
1

Atomic Page Update Methods for OpenMP-Aware Software DSM

Yang-Suk Kee
Institute of Computer Technology

Seoul National University
yskee@iris.snu.ac.kr

Jin-Soo Kim
Division of Computer Science

KAIST
jinsoo@cs.kaist.ac.kr

Woo-Chul Jeun, Soonhoi Ha
School of Computer Science and Engineering

Seoul National University
{wcjeun,sha}@iris.snu.ac.kr

Abstract

When software distributed shared memory (SDSM) is
extended to utilize threads in support of OpenMP, a
challenge is how to preserve memory consistency in a
thread-safe way, which is known as “atomic page update
problem”. In this paper, we show that this problem can
be solved by creating two independent access paths to a
physical page and by assigning different access
permissions to them. Especially, we discuss three new
methods using System V shared memory IPC, a new
mdup() system call, and a fork() system call as well as a
known method using file mapping. The main contribution
of this paper is to introduce various solutions to the
atomic page update problem and to compare their
characteristics extensively. Experiments carried out on a
Linux-based cluster of SMPs and an IBM SP Nighthawk
system show that the proposed methods achieve better
performance than the file mapping method and the
method using the process creation mechanism is the best
candidate for the IBM SP system.

1. Introduction

OpenMP [1] is becoming the de facto standard for shared-
address-space programming model. In addition to
programming easiness inherent in shared-address-space
model, OpenMP anticipates high performance in scientific
applications. Even though the general target architecture
of OpenMP is a single multiprocessor node, this model
can be applicable to a cluster of multiprocessors. An
intuitive way to extend OpenMP to cluster of
multiprocessors is to use software distributed shared

memory (SDSM), which emulates a shared address space
over distributed memories.

Many SDSM systems are implemented at user-level by
using the page fault handling mechanisms, assuming
uniprocessor nodes. This kind of SDSM system detects an
unprivileged access to a shared page by catching a
SIGSEGV signal and a user-defined signal handler
updates the invalid page with a valid one. From the
application point of view, this page-update is atomic since
program control is returned to the application only after
the signal handler completes the service on the fault.

However, these single-threaded systems are inadequate
to the thread-based parallelism of OpenMP. The
conventional fault-handling process will fail in
multithreaded environments because other threads may try
to access the same page during the update period. The
SDSM system faces a dilemma when multiple threads
compete to access an invalid page within a short interval.
On the first access to an invalid page, the system should
set the page writable to replace with a valid one.
Unfortunately, this change also allows other application
threads to access the same page freely. This phenomenon
is known as atomic page update and change right problem
[2] or mmap() race condition [3]. For short, we call this
the atomic page update problem.

A known solution to this problem adopted by major
multithreaded SDSM systems like TreadMarks [4],
Brazos [5], and Strings [6] is to map a file to two different
virtual addresses. Even though the systems using file
mapping achieve fair good performance on dedicated
systems, file mapping is not always the best solution.
Operating system and working environment severely
affect the performance of these systems. Moreover, file
mapping has high initialization cost, experiences buffer

2

caches flushing overhead, and reduces the available
address space because SDSM and application partition the
address space.

We note the cause of this problem is that SDSM and
application share the same address space. When SDSM
changes a page writable, the page is also accessible to the
application. A general solution to this problem is to
separate the application address space from the system
address space for the same physical memory, and to
assign different access permission to each address space.
Then, the system can guarantee the atomic page update by
changing the access permission of a virtual page in the
application address space only after it completes the page
update through the system address space.

In this paper, we present three new solutions using
System V shared memory IPC, a new mdup() system call,
and a fork() system call as well as a known solution using
file mapping. The main contribution of this paper is to
present various solutions to the atomic page update
problem and to compare their characteristics extensively.
However, it is observed that it is not always possible to
implement all of them in a given SMP cluster system due
to the various limitations of a given operating system.
Experiments on a Linux-based cluster and on an IBM SP2
machine show that the proposed methods overcome the
drawbacks of the file mapping method such as high
initialization cost and buffer cache flushing overhead.
Moreover, the method using a fork() system call exploits
whole the address space and is a robust method for
dynamic environments.

This paper is organized as follows. In section 2, we
discuss the atomic page update problem in detail. We
briefly introduce our OpenMP-aware SDSM system in
section 3 and present four methods to solve the problem in
section 4. We investigate four methods by using micro-
benchmarks and give experimental results with several
applications in section 5. Section 6 concludes the paper.

2. The Atomic Page Update Problem

A typical page fault handling process of conventional
page-based SDSM is illustrated in Figure 1. In general,
this kind of SDSM uses SIGIO and SIGSEGV signals to
implement memory consistency protocols. When the
application (T2) accesses the invalid page denoted by A,
the operating system generates a SIGSEGV signal and
hands over program control to SDSM by invoking a user-
defined SIGSEGV handler. Inside the handler, the system
allocates a writable page by dynamically creating an
anonymous page or by retrieving a page from the shared
memory pool prepared in the initialization step. Then, the
system requests the most up-to-date page from a remote
node and waits for the page. When the page request
arrives at the remote node, the remote operating system

generates a SIGIO signal and a user-defined SIGIO
handler serves the request. After that, the local SDSM
replaces the invalid page with the new one and sets the
page readable by using an mprotect() system call.

Read(A)

SIGSEGV

mprotect(A, PROT_READ)

Request

Page

SIGSEGV Handler
SIGIO Handler

mmap(A, PROT_WRITE)

Read(A) : garbage

T2T1 T1

Process 1 Process 2

Figure 1. A typical procedure of page fault handling in
a conventional page-based SDSM system

In a single-threaded system, this page update is atomic

with respect to the application since the program control is
returned to the application only after the system completes
in replacing the invalid page with a valid one. Atomicity,
however, is not guaranteed when multiple threads compete
to access a page. Figure 1 illustrates the situation where
T1 accesses the same page while T2 is waiting for the up-
to-date page after it has set the page writable. T1
continues its computation with garbage data without
raising any protection fault. This depicts the atomic page
update problem.

A known solution to this problem is to map a file to two
virtual addresses and to create two independent access
paths to the file: one for application and the other for
SDSM. The system can update the file through the virtual
address mapped to it while the access from an application
thread is controlled by a memory consistency protocol.
From the viewpoint of operating system, file mapping is to
attach physical pages, used as cache for a file, to the
process’s virtual address space. When a file is mapped to
two virtual addresses, each physical page is pointed by
two page table entries and different access permission can
be assigned to different virtual addresses. In consequence,
the SDSM system guarantees the atomic page update with
respect to all application threads by changing the access
permission of the virtual pages mapped for application
only after it updates the physical pages through the virtual
address mapped for system.

A scenario of thread-safe page update in data race by
separating the access paths is illustrated in Figure 2. When
an application thread tries to access the invalid page
denoted by A, SDSM updates the invalid page with the
up-to-date page through the system address denoted by S.
After the page update is completed, the system changes

3

the page A in the application address space readable and
hands over program control to the application thread again.
If another threads attempt to access the same page during
the update period, they see the page is still invalid and are
blocked inside the SIGSEGV handler. When the page
update is completed, the signal handler wakes up all the
threads waiting for the page.

Read(A)

SIGSEGV

mprotect(A, PROT_READ)

SIGSEGV Handler

Read(A)

T2T1

mprotect(S, PROT_WRITE)

Wait
SIGSEGV

Wakeup

Process 1 Process 2

T1

Request

Page

Tc

Figure 2. A scenario of the thread-safe page update in
data race

File mapping, however, is not the only way to create

multiple access paths to a physical page. We seek for
other methods to achieve the same goal without
performance degradation. In this paper, we propose three
more methods and study their characteristics.

3. The ParADE System

Communication protocols
(VIA, TCP/IP)

Communication protocols
(VIA, TCP/IP)

OpenMP applicationsOpenMP applicationsOpenMP

translator

Runtime

system

Kernel

Message passing library
(MPI)

System calls
(Page fault and protection)

OS kernel

Multithreaded DSM
(POSIX threads)

ParADE APIs

Figure 3. Architecture of the ParADE system

Our SDSM is a component of an OpenMP-based parallel
programming environment for SMP clusters called
ParADE [7]. Figure 3 depicts the architecture of the
ParADE system. Two key components of ParADE are the
ParADE runtime system and the OpenMP translator. A
multi-threaded SDSM and a message-passing library

compose the runtime system. To provide thread-safe
communication, we implemented a subset of MPI [8]
library for Virtual Interface Architecture (VIA) [9]. We
also developed our own SDSM system, which provides a
home-based lazy release consistency (HLRC) [10] with
migratory home to exploit data locality. Meanwhile, the
OpenMP translator converts an OpenMP program to a
multi-threaded program with hybrid communication
interfaces by using the ParADE runtime library, and
enables the program to be executable on the SMP cluster.
For more information about ParADE, refer to [7].

4. Four Atomic Page Update Methods

In this section, we present four methods to provide
multiple access paths to a physical page: file mapping,
System V shared memory IPC, a new mdup() system call,
and a fork() system call. All the methods except the
mdup() method are implemented at user-level.

4.1. File mapping

An mmap() system call enables a process to access a file
through memory operations by mapping the file to the
process address space. Moreover, the system call with the
MAP_SHARED flag enables a file to be mapped to a
process multiple times. Figure 4 illustrates how to make
two virtual addresses refer to the same file by mapping a
file multiple times.

Application View System View

A = mmap(0, Size,
PROT_READ|PROT_WRITE,
MAP_SHARED|MAP_FILE,
fd, 0);

mprotect(A, Size, PROT_NONE)

S = mmap(0, Size,
PROT_READ|PROT_WRITE,
MAP_SHARED|MAP_FILE,
fd, 0);

fd = open(FileName, O_RDWR|O_CREAT, S_IRWXU)
write(fd, zero, Size)

Protected Address Space Freely Accessible Address Space

File

Figure 4. Mapping a file to two virtual addresses

File mapping is very portable and the performance of

SDSM with this method is fairly good. Nevertheless, this
method has several drawbacks. First, the size of the shared
address space should be smaller than the size of the file.
When the area beyond the file size is accessed, the
operating system signals an error. To avoid this
unexpected error, the SDSM system should create a large
regular file enough to contain the shared pages or it
should dynamically enlarge the file size by explicitly
using the write() or ftruncate() operations. However, this
initialization cost is not negligible.

4

Another drawback is unnecessary disk writes at runtime.
Although FreeBSD supports the MAP_NOSYNC flag to
avoid dirty pages to be flushed to disk at runtime, many
operating systems flush buffer caches to disk regularly, or
explicitly when the munmap() system call is invoked to
eliminate the mapping. Disk write is a costly operation so
that it may damage performance significantly. In
consequence, the performance of a system based on the
file mapping method depends on the system buffer cache
(page cache) size and the buffer cache management
scheme. Experiments on IBM SP Night Hawk system with
an AIX 4.3.3 PSSP 3.2 version revealed significant
performance degradation when the machine is not wholly
dedicated to SDSM.

4.2. System V shared memory IPC

Another method to map a physical page to different virtual
addresses is to use System V shared memory IPC. An
shmget() system call enables a process to create a shared
memory object in the kernel and the shmat() system call
enables the process to attach the object to its address
space. In addition, shown in Figure 5, a process can attach
the shared memory object to its address space more than
once and a different virtual address is assigned to each
attachment.

Segment Segment Segment

Application View System View

A = shmat(ID, 0, 0) S = shmat(ID,0,0)

ID = shmget(IPC_PRIVATE, Size, IPC_CREAT|IPC_EXCL|SHM_R|SHM_W)

mprotect(A, Size, PROT_NONE)

Freely Accessible Address SpaceProtected Address Space

Figure 5. Attaching shared memory segments to two
virtual addresses

Compared to file mapping, creating shared memory

segments is very cheap. Nevertheless, this mechanism has
several restrictions. In some operating systems, the size
and the number of shared memory segments are limited.
Solaris systems determine the size and the number of
segments at boot time by checking the shmsys field of the
/etc/system file. In the case of Linux systems, the
maximum size of a segment is 32 megabytes and the
system-wide maximum number of segments is limited to
128. Some operating systems just allow less than 10
segments whose size should be smaller than tens of
kilobytes. As a result, they fail to allocate large shared
memory with this method. Moreover, observed in the IBM
SP Night Hawk system, the mprotect() system may not be
used to change the access permission of shared memory
segments allocated by System V shared memory IPC.

Another problem is that a group of segments should be
mapped to a continuous address space. When one forces
to attach a shared memory segment to a user-assigned
address, the attachment will fail if the address is not a
predefined address for segment low boundaries. Therefore,
we should allocate a segment according to the low
boundary address and attach it to a continuous address
space. The last consideration is memory leak. Shared
memory segments are not released automatically when a
program terminates. SDSM should make sure that shared
memory segments are released at termination, even at
abnormal termination.

4.3. mdup() system call

We implement a new system call, mdup(), to easily
duplicate the per-process page table. The prototype of
mdup() is as follows.

void* mdup(void* addr, int size),
where addr is the virtual address of the anonymous
memory region created by the mmap() system call with
the MAP_ANONYMOUS and MAP_SHARED flags and
size is the size of the region.

The basic mechanism of mdup() is to allocate new page
table entries for the detour and to copy the page table
entries of the anonymous memory to new ones. The
reasons why we use anonymous memory are following:
(1) no initialization step is required and (2) there is no size
limit. Even though kernel modification damages
portability of SDSM, the mdup() system call is easy to use
and overcomes many drawbacks of the previous methods.

4.4. fork() system call

The total amount of physical memory in a cluster system
increases with the size of cluster. Nevertheless, the size of
the virtual address space is fixed and puts restriction on
the problem size of applications. The previous methods
reduce the virtual address space available for applications
because the application and the system partition the
address space. Therefore, we propose another method to
support thread-safe memory management without
sacrificing the address space.

When a process forks a child process, the child process
inherits the execution image of the parent process. The
parent process creates shared memory regions and forks a
child process. Then, they have independent access paths
even though they use the same virtual address to access
the same physical page. We let the parent process execute
applications and the child process perform memory
consistency mechanisms. Hence, the SDSM system can
successfully update the shared memory region in a thread-
safe way through the child process’s address space.

5

However, this method experiences additional latency
due to communication and synchronization overheads
between the parent and the child processes. Nonetheless,
this method is very portable and it survives even under a
harsh working environment like IBM SP Night Hawk.

5. Experiments

We have implemented four methods in the ParADE
runtime system. We first measured the costs of basic
operations and compared the performance of the methods
with several applications. Our experiments were
performed on an IBM SP Night Hawk system and a Linux
cluster. The IBM SP system consists of nine 375Mhz
POWER3 SMP nodes with sixteen processors and 16GB
main memory per node. The Linux cluster consists of four
dual-Pentium III 550Mhz SMP nodes and four dual-
Pentium III 600Mhz SMP nodes. Each node has 512 MB
main memory and it is connected to a Giganet’s cLAN
VIA switch. Redhat 8.0 with a kernel of 2.4.18-14 SMP
version runs on each node. We used a GNU gcc compiler
with the -O2 option for Linux cluster and an xlc complier
with the -O2 -qarch=pwr3 -qtune=pwr3 -qmaxmem=-1 -
qstrict options for the IBM SP system.

5.1. Costs of basic operations

Table 1 shows the costs of the basic operations used by
four methods. The operations in the top group are used in
the initialization step, those in the middle are used at

runtime, and those in the bottom are used at finalization.
We take the average execution time after 100 executions
of micro-benchmark programs.

Since the top operations are used to create a shared
memory pool, the execution time for handling large
memory is important. Note that creating a 64-megabyte
file is very expensive compared to System V shared
memory and anonymous memory. The main difference
between file mapping and the others is the time of actual
memory allocation. In the case of file mapping, physical
pages are allocated at the initialization step in the form of
buffer cache or page cache. However, the other methods
delay the page allocation until a page is actually
referenced at runtime.

Since the page size of both operating systems is 4
kilobytes, the costs for the operations handling 4 kilobytes
memory are important at runtime. The cost of memcpy()
operation for the mapped file is lower than that for the
other methods. The shorter elapsed time mainly stems
from the fact that the other methods experience additional
memory allocation overhead. However, the results with
64-megabyte memory are different. For file mapping on
the IBM SP machine, the copy operation suffers from long
latency because of buffer cache flushing overhead.

To understand how these basic operations affect the
system actually at runtime, we analyze the page fetch
latency. Figure 6 shows the factors in fetching a page from
a remote node on a read fault on two dual-Pentium III 600
MHz nodes. To avoid caching effect, we allocate large
shared memory and measure the page fetch latency

Linux

Pentium III 600Mhz
IBM SP

POWER3 375Mhz
Operations 4 KB 64 MB 4 KB 64 MB

mmap()-file mapping 5.0 35.9 21.2 88.9
mmap()-anonymous memory 6.5 43.9 19.4 82.7
shmget() 7.2 54.7 10.4 57.0
shmat() 4.9 31.4 6.7 25.4
mdup() 316.6 1720.7 N/A N/A
fork() 94.0 17348.8 2998.7 5777.1
write() 43.6 849617.2 47.6 865767.7
mprotect()-file mapping 3.4 37.5 10.9 40074.4
mprotect()-anonymous memory 2.9 33.7 9.4 20.7
mprotect()-System V shared memory 4.4 34.1 N/A N/A
memcpy()-file mapping 5.0 472543.6 16.2 1371498.1
memcpy()-anonymous memory 7.8 492053.5 32.6 659901.3
memcpy()-System V shared memory 7.9 530368.3 27.1 499294.0
SIGSEGV handler 9.8 10.2
munmap()-file mapping 5.7 17117.9 19.1 108993.7
munmap()-anonymous memory 10.2 46934.5 27.1 174688.1
shmdt() 28.0 14528.1 6.0 30.2
shmctrl() 8.6 30821.6 16.8 110888.6

Table 1. Costs of basic operations (us)

6

changing the accessing points in the shared memory area.
Executing the SIGSEGV handler (Fault handler call) and
sending a page request to the home node (Request
transfer) are independent of the methods. In the case of
protocol overhead, the fork() method experiences about
twice longer latency than the others due to inter-process
communication overhead between the parent and the child
processes. The page preparation and page transfer factors
are dependent on the methods. However, as shown in
Table 1, all the methods have comparable performance of
the mprotect() and the memcpy() system calls with 4
kilobyte page. Figure 6 shows the similar result that these
two factors little influence on the total page fetch latency
regardless of the methods.

0

50

100

150

200

250

300

File mapping Shared segment mdup() Process creation

L
at

en
cy

 (
us

)

Fault handler call Protocol overhead Request transfer Page preparation Page transfer

Figure 6. Page fetch latency on two Pentium III
600Mhz nodes (us)

5.2. Application performance

We compare the performance of four methods by
measuring the execution time of the NPB CG kernel [11]
and two real applications [12,13]. We ported the Fortran
programs to the C versions. We take the average
execution time after 10 executions of the programs. Only
the results on the Linux cluster are presented because the
System V shared memory method and the mdup() system
call cannot be implemented in the SP system and the file

mapping method reveals extremely long execution time
due to the high memory copy overhead in a shared
working environment. We use the vmstat command to
monitor the system dynamics.

The characteristics of the programs and the
initialization costs of the methods are shown in Table 2
and Table 3, respectively. The CG and the Helmholtz
programs have large shared memory while the MD
program has small one. As shown in Table 1, the
initialization cost of the file mapping method with large
shared memory is very expensive. In case an application
has relatively short execution time, this high initialization
cost can be critical to overall performance. However,
applications with small shared memory are little
influenced by the initialization cost regardless of methods.

One fundamental question about the atomic page
update problem is whether it is serious in real applications.
Figure 7 shows the ratio of the number of faults in the
racing condition to the number of total read faults. It
demonstrates that the atomic page problem is common
and it is dependent on the computing pattern, not on the
amount of shared memory.

14.6

0

80.8

7.8
0

84.5

5.3
0

67.5

0

10

20

30

40

50

60

70

80

90

C
G

H
el

m
ho

lt
z

M
D

C
G

H
el

m
ho

lt
z

M
D

C
G

H
el

m
ho

lt
z

M
D

2 nodes 4 nodes 8 nodes

R
at

io
 (

%
)

Figure 7. Ratio of the number of racing faults to the
number of read faults

Figure 8 shows the execution time of the CG kernel of

A class varying the number of nodes. With respect to the

Application Input size Declared shared memory (MB)
CG A-class 64
Helmholtz 1000 x 1000 matrix 32
MD 1000 iterations 1

Table 2. Application characteristics

Application File mapping System V shared memory mdup() fork()
CG 0.891 0.002 0.002 0.001
Helmholtz 0.446 0.001 0.002 0.002
MD 0.015 0.001 0.002 0.001

Table 3. Initialization costs on a dual-Pentium III 600 MHz node (s)

7

overall execution time, file mapping shows the worst
performance though the performance difference is not
huge. To understand the performance of file mapping, we
monitor the number of block transfers. At the initialization
step, over fifteen thousand blocks are read from disk and
over one hundred thousand blocks are written to disk.
However, only about one hundred blocks are written to
disk at runtime. Therefore, the disk-write penalty affects
the system severely at the initialization step but little at
runtime. This phenomenon occurs consistently regardless
of the number of nodes. As the portion of CPU resource
assigned to communication increases with the number of
nodes, the performance with 8 nodes becomes worse than
with 4 nodes.

In the case of MD, the size of shared memory is only
about 1 megabyte and the initialization cost does not
affect the overall performance severely. The net execution
time of file mapping is a few seconds longer than the
others but it is hardly noticeable in Figure 9. Meanwhile,
Helmholtz requires 32 megabytes shared memory but the
initialization cost is amortized over the computation. One
interesting result in Figure 10 is that the process creation
method achieves the best performance. In fact, the number
of context switchings of the process creation method is
twice of the number of the others. However, other system
dynamics overwhelm the context-switching overhead.

6. Conclusions

In this paper, we presented four methods to solve the
atomic page update problem and studied their
characteristics extensively. Table 4 summarizes their
characteristics with respect to performance, portability,
and properties. Experiments on a Linux based cluster and
on an IBM SP2 machine showed that the three proposed
methods overcome the drawbacks of the file mapping
method such as high initialization cost and buffer cache
flushing overhead. In particular, the method using a fork()
system call is portable and preserves the whole address
space to the application even though the others can use
only the half of the virtual address space. The System V
shared memory method shows low initialization cost and
runtime overhead, and the new mdup() system call method
has the least coding overhead in the application code. Not
all the methods can be implemented on a given SMP
cluster system due to the limitations of the operating
system as observed in the IBM SP System. The methods
proposed for thread-safe memory management will allow
us to port the ParADE environment to various systems.

7. Acknowledgements

This work was supported by National Research
Laboratory Program (No. M1-0104-00-0015) and Brain

Korea 21 Project. The ICT at Seoul National University
provides research facilities for this study.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

m
m

ap

sh
m

at

m
du

p

fo
rk

m
m

ap

sh
m

at

m
du

p

fo
rk

m
m

ap

sh
m

at

m
du

p

fo
rk

m
m

ap

sh
m

at

m
du

p

fo
rk

1 node 2 nodes 4 nodes 8 nodes

E
xe

cu
tio

n
T

im
e

(s
)

Body
Initialization

Figure 8. Execution time of CG of A class using two
processors

0

50

100

150

200

250

300
m

m
ap

sh
m

at

m
du

p

fo
rk

m
m

ap

sh
m

at

m
du

p

fo
rk

m
m

ap

sh
m

at

m
du

p

fo
rk

m
m

ap

sh
m

at

m
du

p

fo
rk

1 node 2 nodes 4 nodes 8 nodes

E
xe

cu
ti

on
 T

im
e

(s
)

Body
Initialization

Figure 9. Execution time of MD using two processors

0

20

40

60

80

100

120

140

160

m
m

ap

sh
m

at

m
du

p

fo
rk

m
m

ap

sh
m

at

m
du

p

fo
rk

m
m

ap

sh
m

at

m
du

p

fo
rk

m
m

ap

sh
m

at

m
du

p

fo
rk

1 node 2 nodes 4 nodes 8 nodes

E
xe

cu
ti

on
 T

im
e

(s
)

Body
Initialization

Figure 10. Execution time of Helmholtz using two
processors

8. References

[1] OpenMP C and C++ Application Programming
Interface, Version 1.0, http://www.openmp.org, Oct. 1998.

8

[2] F. Mueller. ”Distributed Shared-Memory Threads:
DSM-Threads”. Workshop on RunTime systems for
Parallel Programming, pp. 31–40, Apr. 1997.
[3] M. Pizka and C. Rehn, ”Murks-A POSIX Threads
Based DSM System”, In the proceedings of the
international conference on Parallel and Distributed
Computing Systems, 2001.
[4] Y. Charlie Hu, Honghui Lu, Alan L. Cox, and Willy
Zwaenepoel, ”OpenMP for Networks of SMPs,” Journal
of Parallel and Distributed Computing, vol. 60, no.12,
Dec. 2000, pp. 1512-1530.
[5] Evan Speight and John K. Bennett, ”Brazos: A Third
Generation DSM System”, USENIXWindows NT
Workshop, Aug. 1997, pp. 95-106.
[6] Sumit Roy and Vipin Chaudhary, ”Strings: A High-
Performance Distributed Shared Memory for Symmetric
Multiprocessor Clusters”, International Symposium on
High Performance Distributed Computing, July 1998, pp.
90-97.
[7] Yang-Suk Kee, Jin-Soo Kim, Soonhoi Ha,
� ParADE: An OpenMP Programming Environment for
SMP Cluster Systems”, Proceedings of ACM/IEEE
Supercomputing (SC'03), Nov. 2003
[8] Message-passing Interface Forum, "MPI: A message-
passing interface standard," International Journal of
Supercomputer Applications and High Performance
Computing, 8(3/4), pp. 159-416, 1994.
[9] Dave Dunning, Greg Regnier, Gary McAlpine, Don
Cameron, Bill Shubert, Frank Berry, Anne Marie Merritt,
Ed Gronke, Chris Dodd, ”The Virtual Interface
Architecture,” IEEE Micro, vol. 18, no. 2, Mar./Apr. 1998,
pp. 66-76.
[10] L. Iftode. ”Home-based Shared Virtual Memory”.
(PhD thesis), 1998.
[11] David Bailey, Tim Harris, William Saphir, Rob van
der Wijngaart, Alex Woo, and Maurice Yarrow, ”The
NAS Parallel Benchmarks”, Report NAS-95-020, 1995,
http://www.nas.nasa.gov/Software/NPB.
[12] Joseph Robicheaux,
http://www.openmp.org/samples/jacobi.f, 1998.
[13] Bill Magro, Kuck, and Associates,
http://www.openmp.org/samples/md.f, 1998.

