi-threading environment by 
modifying existing SDSM. Hu et al. [7] extended TreadMarks for 
OpenMP and compared the performance of the NAS benchmarks 
under three programming environments: original TreadMarks, 
OpenMP on multi-threaded TreadMarks, and MPI. A key lesson 
from the study is that developing OpenMP applications requires 
intensive cares. Compared to the MPI versions, the OpenMP 
programs experience more barriers and suffer from higher 
network traffic. In OpenMP, the fork-join execution model and 
work-sharing directives include the implicit barriers at the end of 
execution. Moreover, the memory consistency protocol using 
virtual memory management techniques incurs unnecessary page 
transfers. Hence, we should optimize mappings of the OpenMP 
directives to the SDSM interfaces. Their main contribution is to 
first develop a multi-threaded SDSM system for OpenMP; they 
extended the original TreadMarks system to a multi-threaded one, 
and implemented a new OpenMP translator for the target system. 

Since the main focus of prior SDSM systems was how to 
efficiently emulate a shared address space, they did not consider 
any specific programming model like OpenMP. This ignorance of 
programming model introduces extra overhead in integrating them 
with OpenMP. Basumallik et al. [6] discussed the performance 
issues of OpenMP on SDSM. In the paper, they presented several 
ideas on optimization techniques to improve performance. They 
pointed out frequent synchronizations, specifically barriers, as the 
main obstacle to high performance but they have not presented 
any real system to demonstrate their ideas. 

2.2 Motivation 
The previous studies of OpenMP on SDSM raise a demand for a 
new runtime system to achieve the goal of easy and high-
performance programming. As addressed in [6], efficient 
implementation of synchronization directives is crucial to overall 
performance since the directives themselves are time consuming 
and suppress concurrency in applications. Therefore, we need to 
reduce the cost and the number of synchronization operations. 

At first, we have observed that many code blocks protected by 
synchronization directives are statically analyzable at compile 
time and they can be replaced with cheap message-passing 
primitives. In conventional SDSM systems, a process is allowed 
to enter a critical section only after it has acquired the lock for the 
critical section. To acquire the lock, the process requests a lock of 
the lock home and the home grants the lock piggybacking with 
consistency information. This lock mechanism is expensive and 
the process experiences long latency. However, exploiting 
message-passing primitives has several benefits. In an MP model, 
message-passing primitives can replace the costly locks since 
mutual exclusion between processes is implicit. They also 
eliminate the memory consistency mechanism in the critical path 
of memory access; twin and diff creation are not required. 
Moreover, collective communications contribute to reducing the 
number of barriers imposed by the work-sharing directives since 
they perform a kind of global synchronization implicitly. 

These observations motivate us to design a new multi-threaded 
SDSM system augmented with message-passing primitives. To 
convert the OpenMP directives to a hybrid style of MP and SAS, 
we also need a new OpenMP translator. ParADE successfully 
covers these issues overcoming the poor performance of the 
conventional SDSM-based approaches. 



3. PARADE ARCHITECTURE 
Figure 1 depicts the architecture of the ParADE programming 
environment. Two key components are the OpenMP translator 
and the ParADE runtime system. 

Communication Protocol
(VIA, TCP/IP)

Communication Protocol
(VIA, TCP/IP)

Multi-Threaded SDSM
(POSIX threads)

Multi-Threaded SDSM
(POSIX threads)

Message Passing Library
(MPI)

Message Passing Library
(MPI)

ParADE APIsParADE APIs

OpenMP ApplicationOpenMP Application

OS KernelOS Kernel

System Calls
(Page fault and Protection)

System Calls
(Page fault and Protection)

Communication Protocol
(VIA, TCP/IP)

Communication Protocol
(VIA, TCP/IP)

Multi-Threaded SDSM
(POSIX threads)

Multi-Threaded SDSM
(POSIX threads)

Message Passing Library
(MPI)

Message Passing Library
(MPI)

ParADE APIsParADE APIs

OpenMP ApplicationOpenMP Application

OS KernelOS Kernel

System Calls
(Page fault and Protection)

System Calls
(Page fault and Protection)

OpenMP
translator

Runtime
system

Kernel

Figure 1. Architecture of the ParADE parallel programming 
environment 

A multi-threaded SDSM and a message-passing library 
comprise the runtime system. To provide thread-safe 
communication, we implemented a subset of MPI library for 
Virtual Interface Architecture (VIA) [11] while we use MPI/Pro 
by MPI Software Technology for TCP/IP protocols [12]. We also 
developed our own SDSM system, which provides a home-based 
lazy release consistency (HLRC) [13] with migratory home to 
exploit data locality. The lock mechanism is eliminated from the 
SDSM system in the critical path to shared memory access by 
utilizing explicit message-passing primitives. ParADE classifies 
data structures according to their size and applies different 
protocols: update protocol for small data structures by using 
message-passing and invalidate protocol for large data structures 
by using HLRC. 

The OpenMP translator converts an OpenMP program to a 
multi-threaded program by the hybrid communication interfaces 
of the ParADE runtime library and enables the program to be 
executable on the SMP cluster. Especially, the translator focuses 
on how to exploit the message-passing operations in converting 
synchronization and work-sharing directives. In the following 
sections, we will discuss the details of two main components. 

4. PARADE OPENMP TRANSLATOR 
The basic role of OpenMP translator is to bridge the gap between 
the OpenMP specification and the programming interfaces of the 
underlying runtime system. The ParADE OpenMP translator 
converts an OpenMP program into the C codes using POSIX 
threads and MPI libraries: the ParADE APIs encapsulate the 
details of POSIX threads and MPI. Our OpenMP translator is 
based on the Omni OpenMP compiler [5]. We modified the C-
front program in the Omni package. The original use of C-front is 
to analyze a preprocessed C program and then to make a parse 
tree. Instead, we modified it to reconstruct the original C program 
from the parse tree in reverse. Similar to the Omni compiler, the 
OpenMP translator consists of three steps. In the first step, the 
translator invokes the installed preprocessor and expands macros 
and header files. Then, C-front reads these preprocessed codes 
and builds a parse tree, which contains the information about the 
OpenMP directives. In the last step, C-front reconstructs another 
C program from the parse tree replacing the directives with the 

corresponding ParADE APIs. The current implementation of the 
OpenMP translator follows the OpenMP standard version 1.0 for 
C and C++ application programming interface [3]. In the 
following subsections, we explain how some important OpenMP 
directives are translated by using the ParADE APIs. 

4.1 Parallel Directive 
A parallel directive is the basic directive that starts parallel 
execution. A code block annotated with the parallel directive 
is encapsulated into a thread function and the directive is replaced 
with the ParADE runtime interfaces to realize the fork-join 
execution model. The pointers to the variables declared as 
shared, firstprivate, lastprivate, and reduction 
are passed to the thread function while the private variables 
are declared automatic inside the thread function. 

According to the OpenMP standard, the default scope of 
variables in a parallel block is shared since threads in a 
process share all data structures except thread stacks. However, 
this assumption is inappropriate to MP architectures: the variables 
on different nodes cannot be shared for free. For better 
performance, it is highly recommended to explicitly annotate all 
the variables used in parallel blocks to avoid unnecessary 
network traffic between nodes. 

4.2 Synchronization Directives 
There are several directives for synchronization. A critical 
directive provides mutual exclusion between threads and 
commonly used to reduce non-scalar variables. When a thread 
enters a critical section, it is guaranteed to see all previous 
modifications. The directive can be translated to a collective 
communication operation together with a pthread lock. Figure 2 
illustrates how a critical directive is translated for ParADE 
and for a conventional SDSM system, respectively. In ParADE, 
the mutual exclusion is hierarchically performed: the pthread lock 
ensures mutual exclusion between threads in a process and the 
collective communication operation performs synchronization 
between processes. For the SDSM system, however, the lock 
primitives are used for the intra-node and inter-node mutual 
exclusion. The collective communication operations update 
modified variables immediately avoiding the overhead due to 
creating memory consistency information and perform mutual 
exclusion implicitly eliminating the lock for inter-process mutual 
exclusion. 

#pragma omp critical
sum += 1;

#pragma omp critical
sum += 1;

acquire(lock);
sum += 1;
release(lock);

acquire(lock);
sum += 1;
release(lock);

pthread_mutex_lock(&lock);
sum += 1;
if(is this thread last in this node)

MPI_Allreduce(&sum, …, MPI_SUM, …);
pthread_mutex_unlock(&lock);

pthread_mutex_lock(&lock);
sum += 1;
if(is this thread last in this node)

MPI_Allreduce(&sum, …, MPI_SUM, …);
pthread_mutex_unlock(&lock);

SDSM ParADE

Figure 2. Translated codes of the critical directive for a 
conventional SDSM system and for ParADE 

An atomic directive ensures the atomic update of a specific 
memory location and the atomic code block must be one of the 



predefined expression statements. We regard the atomic 
directive as a special case of the critical directive. The code 
block can be exactly mapped to a collective communication 
primitive. 

There is a clause to exploit message-passing primitives. The 
reduction clause performs a reduction on the scalar variables. 
Similar to the atomic directive, a reduction variable is 
exactly mapped to a collective communication primitive. If there 
are more than one reduction variables, they are merged into a 
structure-type variable and reduced at once with a user-defined 
reduction operation. To exploit the benefits of message-passing as 
much as possible, the programmers are guided to use the 
reduction clause or the atomic directive instead of the 
critical directive. In the case of the critical directive, it is 
highly recommended to write a lexically analyzable code block. 

4.3 Work-Sharing Directives 
Work-sharing directives distribute workloads among threads. A 
for directive divides the iterations of a loop into smaller slices 
and assigns them to threads. The translator extracts the range and 
the increment information of the loop and the loop scheduler in 
the runtime system determines the range of iterations for threads 
at run time. Current implementation supports only static 
scheduling: the iterations are evenly distributed to threads. As of 
now, nested for directives are ignored. 

A single directive identifies a code block to be executed by 
the earliest thread. This directive is mainly used to initialize 
shared variables. Figure 3 illustrates the translated codes of a 
single directive for a conventional SDSM system and for 
ParADE. Similar to the critical directive, synchronization 
within a node is replaced with a pthread lock and synchronization 
between nodes is replaced with an explicit message-passing 
operation; this contributes to reducing the number of inter-process 
barriers and to eliminating the inter-node lock in the critical 
access path to the variable. 

#pragma omp single
sum = 0;

#pragma omp single
sum = 0;

acquire(lock);
if(is this thread first in cluster)

sum = 0;
release(lock);
if(!nowait)

barrier(bar);

acquire(lock);
if(is this thread first in cluster)

sum = 0;
release(lock);
if(!nowait)

barrier(bar);

pthread_mutex_lock(&lock);
if(is this thread first in this node) {

if(is this thread is the master)
sum = 0;

MPI_Bcast(&sum, …);
}
pthread_mutex_unlock(&lock);
if(!nowait)

parade_intra_barrier();

pthread_mutex_lock(&lock);
if(is this thread first in this node) {

if(is this thread is the master)
sum = 0;

MPI_Bcast(&sum, …);
}
pthread_mutex_unlock(&lock);
if(!nowait)

parade_intra_barrier();

SDSM ParADE

Figure 3. Translated codes of the single directive for a 
conventional SDSM system and for ParADE 

5. PARADE RUNTIME SYSTEM 
The ParADE runtime system provides users a single, unified 
abstraction of clusters. ParADE is a kind of multi-threaded SDSM. 
A major issue of SDSM systems is how to preserve memory 
consistency in distributed memory systems. In this section, we 
address two issues on memory management in the ParADE 

runtime system: thread-safe page update and memory consistency 
protocol. 

5.1 Atomic Page Update 
Conventional SDSM systems are implemented at the user-level by 
using a page-based virtual memory protection mechanism. This 
kind of SDSM system detects an application's access to an invalid 
shared memory region by catching a SIGSEGV signal generated 
by the operating system when the application violates memory 
access privilege. Then, the SDSM system carries out a series of 
operations to fetch the most up-to-date page from a remote node 
in a user-defined SIGSEGV signal handler. Since the series of 
operations are performed sequentially, the SDSM system can 
update the invalid page atomically from the application point of 
view: program control is returned to the application only after the 
signal handler completes the service on the protection fault.  

However, this mechanism will not work any more in a multi-
threaded environment because other threads may try to access the 
same page during the page update period. Figure 4 illustrates this 
situation. On the first access to an invalid page, the system should 
set the access permission of the page writable in order to replace it 
with the most up-to-date page. Unfortunately, this change of 
access permission also allows another application thread, T1 in 
Figure 4, to access the same page without raising any protection 
fault. This phenomenon is known as atomic page update and 
change right problem [14] or mmap() race condition [15]. Simply, 
we call this the atomic page update problem. 

Read(A)

SIGSEGV

mprotect(A, PROT_READ)

Request

Page

SIGSEGV Handler SIGIO Handler
mmap(A, PROT_WRITE)

Read(A) : garbage

T2T1 T1

Process 1 Process 2

Figure 4. The atomic page update problem in a conventional 
page-based SDSM system 

This problem is caused by the fact that the system and the 
application share the same address space. When the system 
changes the access permission of a page, the application also 
experiences the same change. A general solution to this problem 
is to separate the application address space from the system 
address space for the same physical memory, and to assign 
different access permission to each of the address spaces. Since 
the virtual memory protection mechanism is implemented in the 
per-process page table, different virtual addresses (pages) can 
have different access permissions even though they refer to the 
same physical page. It means that the system address space can be 
writable while the application address space is write-protected. 
Therefore, the system can guarantee the atomic page update by 
changing the access permission of a virtual page in the application 
address space only after it completes the page update through the 
system address space. 

The conventional method to realize this solution is to use file 
mapping. The mmap() system call allows a file to be mapped 



multiple times to a process or several processes. When a file is 
mapped multiple times, multiple independent access paths to a 
physical page are provided because the same file is referred to by 
multiple virtual addresses. 

We have developed three other methods to solve the same 
problem: System V shared memory, a new mdup() system call for 
page table duplication, and child process creation. Since full 
explanation of these methods [16] is beyond the scope of this 
paper, we briefly summarize them. In the System V shared 
memory solution, a process creates a shared memory object in the 
kernel by the shmget() system call and attaches it to the address 
space by the shmat() system call. A process can attach the shared 
memory to its address space more than once and a different virtual 
address is assigned to each attachment. In the second solution, we 
have implemented a new system call, mdup(), which creates a 
detour to an anonymous memory region. The basic operation is to 
allocate new page table entries for the detour and to copy the page 
table entries of the anonymous memory region to new ones. In the 
child process creation method, we use the fact that the child 
process inherits the execution image of the parent process when a 
process forks a child process. Especially, the content of the child 
process page table is copied from that of the parent process. Since 
the Copy-On-Write policy is not applied to the shared memory 
area, we can create two different access paths to a shared physical 
page by making two processes access the same page. 

Through extensive experiments, we observe that all the 
methods achieve comparable performance on an SMP Linux 
cluster system while it is not always possible to implement them 
in a certain operating system due to various constraints of the 
operating system. In particular, the conventional file mapping 
method shows poor performance on IBM SP Night Hawk system 
with an AIX 4.3.3 PSSP 3.2 version. 

5.2 Memory Consistency Protocol 
A key feature of ParADE is to utilize message-passing primitives 
explicitly for some synchronization and work-sharing directives 
associated with small data structures. The OpenMP translator 
identifies these directives and replaces them with collective 
communication primitives while the runtime system takes care of 
the other shared variables by using a variant of the conventional 
HLRC protocol. 

5.2.1 Message-passing for small data structures 
Most page-based SDSM systems use locks to exclusively access 
shared variables. The lock mechanism must guarantee that the 
lock acquirer views the most up-to-date values of the variables in 
the critical section. Instead, ParADE ensures mutual exclusion 
implicitly by using message-passing operations in accessing small 
shared variables in a critical section. ParADE preserves memory 
consistency of the small data structures guarded by 
synchronization and work-sharing directives on the basis of object, 
which is similar to the entry consistency protocol [17]. 

ParADE adopts a kind of update protocol and the values 
modified in a critical section are propagated to other processes 
immediately. The ParADE runtime system does not have to create 
a twin and to calculate the diffs for the modified page where the 
small size data structures reside. Moreover, the explicit use of 
message-passing primitives reduces the number of barriers: some 

collective communication operations imply barrier at the end of 
the operations. 

Consistency mechanism switches from the HLRC mode to the 
message-passing mode when the code block enclosed by a 
synchronization or work-sharing directive is lexically analyzable 
and the total size of the shared data structures in the code block is 
smaller than a certain threshold. The threshold is dependent on the 
startup cost of message-passing operations and the overhead of 
creating a twin and diffs for a page. For example, we set the 
threshold to 256 bytes for our Linux cluster. 

5.2.2 HLRC with migratory home 
Except small data structures, ParADE ensures memory 
consistency by using a variant of conventional HLRC protocol. 
When a thread tries to access a page not in its local memory, the 
runtime system fetches the page from its home. Once the page is 
brought to the local memory, the subsequent accesses to the page 
are localized until the next barrier. Home-based protocols like 
HLRC and scope consistency [18] have a fixed home that has the 
most up-to-date page. Home-based protocols are preferable to 
homeless protocols in that they reduce the number of control 
messages and the page fetch latency because every node knows 
where to fetch the most up-to-date pages. In addition, the home 
can avoid creating a twin for the modified page because all diffs 
are merged into its page. 

However, the fixed home approach may incur unnecessary 
network traffic when the modifier of page does not coincide with 
the home. The main target of OpenMP is scientific applications 
with regular computing patterns. Typically, these applications 
consist of several loops with numerous iterations accessing huge 
arrays. When the iterations are distributed over the processes on 
different nodes, locality of arrays is crucial to overall performance. 
We try to increase locality by dynamically designating the 
modifier as home. Home migration occurs only at barrier time. If 
there is only one modifier of a page between two consecutive 
barriers, the node becomes the new home. Otherwise, the node 
with the highest priority becomes home. The current home node 
has the highest priority and the node with the smallest node id has 
priority. This is another feature different from the original HLRC. 

A potential overhead of home migration is to notify new homes 
to all nodes. To reduce the number of control messages, all the 
write-notices are combined into a single message, and the message 
is piggybacked with a barrier message; the master node gathers 
write-notices piggybacked with barrier arrival messages and 
notifies the new homes with barrier departure messages. 

5.2.3 Page management 
Each node maintains a page table for the pages in the shared 
memory pool. Illustrated in Figure 5, there are five possible states 
for a page: INVALID, TRANSIENT, BLOCKED, READ_ONLY, 
DIRTY. When a page is not in the local memory, the state of the 
page is INVALID. The access to this page violates page 
protection and the runtime system should prepare a valid page. 
The two states, TRANSIENT and BLOCKED, are introduced 
because ParADE is a multi-threaded system. The TRANSIENT 
state tells other threads that a thread is trying to update the page 
but the update is not completed. The BLOCKED state tells the 
runtime system that there are threads waiting for the completion 
of the page update and the runtime system should wake them up 
after the page update is completed. The page state is 



READ_ONLY when a page is valid and clean, and the page state 
is DIRTY when a page is valid and modified. 

READ_ONLYREAD_ONLY

BLOCKEDBLOCKED

TRANSIENTTRANSIENT

INVALIDINVALID

DIRTYDIRTY

read/write fault 
block

read/write fault
block

read/write fault
block

page
wakeup

page
wakeup

read fault
-

write fault
create twin

write fault
-

invalidate
-

diff
create diff

home
-

Figure 5. State transition diagram for the pages in the shared 
memory pool 

Similar to conventional page-based SDSM systems, the unique 
entry point of application to the system is the page fault handler, 
which is a user-defined reliable SIGSEGV handler. The signal 
handler supervises shared memory. The handler determines the 
address where the protection violation occurs and the fault type. 
When the current state of the page is INVALID, the handler 
fetches the most up-to-date page from the home. Otherwise, it 
changes the state and the access permission of the page. 

In the beginning, all shared pages in the non-master nodes are 
initialized as INVALID and the home of all pages is set as the 
master node while the page states of the master node are 
READ_ONLY. Coherence misses occur when incoming write-
notices invalidate a page. Invalidation involves changing the page 
state from READ_ONLY to INVALID, and removing the access 
right from the page. A coherent miss indicates that more than one 
node has modified the page and the modification should be 
reflected in the local copy before the page is accessed again. In 
response to a write fault, the handler prepares a valid page, 
changes the page state to DIRTY, and creates a twin for the page. 

5.3 Parallel Library 
In ParADE, each node has a thread dedicated to communication 
to handle asynchronous incoming control messages. Since 
application threads and the communication thread can issue 
communication requests simultaneously, a communication library 
should be thread-safe. However, most MPI libraries in public 
domains are not thread-safe. Moreover, a high-performance 
communication library with respect to latency and bandwidth is 
desirable. We adopt the TCP/IP version of MPI/Pro by MPI 
Software Technology and implement a minimal set of MPI 
routines on top of VIA to exploit the full performance of VIA. 
ParADE uses only send/receive point-to-point communication and 
two collective communication primitives: MPI_Bcast() and 
MPI_Allreduce(). 

6. EXPERIMENTS 
In this section, we present the preliminary experimental results of 
the ParADE system. Our experimental platform is a Linux cluster 
consisting of four dual-Pentium III 550Mhz SMP nodes and four 
dual-Pentium III 600Mhz SMP nodes. Each node has 512 MB 
main memory, connected to a 3Com Fast Ethernet switch and a 
Giganet's cLAN VIA switch. Redhat 8.0 of a 2.4.18-14 SMP 

kernel runs on each node. We used a GNU gcc compiler with the 
–O2 option. Even though we made our best efforts to compare 
ParADE with OpenMP programs on other SDSM systems like 
Score/Scash, we could not get such systems working. Therefore, 
we measured the performance of the ParADE system with respect 
to synchronization latency and scalability. 

6.1 OpenMP Microbenchmarks 
To evaluate the performance benefit of using explicit message-
passing operations, we compared the performance of the 
critical and the single directives on ParADE and on an 
HLRC-based SDSM system. The translated codes for both the 
systems are shown in Figure 2 and 3 and the experimental results 
are shown in Figure 6 and 7. We took the average execution time 
of the micro-benchmark program [19] after running over 100 
times varying the number of nodes. We used an HLRC-based 
SDSM system called KDSM [20] and MPI/Pro TCP/IP version. 
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Figure 6. Performance comparison of the critical directive 
between ParADE and KDSM 
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Figure 7. Performance comparison of the single directive 
between ParADE and KDSM 

The ParADE versions of the critical and single 
directives outperform the SDSM versions and the gap becomes 
wider as the number of nodes increases; the number of control 
messages to get locks and the amount of data moving around 
increases with the number of nodes. The abnormal result of the 
single directive for KDSM with 2 nodes results from busy 
waiting to get the lock. 

6.2 Benchmark Performance 
In this section, we present the performance of the ParADE system 
by measuring the execution times of two NAS benchmarks and 



two real applications. The CG and EP kernels of class-A are 
adopted from the NAS 2.3 benchmarks [21]. The CG kernel 
solves an unstructured sparse linear system by the conjugate 
gradient method and the EP kernel measures the capability of 
floating-point operations. Meanwhile, two real applications are 
adopted from OpenMP sample programs [22,23]. The Helmholtz 
program solves a wave equation on a regular mesh using an 
iterative Jacobi method with over-relaxation and the MD program 
implements a simple molecular dynamics simulation in 
continuous real space. We use the following three configurations 
to measure the programs. 

• 1Thread-1CPU Start the operating system using the 
uniprocessor kernel: a single processor should handle both 
computation and communication. 

• 1Thread-2CPU Start the operating system using the SMP 
kernel but create only one computational thread per node: 
one processor is dedicated to the computational thread and 
the other to the communication thread. 

• 2Thread-2CPU Start the operating system using the SMP 
kernel and create two computational threads per node: two 
computational threads and a communication thread share two 
processors. 

Figure 8 and figure 9 show the execution times of the NAS 
benchmarks on our VIA-based Linux cluster. The CG program 
experiences relatively larger page migration with 64-megabyte 
shared memory than other programs. The configuration of 
1Thread-1CPU suffers from high communication delay because a 
single processor is responsible for both computation and 
communication. There is little overlapped communication, which 
serializes the execution of processes on other nodes. The 
performance gap between 1Thread-1CPU and 1Thread-2CPU 
becomes wider as the number of nodes increases. These results 
demonstrate that overlapped communication is a crucial factor in 
high-performance of cluster system. In the case of EP, there is 
little shared memory and communication between nodes occurs at 
the end of the program just once. Hence, it is natural that ParADE 
is highly scalable. 

The experimental results of the Helmholtz and MD programs 
are shown in figure 10 and in figure 11. The Helmholtz program 
repeats about one thousand iterations until the calculated value 
become smaller than a certain threshold. Nodes communicate with 
only the adjacent nodes. However, each node updates a shared 
variable competitively to check the value satisfying the threshold. 
In the ParADE system, the OpenMP translator replaces this code 
with a reduction operation and the overall performance is nearly 
linear. Meanwhile, the MD program repeats one thousand 
iterations and determines the dynamics of molecules. With respect 
to communication pattern, MD is similar to Helmholtz but the 
amount of shared memory and inter-node communication of MD 
is less than that of Helmholtz. Hence, ParADE is scaled well for 
all the configurations. 

7. PROGRAMMING GUIDELINES 
OpenMP is originally proposed for shared memory multi-
processors but we have extended the use of OpenMP to SMP 
clusters. The main difference between OpenMP on cluster and 
OpenMP on multiprocessors is communication cost. Accessing 
shared variables in a cluster may cause page migration between 
nodes. Since the inter-node communication cost is very expensive, 

the programmers should make efforts to avoid unnecessary page 
migration. 

The main feature of ParADE is to utilize message-passing 
primitives for synchronization and work-sharing directives. An 
atomic directive or a reduction clause is directly mapped to 
a collective communication primitive. In addition, the critical 
directive that does not enclose any function call is mapped to a 
collective communication primitive. Therefore, using these 
directives or clause for mutual exclusion eliminates page 
migration and simplifies the conventional locking mechanism. 
Especially, applications like equation solver repeating iterations 
until satisfying a certain termination condition take significant 
advantage of explicit message-passing primitives. 

Since the default scope of variables in a parallel block is 
shared, careless development of applications increases network 
traffic due to inter-node communication. Therefore, programmers 
are recommended to annotate the scope information of small data 
structures explicitly. For example, we can annotate local variables 
as private, read-only shared variables as firstprivate, 
writable shared variables associated with a critical directive 
as reduction, and so on. 

The last consideration is to reduce page migration due to large 
arrays. In ParADE, the consistency unit of large arrays is page. An 
idea is to reduce the number of shared pages at the expense of 
additional memory. For example, we can reduce the number of 
shared page by declaring the arrays used temporarily to store 
intermediate values as local variables within a parallel block. 

8. CONCLUSION AND FUTURE WORK 
In this paper, we present a new programming environment called 
ParADE to enable easy, portable, and high-performance 
programming for SMP clusters. It is an OpenMP programming 
environment on top of a multi-threaded SDSM system. A variant 
of HLRC protocol is adopted for memory consistency. To boost 
performance, the ParADE runtime system provides MPI-like 
explicit message-passing primitives to make it a hybrid-
programming environment at this level of abstraction. However, 
the OpenMP abstraction hides the details of hybrid programming 
and the OpenMP translator bridges the gap between the 
application specification and the underlying runtime system. 

The experimental results with two NAS kernels and two real 
applications on a Linux cluster demonstrate the benefits of the 
proposed environment, easy and portable programming, and high-
performance execution. Even when applications are designed 
without application specific optimization, the ParADE system 
shows the performance between those of an SDSM application 
and a pure MPI application.  

However, we have several issues to improve our system. In 
many cases, processes wait a long time at barrier due to load-
imbalance in executing the for blocks since the current version 
of ParADE supports only the static loop scheduling. Even 
though the OpenMP standard describes various loop-scheduling 
policies, they are not all appropriate for SMP cluster systems. 
Further studies on loop scheduling for SMP cluster systems will 
promise significant improvement in system performance. 

Another issue is to adapt the system configuration during 
runtime. As the experimental results show, more processors do 
not always give better performance. For a given problem, we want  
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Figure 8. Execution time of the CG kernel on cLAN (A class) 
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Figure 10. Execution time of the Helmholtz program on cLAN 
to find the best configuration to extract the best performance. The 
current ParADE system creates a fixed number of threads 
according to the number of processors available in the system. We 
may dynamically determine a proper number of processors and 
threads by measuring the idle time of threads between subsequent 
iterations. 

The last problem is related to the OpenMP translator. More 
intelligent translator may accelerate ParADE significantly. For 
example, the translator can analyze locality of arrays. If arrays are 
partitioned across nodes, then the synchronization for the arrays is 
not required. Moreover, if the arrays are used temporarily as 
buffers, then we can skip memory consistency process for the 
arrays. 
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