
A High-Performance Media Streaming Architecture
based on KVM

Woo-Yeong Jeong, Youngjae Lee, and Jin-Soo Kim
College of Information and Communication Engineering

Sungkyunkwan University

Suwon, South Korea

Email: {wooyeong, yjlee}@csl.skku.edu, jinsookim@skku.edu

Abstract—A media streaming server can be implemented on a
virtual machine for the ease of resource management. However,
simply running a media streaming server on a virtual machine has
two problems; the duplicate data in file caches of virtual machines
and the performance degradation caused by the virtualization
overhead. In order to resolve these problems, this paper proposes
a high-performance media streaming architecture based on KVM.
First, we implement a shared cache among virtual machines
in order to eliminate the duplicate cached data. Second, the
sendfile() operation is offloaded to the hypervisor to reduce
the virtualization overhead in I/O operations. Our evaluations
with D-DASH datasets show that the performance of a media
streaming server in the proposed architecture is increased by up
to 30% as compared to that of the conventional media streaming
server that simply runs on a virtual machine.

Keywords—Virtualization, Media streaming, TCP socket off-
loading, KVM

I. INTRODUCTION

Media streaming is one of the most popular services in the
Internet. A number of media streaming service providers such
as YouTube, Netflix, and Hulu have been successful over the
last decade. With the emergence of media streaming services,
the traffic of media streaming accounts for a significant portion
of the total Internet traffic and is expected to grow rapidly. In
particular, Cisco presents that the media traffic is 66% of all
consumer Internet traffic in 2013 and will be 79% in 2018 [1].

In order to achieve high quality of service (QoS) in the
media streaming service, it is essential to manage the resources
dynamically according to the real-time amount of streaming
requests. To ease the dynamic resource management, media
streaming servers are usually implemented on a cloud comput-
ing platform based on a virtualization technology, where the
servers run on VMs (virtual machines), not directly on physical
machines. Through existing virtualization techniques, comput-
ing power such as CPU cores allocated to each server can be
dynamically managed and additional VMs can be deployed
or terminated in real time. When media streaming servers
are operated directly on physical machines, it is practically
impossible to do so.

However, the approach that simply employs a virtualization
technology has the following two problems. Typically, media
contents are stored in file storage servers that are remotely
located. Due to performance issues, a media streaming server
caches media files retrieved from file storage servers in its local
file cache. When a number of servers handle the requests for

the same media contents, the same files are cached in the local
file cache of each server. If the VMs of the servers reside in the
same physical machine, actually there is the duplicate cached
data in the local disks of the physical machine. If the duplicate
is eliminated, the overall streaming performance can be much
improved as more files can be cached.

Another problem is performance degradation due to the
virtualization overhead. In a virtualized environment, the op-
erating system of a VM runs in an unprivileged mode so that it
cannot access hardware devices directly. All hardware accesses
are conducted by hypervisor running in a privileged mode.
Whenever a media streaming server reads/writes data, the hy-
pervisor performs the actual I/O operations. Such intervention
of the hypervisor causes a notable overhead.

In order to resolve these problems, this paper proposes
a high-performance media streaming architecture based on
KVM. First, we design a shared file cache among VMs by the
use of VirtFS [2]. VirtFS enables VMs to share file systems of
the host system. Also, to address the performance degradation
caused by the virtualization overhead in I/O operations, we
offload sendfile() system call to the hypervisor. During a
sendfile() system call, lots of I/O operations are generated
so that the intervention of the hypervisor occurs frequently.
In the proposed architecture, sendfile() operations are
performed by the hypervisor. As a result, the number of
hypervisor’s interventions is effectively reduced so that the
performance degradation is also diminished.

II. BACKGROUND

A. Media Streaming

The most popular standard technology for media streaming
is Dynamic Adaptive Streaming over HTTP (DASH). DASH is
a technology for an adaptive bit rate streaming, which enables
high quality of media contents over the Internet [3]. DASH
detects the network bandwidth and computing power of a client
in real time and adjusts the quality of media contents sent to
the client accordingly. In DASH, a media file is divided into
one or more segments. Each segment contains a certain interval
of playback time of the media file’s contents. For each interval,
segments are encoded at multiple bit rates. A client can access
the segment corresponding to any playback position at the
highest bit rate possible that can be smoothly downloaded.

2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing

1066-6192/15 $31.00 © 2015 IEEE

DOI 10.1109/PDP.2015.90

203

NIC

Host / Hypervisor

F

Shared
file cache

S

Virtual Machine

SF

Virtual Machine

SF

Shared
buffer cache

se
nd
fi
le

F File

SocketS

Offloaded Socket S

File in Shared file cacheF

Media Streaming Server

The transfer of
media files via sendfile

Fig. 1: Proposed media streaming architecture

B. Kernel-based Virtual Machine (KVM)

Kernel-based Virtual Machine (KVM) is a representative
virtualization solution for Linux [4]. For high I/O performance,
KVM supports paravirtualized devices, based on Virtio [5].
One of the major roles of Virtio is to provide shared memory,
called virtqueue, between the hypervisor and a VM. A device
driver in a VM transfers I/O requests to the hypervisor via its
virtqueue, and the hypervisor handles the requests and returns
their results to the driver via the same virtqueue.

VirtFS is a paravirtualized filesystem based on Virtio [2].
VirtFS enables VMs to share file systems of the host system.
A VM can mount a certain directory of the host’s file system
to its own directory so that it can access part of the host’s file
system. The file system driver of VirtFS in a VM transfers
file-level operations to the hypervisor via its virtqueue.

III. MEDIA STREAMING ARCHITECTURE BASED ON KVM

A. Overall Architecture

This paper proposes a high-performance media streaming
architecture, depicted in Fig. 1, in order to address the afore-
mentioned problems. In the proposed architecture, there is a
shared file cache in the host system, which all VMs utilize.
All media files are cached not in the file cache of each VM,
but in the shared file cache.

Also, I/O operations for media streaming are offloaded to
the hypervisor to reduce the hypervisor intervention. Given a
client’s streaming request, the media streaming server notifies
the hypervisor of the information of the requested media files.
Then, the hypervisor retrieves the media files from storage
and transfers them to the client. After finishing to send the
media files, the hypervisor notifies the server that the transfer
is completed. In the proposed architecture, the number of
hypervisor interventions is effectively reduced so that the
overall streaming performance is improved.

We implemented the prototype of the proposed architec-
ture based on KVM. In the prototype, a media streaming
server transfers the requested media files to a client via the
sendfile() system call. The following subsections describe
the detailed implementation of the prototype.

B. Shared Cache among Virtual Machines

We implemented a shared file cache among VMs by the
use of VirtFS. In the prototype, VMs share a file system of the

NICShared
file cache

KVM
Socket

Offloading
Module

TCP/IP Network
Bridge

Host Kernel

QEMU Process Media Streaming Server

Guest KernelHandler Threads
Socket

Offloading
Module

Control flow

Data flow

Socket
manipulation Virtqueue Shared Memory

Offloaded
Socket

TCP/IP

Media
File

1) restore sockets
2) send the files

ioctl()
sendfile()

ioctl()

Fig. 2: The offloading of sendfile() operations

host system via VirtFS, where media files are cached. When a
media streaming server in a VM reads a certain media content
from file storage servers, the media files are cached in the
shared file system. After that, if servers in other VMs issue read
operations on the media files, the read operations are handled
by the cached data in the shared file system. Therefore, in the
prototype, the shared file system acts practically as a shared
file cache among VMs. Also, the shared file system is accessed
through the buffer cache of the host system so that the buffer
cache practically works as a shared buffer cache.

C. The Offloading of Sendfile Operations

In the prototype, sendfile() operations in media
streaming servers are offloaded to the hypervisor of the host
system in a similar way to how Gamage et al. implement them
on Xen virtualization environment [6]. Given a client’s stream-
ing request, the server informs the hypervisor (i.e., QEMU
process in Fig. 2) of the information of the requested media file
through virtqueue and hands over a network connection with
the client to the hypervisor. Then, the hypervisor transfers the
media file to the client via the sendfile() operation and
returns the network connection to the media streaming server.
Note that we assume media files are cached in the file system
of the host system which is shared among VMs by VirtFS so
that the hypervisor can access the cached media files without
any manipulation. During the offloading of sendfile()
operations, the most complex process is the handover of the
network connection with a client. The details of the handover
process are described below.

In order to move a network connection with a client from
the media streaming server to the hypervisor, the information
of the TCP socket should be delivered to the hypervisor so that
the TCP socket can be reconstructed using the information
in the hypervisor. We implemented a kernel module, called
Socket Offloading Module, to extract the information of a TCP
socket and to reconstruct the TCP socket with the extracted
information.

After the TCP socket is reconstructed in the hypervisor, all
the packets destined to the media streaming server should be
routed to the reconstructed socket. For the packet redirection,
we utilized a network address translation (NAT) technique.
Also, when the offloading starts, the original TCP socket

204

should not receive any packets from the client. The reason
is because if the original socket sends an ACK packet, the
reconstructed socket in the hypervisor will be invalidated since
it has sequence numbers different from those of the client.
The TCP socket information is transferred also via the shared
memory of virtqueue.

We summarize the overall process of the offloading of the
sendfile() operation as follows (cf. Fig. 2): 1) A streaming
client requests a media streaming server to send a media file.
2) The media streaming server configures a firewall to prevent
its original TCP socket from receiving any packets. 3) The
server requests the socket offloading module to extract the
information of the TCP socket and to convey the extracted
information and the information of the requested media file
to the QEMU process via virtqueue. The communications
with the kernel module are conducted by predefined modes of
the ioctl() function. 4) The handler thread in the QEMU
process asks the module to reconstruct the TCP socket. 5) After
the completion of the TCP socket reconstruction, the handler
thread configures NAT for the packet redirection. At this point,
the TCP connection is successfully handed over from the server
to the hypervisor. 6) The handler thread transfers the requested
media file to the client via the sendfile() system call.
7) After the sendfile() operation finishes, the socket is
restored to the server in a similar way.

IV. EVALUATION

A. Methodology

The evaluations are conducted on a machine equipped with
an Intel Xeon Quad-Cores 2.26GHz CPU, 8GB RAM, and a
Samsung 470 SSD. We use Ubuntu 13.10 with the Linux kernel
3.12.13 and QEMU 1.7.0. In all evaluations, we assume that
media files are already cached in the file cache located in the
SSD.

We compare three architectures called BAREMETAL, VM,
and PROPOSED ARCH. BAREMETAL represents the architecture
where a media streaming server is implemented directly on
a physical machine. VM denotes the case where a media
streaming server is simply run on a VM. PROPOSED ARCH

represents our proposed architecture as depicted in Fig. 1.

B. Micro-benchmark

We implemented a micro-benchmark to evaluate the per-
formance of file transfers in each architecture. The in-house
micro-benchmark measures the bandwidth while downloading
various sizes of files from the media streaming server of each
architecture. Fig. 3 depicts the bandwidth when the file size is
varied from 4KB to 200MB.

When the file size is smaller than 64KB, the bandwidth of
the proposed architecture is lower than that of the VM architec-
ture. The reason is that the actual time for the file transfer is too
short so that the overhead of the offloading of sendfile()
operations is dominant in the overall performance. The time
overhead for offloading a sendfile() operation is about
1.9ms, which is required to hand over the network connection
with a client to the hypervisor of the host system and vice
versa. When the file size is 4KB and 64KB, the time overhead
is 71% and 48% of the total elapsed time, respectively.

 0

 20

 40

 60

 80

 100

 120

4K 8K 16
K

32
K

64
K
12

8K
25

6K
51

2K 1M 3M 5M 10
M

25
M

50
M
10

0M
20

0M

B
an

dw
id

th
 (M

B
/s

)

File Size (bytes)

Baremetal
VM

Proposed Arch.

Fig. 3: File transfer bandwidth

Dataset Smart TV Tablet Mobile Phone
Segment length 15 sec 10 sec 6 sec
Video quality 6.0 Mbps 1.2 Mbps 400 kbps
of segments 351 526 875

Average size of a seg. 10.5 MB 1.4 MB 288.6 KB
Total size of all seg. 3.6 GB 729.5 MB 246.6 MB

TABLE I: D-DASH dataset descriptions

However, when the file is larger than 64KB, the proposed
architecture outperforms the VM architecture. In particular,
when the file size is 3MB, the bandwidth is improved by 71%
as compared to that of the VM architecture. Moreover, the
bandwidth of the proposed architecture is almost the same as
the BAREMETAL architecture when the file size is larger than
or equal to 25MB. We can confirm that the virtualization over-
head is successfully overcome in the proposed architecture.

C. Macro-benchmark using D-DASH Datasets

We evaluated the media streaming performance of each
architecture with the Distributed-DASH (D-DASH) dataset [7].
D-DASH provides several dozen sets of segments for various
kind of devices such as Smart TV and Mobile phone. All
segments of each dataset belong to the same video file.
According to the DASH technology, the segments of each set
are encoded at the bit rate and resolution which are suitable
to its corresponding device.

We selected three segment datasets, Smart TV, Tablet,
and Mobile Phone described in Table I. As the Smart TV
usually has a huge screen and a stable network connection,
the segments of the Smart TV dataset have the highest bit rate
and resolution and the longest length: an average segment size
is 10.5 MB and the total size of all segment files is 3.6 GB. The
segments of the Tablet and Mobile Phone dataset have lower
quality and shorter length. We measured the total elapsed time
for a media streaming server to transfer all segments of each
dataset to a client by the DASH protocol. Each segment is sent
to the client by a single sendfile() operation.

Fig. 4 shows the evaluation results. Overall, the per-
formance of the proposed architecture outperforms the VM

architecture. Particularly, as the segment size becomes larger,

205

 0

 10

 20

 30

 40

 50

Smart T
V

Tablet

Mobile Phone

El
ap

se
d

Ti
m

e
(s

ec
)

Baremetal
VM

Proposed Arch.

Fig. 4: The elapsed time of each D-DASH dataset

the proposed architecture presents the better performance. In
case of the Smart TV dataset, the elapsed time of the proposed
architecture is decreased by 30% as compared to that of
the VM architecture. Also, the elapsed time of the proposed
architecture is longer by only 2.8% as compared to that of the
BAREMETAL architecture. In the Mobile phone dataset, the
proposed technique is not quite effective because the segment
size is too small.

Additionally, in order to show the feasibility of the off-
loading of sendfile() operations, we evaluate the proposed
architecture during the live migration of VMs. Note that, in
the prototype, if the live migration of the VM which a media
streaming server runs on is triggered while the hypervisor
conducts offloaded sendfile() operations, the migration is
performed after the sendfile() operations are completed.
While downloading the segments of the Smart TV dataset,
we triggered the live migration of the VM where a streaming
server runs and measured the bandwidth. The live migration
took about 13 seconds and the bandwidth is degraded by
28% during the live migration. This is because the network
resource is utilized for the live migration as well as the
segments transfer. However, we can confirm that the offloading
of sendfile() operations performs correctly even during
the VM live migration.

V. RELATED WORK

There are a few previous work focusing on media streaming
servers implemented in a cloud computing platform. Aggarwal
et al. utilized a cloud computing platform to operate media
streaming servers for an IPTV service [8]. They focused on
minimizing the number of servers by the server consolidation
technique. Feng et al. suggested a VM migration algorithm for
video streaming servers to maximize resource utilization [9].
These papers studied the resource management across multiple
physical machines, whereas we focus on the internal architec-
ture of a single physical machine.

There are several researches to mitigate the virtualization
overhead caused by the intervention of the hypervisor. Menon
et al. optimized the paravirtualized network I/O architecture
in Xen by scatter/gather I/O and checksum offloading [10].
In order to minimize the CPU scheduling latency, Kangarlou
et al. proposed vSnoop where the hypervisor acknowledges

TCP packets on behalf of VMs whenever it is safe to do
so [11]. While the aforementioned studies can reduce the
overhead, they cannot eliminate the overhead completely. On
the other hand, in our proposed architecture, sendfile()
operations are performed in the hypervisor. Therefore, the
overhead can be diminished almost completely. Gamage et
al. proposed a simple abstraction for Xen called vPipe to
mitigate the overhead in sendfile() operations [6]. Similar
to our proposed technique, the network connection in VMs
is handed over to the hypervisor and I/O operations for file
transfers are conducted in the hypervisor. In this paper, the
target virtualization platform is KVM. Also, we show more
extensive evaluations regarding the performance of the macro-
benchmark with D-DASH datasets and the bandwidth of file
transfers during the migration of VMs.

VI. CONCLUSION

This paper proposes a high-performance media streaming
architecture based on KVM. We suggest the shared cache
among VMs to maximize the cache efficiency and the off-
loading of sendfile() operations to the hypervisor in
order to eliminate the virtualization overhead caused by I/O
operations. In the proposed architecture, as the virtualization
overhead is effectively reduced, the overall performance of a
media streaming server is improved by up to 30%, almost
reaching the performance of the case where the media stream-
ing server runs directly on a physical machine.

ACKNOWLEDGMENT

This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea Gov-
ernment (MSIP) (No. 2013R1A2A1A01016441). This work
was also supported by the IT R&D program of MKE/KEIT
(No.10041244, SmartTV 2.0 Software Platform).

REFERENCES

[1] Cisco, “Cisco visual networking index: Forecast and
methodology, 2013-2018,” Feb. 2014. [Online]. Available:
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/
ip-ngn-ip-next-generation-network/white paper c11-481360.pdf

[2] V. Jujjuri, E. V. Hensbergen, A. Liguori, and B. Pulavarty, “VirtFS—a
virtualization aware file system passthrough,” in OLS, 2010.

[3] T. Stockhammer, “Dynamic adaptive streaming over http – standards
and design principles,” in ACM MMSys, 2011.

[4] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the
linux virtual machine monitor,” in OLS, 2007.

[5] R. Russell, “virtio: Towards a de-facto standard for virtual I/O devices,”
ACM SIGOPS Operating Systems Review, vol. 42, pp. 95–103, 2008.

[6] S. Gamage, R. Kompella, and D. Xu, “vPipe: One pipe to connect them
all!” in USENIX HotCloud, 2013.

[7] S. Lederer, C. Mueller, C. Timmerer, C. Concolato, J. Le Feuvre, and
K. Fliegel, “Distributed DASH dataset,” in ACM MMSys, 2013.

[8] V. Aggarwal, X. Chen, V. Gopalakrishnan, R. Jana, K. Ramakrishnan,
and V. A. Vaishampayan, “Exploiting virtualization for delivering
cloud-based IPTV services,” in Computer Communications Workshops
(INFOCOM WKSHPS), 2011.

[9] Y. Feng, B. Li, and B. Li, “Bargaining towards maximized resource
utilization in video streaming datacenters,” in IEEE INFOCOM, 2012.

[10] A. Menon, A. L. Cox, and W. Zwaenepoel, “Optimizing network
virtualization in Xen,” in USENIX ATC, 2006.

[11] A. Kangarlou, S. Gamage, R. R. Kompella, and D. Xu, “vSnoop:
Improving TCP throughput in virtualized environments via acknowl-
edgement offload,” in ACM/IEEE SC, 2010.

206

