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Abstract—With increasing demand for running big data ana-
lytics and machine learning workloads with diverse data types,
high performance computing (HPC) systems consequently need
to support diverse types of storage services. Ceph is one possible
candidate for such HPC environments, as Ceph provides inter-
faces for object, block, and file storage. Ceph, however, is not
designed for HPC environments, thus it needs to be optimized
for HPC workloads. In this paper, we find and analyze problems
that arise when running HPC workloads on Ceph, and propose
a novel optimization technique called F2FS-split, based on the
F2FS file system and several other optimizations. We measure
the performance of Ceph in HPC environments, and show that
F2FS-split outperforms both F2FS and XFS by 39% and 59%,
respectively, in a write dominant workload. We also observe that
modifying the Ceph RADOS object size can improve read speed
further.

Index Terms—Ceph, distributed file system, high performance
computing

I. INTRODUCTION

During the past few decades, the high performance com-
puting (HPC) community has mostly focused on compute-
intensive scientific applications. However, due to the re-
cent prevalence of big data analytics and machine learning
techniques, there is a growing demand for running these
workloads on HPC systems [1]–[3]. Traditional HPC systems
rely on parallel file systems such as Lustre [4] and IBM
GPFS/Spectrum Scale [5], [6] to process I/O quickly. However,
as the workloads running on HPC systems become more
diverse, a more versatile storage system is needed that can
provide not only a distributed file system service, but also a
scalable object storage service and a block storage service.

Ceph is a unified, distributed, and scalable storage solution
that is widely used in cloud computing environments [7].
Ceph provides interfaces for object, block, and file storage.
Furthermore, all components in Ceph are scalable horizontally,
and it does not have a single point of failure.

Because Ceph provides all the storage services needed
by big data analytics and machine learning workloads, we
believe Ceph is a promising candidate for a next-generation
storage platform in the HPC environment. Recently, the ARC
Center of Excellence for Particle Physics at the Terascale
(CoEPP) chose Ceph as a new generation storage platform
for Australian high energy physics [9].

Although Ceph has been chosen for use in recent HPC
workload environments, Ceph should satisfy the needs for tra-

ditional HPC workloads. Traditional HPC workloads perform
reads from a large shared file stored in a file system, followed
by writes to the file system in a parallel manner. In this case,
a storage service should provide good sequential read/write
performance. However, Ceph divides large files into a number
of chunks and distributes them to several different disks. This
feature has two main problems in HPC environments: 1) Ceph
translates sequential accesses into random accesses, 2) Ceph
needs to manage many files, incurring high journal overheads
in the underlying file system.

To deal with this problem, this paper proposes several
Ceph optimizations for HPC environments. Our approach is
to use the F2FS file system instead of the default XFS file
system as an underlying file system for Ceph. Due to the log-
structured nature of F2FS, utilizing it as Ceph’s underlying
file system brings potential performance benefits. Futhermore,
we propose a new file system design called F2FS-split, where
the metadata region of F2FS is placed into a separate SSD
(Solid-State Drive), together with the external Ceph journal.
This eliminates unwanted head movement in the HDD (Hard
Disk Drive) when updating file system metadata. Additionally,
we tune F2FS to further avoid HDD head movement.

Our evaluation results with a parallel I/O workload using
MPI-IO show that F2FS-split outperforms both F2FS and XFS
by 39% and 59%, respectively, in a write dominant workload.
We also observe that modifying the Ceph RADOS object size
can improve read performance further.

The rest of this paper is organized as follows. Section II
briefly overviews the Ceph architecture, F2FS file system, and
MPI-IO. In Section III, we show a motivating example and its
challenges. Section IV proposes Ceph optimizations for HPC
workloads. We evaluate our new design and analyze the results
in Section V. Finally, we conclude the paper in Section VI.

II. BACKGROUND

A. Ceph Architecture

Ceph provides storage services at the object level (object
storage), block level (block storage), and file level (file sys-
tem). Internally, all storage services in Ceph are built on a
unified layer called RADOS (Reliable Autonomic Distributed
Object Store) [8]. Ceph stores data as objects via RADOS,
where object data can be retrieved directly from an OSD server
by calculating the location of an object using the CRUSH
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Fig. 1: Ceph storage cluster architecture

algorithm [12]. In comparison, traditional distributed storage
systems retrieve data locations from a centralized server. This
centralized design can lead to performance bottlenecks, as well
as introducing a single point of failure. Using the CRUSH
algorithm, Ceph removes the need for a centralized server so
that it can scale, recover, and rebalance dynamically.

The Ceph file system (CephFS) is a POSIX-compliant file
system that stores data in a Ceph storage cluster. In CephFS,
the MDS daemon manages directory map and filename infor-
mation for the file system. Every file is striped in fixed units
(4MB by default) at the RADOS level and stored in several
OSD servers so that CephFS achieves high performance and
reliability. If required, CephFS can set a different file striping
unit for each file or directory by changing its layout attribute.

Ceph consists of several daemons, each of which performs
a special task. The Ceph OSD daemon (OSD) stores and
retrieves data, manages data replication, and controls recovery
and rebalancing. Furthermore, it manages the status of OSDs
in a cluster via exchanging heartbeat messages. The Ceph man-
ager daemon (MGR) tracks various status information such as
storage utilization, performance metrics, and system load in
a Ceph cluster. The Ceph monitor daemon (MON) manages
monitor, manager, OSDs, and CRUSH map information in a
data structure called a cluster map. Additionally, it administers
authentication between a Ceph client and other daemons.
Finally, the Ceph metadata daemon (MDS) stores directory
map and filename information for the Ceph file system.
Combined, this deployment of Ceph daemons forms a Ceph
storage cluster. Figure 1 illustrates the overall architecture of
a Ceph storage cluster.

B. Ceph Storage Backends

Ceph OSDs store data in several ways [13]. The latest Ceph
OSD version, Luminous (v12.2.x), provides two methods,
called BlueStore and FileStore. Although BlueStore is the
default option for Ceph OSD backends, FileStore is currently
the more stable and safer option, and thus we use FileStore

instead of BlueStore throughout this paper. We leave the
comparisons with BlueStore as future work.

FileStore stores each object passed from the RADOS layer
as an individual file in a local file system such as XFS, BTRFS,
and ZFS. XFS is used as the default backend file system
in FileStore. When we use FileStore, external journaling
is necessary to ensure Ceph-level crash consistency. Ceph
provides strong crash consistency for each object, where all the
write operations associated with storing an object must be done
in an atomic transaction. However, there is no POSIX API
that ensures atomicity for multiple write operations to different
files. Due to this, Ceph writes a log in the external journal first,
in an append-only manner, and then worker threads perform
the actual write operations to the file system. Many systems
use an SSD (Solid State Drive) as the external journal device to
increase Ceph performance further. Using an external journal
can improve write performance thanks to append-only logging.

C. F2FS
F2FS is an append-only file system similar to LFS (Log-

structured File System) [11], but is specifically designed for
NAND flash-based storage devices [10]. Figure 2a illustrates
the basic disk layout of F2FS. Each metadata structure in
F2FS is located at a fixed location on the disk (CP, SIT, NAT,
and SSA in Figure 2a). When a file is written to F2FS, the
data is written sequentially in a log-structured manner, but the
metadata located at the beginning of the disk is updated in
place.

D. MPI-IO
A parallel I/O system for distributed memory architectures

needs a mechanism that can specify collective operations with
a non-contiguous data layout in memory and files. There
is a similarity between reading or writing files to storage,
and receiving or sending messages over a network. This
implies parallel I/O can be implemented in a similar way that
parallel communication is implemented in MPI. MPI-IO has
provided parallel I/O functionality since MPI 2.0 in an effort to
improve I/O performance for distributed memory applications.
ROMIO [15] is a widely-available MPI-IO implementation
which uses an abstract-device interface for I/O (ADIO) to
support different backend file systems.

III. MOTIVATION

A. Motivating Workload
Typical HPC workloads use MPI-IO, which reads a large

input file shared among many processes, and writes to an
output file. In this paper, we created a synthetic workload that
simulated an HPC workload scenario. The synthetic workload
performed 256GB write/read on a single file to a CephFS-
mounted directory using the MPI-IO interface. The chunk size
of each write/read request was set to 4MB, the default stripe
size in CephFS. We implemented a backend interface in ADIO
for Ceph which supported both direct and synchronous I/O
options. The number of MPI-IO processes was 16, which was
the same as the number of Ceph OSDs. Since we used two
client servers, each server ran eight MPI-IO processes.
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Fig. 2: Disk layouts in F2FS and F2FS-split

B. Motivating Anaysis

We ran the synthetic workload for writes using FileStore
with the default backend file system, XFS. Additionally, we
traced the written sector numbers and their data types during
runtime using the ftrace utility [14].

Figure 3a shows the positions of written sectors over time
in one of the OSDs for the synthetic workload, when the
underlying file system is XFS. We can see that data is
separated into several regions. Even though a client writes
a single file at the CephFS level, Ceph stripes the file into a
number of objects and stores them as many files in the local
file system. XFS divides the whole disk space into a number of
allocation groups, and handles concurrent writes in different
allocation groups. This random access pattern leads to poor
performance due to frequent mechanical head movements in
the HDD. Furthermore, each write to the many small files
incurs a significant amount of journaling overhead to ensure
crash consistency at the file system level.

IV. OPTIMIZING CEPH FOR HPC WORKLOADS

In this section, we propose several approaches to optimizing
Ceph’s FileStore for HPC workloads.

A. Replacing the Backend File System with F2FS

The main reason that FileStore exhibits low performance
in HPC workloads is because large file writes to CephFS are
translated to many small file writes in the local file system. In
order to overcome this problem, we choose a log-structured
file system replacement, F2FS. Figure 3b is the HDD ftrace
result recorded after changing FileStore’s local file system to
F2FS. Since F2FS writes data in a log-structured manner, small
random writes are translated into large sequential writes to
disk. However, F2FS still suffers from an undesirable amount

of mechanical head movement because of two reasons: 1)
multi-headed logging and 2) fixed locations of metadata.

B. Tuning Multi-headed Logging

F2FS uses multi-headed logging to reduce the garbage col-
lection overhead introduced as a result of append-only updates.
In multi-headed logging, file system data and metadata are
placed into different segments depending on their hotness. The
number of logs in multi-headed logging can be configured
by setting the active_logs value at mount time. The
active_logs value can be two (only nodes and data), four
(hot/cold nodes and data), and six (hot/cold/warm nodes and
data), where six is the default value.

To avoid HDD head movement introduced by multi-headed
logging, we adjusted the number of logs from six to two.
Figure 3c displays the HDD ftrace result recorded after this
change. From Figure 3c, we can see that file system data is
written sequentially.

C. F2FS-Split

F2FS provides multi-drive functionality that enables a single
F2FS file system to span multiple devices. This feature has
been supported since f2fs-tools version 1.8.0. Our proposal
is to separate F2FS metadata and data into different devices.
We call this scheme F2FS-split. We have modified the f2fs-
tools source code that calculates the size of the metadata
region (SIT, NAT, SSA) of a given device, and divided the file
system into a metadata region and a file data region. F2FS-
Split allocates F2FS’s metadata region into a fast SSD, and the
file data region into a slow HDD. The size of the metadata
region is relatively small compared to the data region. For
example, when the size of the HDD is 8TB which will be
used as F2FS’s data region, the size of the metadata region
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Fig. 3: HDD written sector offset over time for the synthetic workload using ftrace with XFS, F2FS, and F2FS-split

is only 32GB. We placed the SSD metadata region on an
already present device containing the external Ceph journal for
FileStore, and therefore, we did not need to provide additional
disks to support our F2FS-split proposal. Figure 3d is the HDD
ftrace of an experiment where we set the local file system to
F2FS-split. We can see that the data is written sequentially
on an HDD. As the metadata region was moved to another
device, metadata writes were absent from this trace.

V. EVALUATION

In this section, we evaluate our design, F2FS-split, compar-
ing it with XFS and F2FS. The evaluation workload was the
same as the synthetic MPI-IO workload described in section
III.

A. Experimental Setup

Table I shows the organization of our experimental Ceph
testbed. In our experiments, we used one administration server

TABLE I: Experimental Ceph Testbed

MON / MGR / MDS / Clients (x2)
Model Dell R730
Processor Intel(R) Xeon(R) CPU E5-2640 v4
Memory 128GB

OSD Servers (x2)
Model Supermicro SC829H
Processor Intel(R) Xeon(R) CPU E5-2640 v4
Memory 128GB
Storage Seagate ST8000VN0022-2EL112 8TB SATA x8

Intel(R) 750 series 400 GB NVMe x2
Interconnection

Switch Mellanox SX6012 40Gbps Ethernet switch
Network 40Gbps Ethernet

that ran Ceph MON, MGR, and MDS daemons. We had two
client servers that generated I/O requests to CephFS. We used
two storage servers to run Ceph OSD daemons. Both client
and storage servers were connected to each other via a 40Gbps
Ethernet network.
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Fig. 4: Aggregated bandwidth of the sythetic workload with varying number of OSDs
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Fig. 5: HDD bandwidth variation over time during write synthetic workload (# OSD: 16)

Each storage server was equipped with eight 8TB Seagate
ST8000VN0022-2EL112 SATA HDDs, and two 400GB Intel
750 series NVMe SSDs. A HDD was used as the main storage
device for the OSD daemon, and an NVMe SSD was used for
the external Ceph journal. In our configuration, a single HDD
was dedicated to each OSD daemon so that a total of eight
OSD daemons were running on a storage server. Therefore, our
Ceph testbed consists of up to 16 OSDs. Note that four OSDs
shared a single NVMe SSD for the external Ceph journal.
The size of the external journal for each OSD was configured
to 1GB. All experiments were done on Linux kernel version
4.14.7 with the latest Ceph Luminous LTS version (v12.2.8).

B. OSD Scalability Test

Figure 4 shows the result of our experiments with XFS,
F2FS, and F2FS-split while varying the number of OSDs
from 2 to 16. We set the number of MPI-IO processes to 16.
Figure 4a shows the result of a read experiment and Figure 4b
that of a write experiment. Overall, the aggregated read/write
bandwidth increased linearly with the number of OSDs. In the
case of the write experiment, F2FS-split outperformed XFS

by over 59%, and F2FS by over 39%, on average. This is
because F2FS-split translates small random writes into log-
structured sequential writes, therefore reducing the HDD’s
head movement. Furthermore, as F2FS’s metadata region was
moved to the fast SSD, additional random writes were avoided
in the HDD. In the case of the read experiment, however,
F2FS-split was better than XFS by 64%, but showed only
78% of the performance of F2FS on average. Analyzing
the block trace, we can see that the request size of F2FS
was 256KB, while that of F2FS-split was only 128KB. This
reduced batching resulted in a performance decrease. We plan
to investigate this problem in more detail in our future work.

C. HDD Bandwidth Analysis

We tracked the bandwidth of every OSD disk during the
write experiment, with the number of OSDs set to 16. We
read sysfs device statistics (number of written sectors) for each
OSD disk every second, and all OSD disks showed similar
patterns. Figure 5 depicts the changes in the write bandwidth
of one OSD disk for XFS, F2FS, and F2FS-split, along
with the graphs for the accumulated average bandwidth. All
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three file systems suffered from high bandwidth fluctuation.
FileStore writes data to the journal area first, and then moves
them asynchronously to the file system. However, because the
speed of writing data to the file system (HDD) is much slower
than that to the external journal (SSD), FileStore frequently
performs Ceph journal throttling to match the speed between
the SSD and the HDD. This is the main reason why the write
bandwidth fluctuated during the experiment. In spite of this,
on average, F2FS-split was faster than XFS and F2FS by 53%
and 31%, respectively.

D. RADOS Object Scalability Test

We evaluated the effect of the file striping unit size in
CephFS, which determines the Ceph RADOS object size. We
set the number of OSDs to 16, and the local file system to
F2FS-split. We adjusted the MPI-IO write chunk size to be the
same as the CephFS striping unit. Figure 6 shows the result of
the experiment, varying the striping size from 1MB to 64MB.
There was no notable difference in the write case, whereas
read demonstrated higher performance when increasing the
striping unit size. With the increasing write object size, the file
system could not batch write requests exceeding its maximum
batch size. In contrast, as the read object size increased, the
Linux page cache could prefetch the next data block due to
its readahead feature.

VI. CONCLUSION

In this paper, we analyzed and optimized the performance
of the Ceph distributed file system in HPC environments.
We changed the backend file system of the Ceph FileStore
from XFS to F2FS to reduce file system journaling overhead,
as well as to increase sequential access. Additionally, we
proposed a modified version of F2FS called F2FS-split, which
moved F2FS’s metadata region into a separate, fast device. We
showed that the overall performance of Ceph was proportional
to the number of OSDs. Additionally, F2FS-split showed
39% and 59% higher performance than F2FS and XFS on

average, respectively. Finally, we observed that varying the
Ceph RADOS object size improves read performance further.

As briefly mentioned in Section V, the current F2FS-split
design shows lower read bandwidth compared to the original
F2FS. We plan to analyze this idiosyncrasy in more detail.
In addition, we are going to perform more comprehensive
experiments including a comparison with Ceph BlueStore.

ACKNOWLEDGMENT

This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea govern-
ment (MSIP) (No. NRF-2016R1A2A1A05005494 and NRF-
2016M3C4A7952587). The ICT at Seoul National University
provides research facilities for this study.

REFERENCES

[1] Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B.,
Goyal, P., ... & Zhang, X. (2016). End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316.

[2] Dahl, G. E., Yu, D., Deng, L., & Acero, A. (2012). Context-dependent
pre-trained deep neural networks for large-vocabulary speech recogni-
tion. IEEE Transactions on audio, speech, and language processing,
20(1), 30-42.

[3] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... &
Berg, A. C. (2015). Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3), 211-252.

[4] Braam, P. J., & Zahir, R. (2002). Lustre: A scalable, high performance
file system. Cluster File Systems, Inc.

[5] Schmuck, F. B., & Haskin, R. L. (2002, January). GPFS: A Shared-Disk
File System for Large Computing Clusters. In FAST (Vol. 2, No. 19).

[6] Quintero, D., Bolinches, L., Chaudhary, P., Davis, W., Duersch, S.,
Fachim, C. H., ... & Weiser, O. (2017). IBM Spectrum Scale (formerly
GPFS). IBM Redbooks.

[7] Weil, S. A., Brandt, S. A., Miller, E. L., Long, D. D., & Maltzahn,
C. (2006, November). Ceph: A scalable, high-performance distributed
file system. In Proceedings of the 7th symposium on Operating systems
design and implementation (pp. 307-320). USENIX Association.

[8] Weil, S. A., Leung, A. W., Brandt, S. A., & Maltzahn, C. (2007,
November). Rados: a scalable, reliable storage service for petabyte-scale
storage clusters. In Proceedings of the 2nd international workshop on
Petascale data storage: held in conjunction with Supercomputing’07 (pp.
35-44). ACM.

[9] Borges, G., Crosby, S., & Boland, L. (2017, October). CephFS: a
new generation storage platform for Australian high energy physics.
In Journal of Physics: Conference Series (Vol. 898, No. 6, p. 062015).
IOP Publishing.

[10] Lee, C., Sim, D., Hwang, J. Y., & Cho, S. (2015, February). F2FS: A
New File System for Flash Storage. In FAST (pp. 273-286).

[11] Rosenblum, M., & Ousterhout, J. K. (1992). The design and implemen-
tation of a log-structured file system. ACM Transactions on Computer
Systems (TOCS), 10(1), 26-52.

[12] Weil, S. A., Brandt, S. A., Miller, E. L., & Maltzahn, C. (2006,
November). CRUSH: Controlled, scalable, decentralized placement of
replicated data. In Proceedings of the 2006 ACM/IEEE conference on
Supercomputing (p. 122). ACM.

[13] Lee, D.-Y., Jeong K., Han, S.-H., Kim, J.-S., Hwang, J.-Y., and Cho,
S. (2017, May). Understanding Write Behaviors of Storage Backends in
Ceph Object Store. In Proceedings of the 33rd International Conference
on Massive Storage Systems and Technology.

[14] Rostedt, S. (2009), Debugging the kernel using ftrace.
http://lwn.net/Articles/365835/.

[15] Thakur, R., Lusk, E., & Gropp, W. (1997). Users guide for ROMIO:
A high-performance, portable MPI-IO implementation (Vol. 176). Tech-
nical Report ANL/MCS-TM-234, Mathematics and Computer Science
Division, Argonne National Laboratory.


