
ReSSD: A Software Layer for Resuscitating SSDs from
Poor Small Random Write Performance

Youngjae Lee
Computer Science

Department
KAIST

Deajeon, South Korea
yjlee@camars.kaist.ac.kr

Jin-Soo Kim
School of Information and

Communication Engineering
Sungkyunkwan University

Suwon, South Korea
jinsookim@skku.edu

Seungryoul Maeng
Computer Science

Department
KAIST

Deajeon, South Korea
maeng@camars.kaist.ac.kr

ABSTRACT
NAND flash-based solid state drives have emerged as revo-
lutionary storage media during recent years. However, the
wide-spread of SSD technology is currently obstructed by
the fact that the random write bandwidth is lower than the
sequential write bandwidth by several orders of magnitude.

This paper proposes a novel software layer called ReSSD
whose purpose is to resuscitate SSDs from poor small ran-
dom write performance with low memory usage. ReSSD
works as a virtual block device on SSD which does not re-
quire any modifications of the operating system kernel and
applications. By inspecting all incoming requests, ReSSD
identifies small random writes which have potential to de-
grade SSD’s performance significantly and transforms them
into sequential and ordered-sequential writes which are more
favorable to SSDs. Our evaluation results with Postmark
show that ReSSD improves the overall performance by up
to 72% using a few megabytes of kernel memory.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management; D.4.7
[Operating Systems]: Organization and Design

General Terms
Design, Management, Performance

Keywords
Solid state drive, NAND flash memory, Small random write

1. INTRODUCTION
Recently, NAND flash-based solid state drives (SSDs) have

drawn considerable attention in both industry and academia.
Many studies have been carried out to adopt SSDs to database
systems or storage systems.

However, the random write performance, particularly in
small size, is somewhat problematic in SSDs.For example,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

the 4KB random write bandwidths of SSDs from Samsung
and SuperTalent are 0.421MB/s and 0.018MB/s, respec-
tively, while their sequential write bandwidths are more than
110MB/s. Since this is a critical obstacle impeding the wide-
spread adoption of SSD technology, it is necessary to resusci-
tate SSDs from such poor small random write performance.

A software company called EasyCo LLC has recently pro-
posed an SSD performance enhancement solution called Man-
aged Flash Technology (MFT) [2]. Although the detailed
architecture of MFT is still not known exactly, it appears to
handle all write requests in a sequential fashion, so that the
underlying SSD never encounters random writes. However,
MFT has a serious drawback that the amount of mapping
information needed to keep track of the physical locations
becomes inevitably very huge. It is known that MFT on a
128GB SSD typically requires about 150MB of kernel mem-
ory. Considering the current trend of increasing SSD capac-
ity, the MFT approach is not practical especially for systems
with a modest amount of memory such as netbooks.

In this paper, we propose a novel software approach called
ReSSD which aims at resuscitating SSDs from its poor small
random write performance with low memory usage. Unlike
MFT, ReSSD records only identified small random writes
sequentially in the reserved area and moves them to their
original location eventually in an ordered-sequential write
fashion 1 . The reserved area size is smaller than the work-
load size by an order of magnitude, so the amount of in-
memory mapping information is also very small.

2. RESSD

2.1 Basic components
ReSSD consists of three major components: the router,

the mover, and the RB-tree (red-black tree), as shown in
Figure 1. The underlying SSD is divided into two regions,
the normal area and the reserved area. The normal area is
visible to the upper layer as a single block device. On the
other hand, the upper layer is not aware of the reserved area.

All I/O requests which the upper layer issues are first
transferred to the router. In case of write requests, the re-
quest pattern identifier (RPI) inside the router checks whether
the request is a small random write or not. If the request
is identified as a small random write, its data are sequen-
tially written into the reserved area. Otherwise, the request

1 Note that the ordered-sequential write denotes the write
pattern where the accessed logical blocks are arranged in
increasing order of LBAs (Locgical Block Addresses) [1].

242

Figure 1: The Overall Architecture of ReSSD

is forwarded to the normal area. When the router receives
read requests, it serves them either from the reserved area or
from the normal area according to the mapping information
stored in the RB-tree.

The main role of the mover is to reclaim free space in the
reserved area by moving some of data to the normal area.
The mover usually remains inactive until the router wakes it
up as the amount of free space falls below a certain threshold
whose default value is half the reserved area size.

The RB-tree contains the mapping information needed to
track the original locations of data, which are sequentially
written to the reserved area. All nodes of the RB-tree is
always kept in memory and their memory usage is about
1MB per 100MB of the reserved area.

2.2 Improving small random writes
The RPI considers a write request as a small random write

if its logical sector numbers (LSNs) do not immediately fol-
low the previous write request and its size is not larger than
8KB, as this type of write request has potential to degrade
SSD’s performance significantly. The router redirects such
identified small random writes to the reserved area and their
data are written sequentially. In case the reserved area al-
ready has some data for the requested sector numbers, the
previous versions of data are invalidated by the router.

As soon as the mover becomes active by the router, the
mover reads valid data from the reserved area in the as-
cending order of their original LSNs and writes them into
the normal area in an ordered-sequential write fashion.

By filtering out small random writes, the underlying SSD
does not suffer from random writes whose size is less than or
equal to 8KB. Instead, the underlying SSD only encounters
sequential writes given by the router and ordered-sequential
writes issued by the mover, which show higher performance
than small random writes in most of SSDs. Therefore, ReSSD
can improve the overall performance significantly.

3. EVALUATION
We have implemented ReSSD using the device-mapper on

Linux 2.6.29.4, one of the Linux kernel components for log-
ical volume management. We have evaluated ReSSD on a
SuperTalent FTM60GK25H SSD. The SSD has two parti-
tions, one 51.2GB and the other 8GB. In this evaluation,
ReSSD employs the first partition as the normal area and
part of the second one as the reserved area. When the per-
formance is measured on SSD alone (without using ReSSD),
the second partition has not been used. The ext4 file sys-

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

PM-A PM-B PM-C

E
la

ps
ed

 ti
m

e
(s

ec
)

Configuration

SSD alone
ReSSD(infinite)

ReSSD(0.75GB)
ReSSD(0.5GB)

ReSSD(0.25GB)
ReSSD(0.125GB)

Figure 2: Postmark elapsed time

Table 1: Postmark configurations

Initial file Initial Directories Transactions
set size files

PM-A 0.8 GB 80000 10000 30000
PM-B 1.6 GB 160000 20000 60000
PM-C 2.4 GB 240000 30000 90000

tem and the CFQ scheduler have been used. The memory
size available to the kernel is limited to 384MB in order to
minimize the effect of page cache.

Figure 2 presents the elapsed time to execute each Post-
mark workload configuration described in Table 1. The
number in parentheses for ReSSD indicates the reserved
area size. The infinite size represents that the reserved area
is large enough to make the mover remain inactive during
the entire Postmark run. ReSSD outperforms the case with
SSD alone in all workload configurations. With the larger
reserved area size, ReSSD accomplishes more performance
improvement. In case of PM-C, ReSSD improves the elapsed
time by 45% (with 0.125GB) – 72% (with 0.75GB) depend-
ing on the reserved area size. This improvement is close
to the upper bound of 85% when the reserved area size is
infinite.

4. CONCLUSION
In this paper, we propose ReSSD to resuscitate SSDs from

poor small random write performance with low memory us-
age. ReSSD identifies small random writes and converts
them into sequential and ordered-sequential writes, which
are more favorable to SSDs. The proposed approach accom-
plishes noticeable performance improvement with low mem-
ory usage under the workload including many small random
writes.

5. ACKNOWLEDGMENTS
This work was supported by the Korea Science and En-

gineering Foundation (KOSEF) grant funded by the Ko-
rea government (MEST) (R01-2007-000-11832-0). Also, this
work was supported by the IT R&D Program of MKE/KEIT
[2009-F-039-01, Development of Technology Base for Trust-
worthy Computing].

6. REFERENCES
[1] L. Bouganim, B. por Jonsson, and P. Bonnet. uFLIP:

Understanding flash io patterns. In CIDR, 2009.

[2] D. Dumitru. Optimizing flash storage with linearization
software. In FlashMemory Summit 2009, 2009.

243

