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Abstract 
 
When software distributed shared memory (SDSM) is 
extended to utilize threads in support of OpenMP, a 
challenge is how to preserve memory consistency in a 
thread-safe way, which is known as “atomic page update 
problem”. In this paper, we show that this problem can 
be solved by creating two independent access paths to a 
physical page and by assigning different access 
permissions to them. Especially, we discuss three new 
methods using System V shared memory IPC, a new 
mdup() system call, and a fork() system call as well as a  
known method using file mapping. The main contribution 
of this paper is to introduce various solutions to the 
atomic page update problem and to compare their 
characteristics extensively. Experiments carried out on a 
Linux-based cluster of SMPs and an IBM SP Nighthawk 
system show that the proposed methods achieve better 
performance than the file mapping method and the 
method using the process creation mechanism is the best 
candidate for the IBM SP system. 
 

1. Introduction 
 
OpenMP [1] is becoming the de facto standard for shared-
address-space programming model. In addition to 
programming easiness inherent in shared-address-space 
model, OpenMP anticipates high performance in scientific 
applications. Even though the general target architecture 
of OpenMP is a single multiprocessor node, this model 
can be applicable to a cluster of multiprocessors. An 
intuitive way to extend OpenMP to cluster of 
multiprocessors is to use software distributed shared 

memory (SDSM), which emulates a shared address space 
over distributed memories. 

Many SDSM systems are implemented at user-level by 
using the page fault handling mechanisms, assuming 
uniprocessor nodes. This kind of SDSM system detects an 
unprivileged access to a shared page by catching a 
SIGSEGV signal and a user-defined signal handler 
updates the invalid page with a valid one. From the 
application point of view, this page-update is atomic since 
program control is returned to the application only after 
the signal handler completes the service on the fault. 

However, these single-threaded systems are inadequate 
to the thread-based parallelism of OpenMP. The 
conventional fault-handling process will fail in 
multithreaded environments because other threads may try 
to access the same page during the update period. The 
SDSM system faces a dilemma when multiple threads 
compete to access an invalid page within a short interval. 
On the first access to an invalid page, the system should 
set the page writable to replace with a valid one. 
Unfortunately, this change also allows other application 
threads to access the same page freely. This phenomenon 
is known as atomic page update and change right problem 
[2] or mmap() race condition [3]. For short, we call this 
the atomic page update problem. 

A known solution to this problem adopted by major 
multithreaded SDSM systems like TreadMarks [4], 
Brazos [5], and Strings [6] is to map a file to two different 
virtual addresses. Even though the systems using file 
mapping achieve fair good performance on dedicated 
systems, file mapping is not always the best solution. 
Operating system and working environment severely 
affect the performance of these systems. Moreover, file 
mapping has high initialization cost, experiences buffer 



2 

caches flushing overhead, and reduces the available 
address space because SDSM and application partition the 
address space. 

We note the cause of this problem is that SDSM and 
application share the same address space. When SDSM 
changes a page writable, the page is also accessible to the 
application. A general solution to this problem is to 
separate the application address space from the system 
address space for the same physical memory, and to 
assign different access permission to each address space. 
Then, the system can guarantee the atomic page update by 
changing the access permission of a virtual page in the 
application address space only after it completes the page 
update through the system address space. 

In this paper, we present three new solutions using 
System V shared memory IPC, a new mdup() system call, 
and a fork() system call as well as a known solution using 
file mapping. The main contribution of this paper is to 
present various solutions to the atomic page update 
problem and to compare their characteristics extensively. 
However, it is observed that it is not always possible to 
implement all of them in a given SMP cluster system due 
to the various limitations of a given operating system. 
Experiments on a Linux-based cluster and on an IBM SP2 
machine show that the proposed methods overcome the 
drawbacks of the file mapping method such as high 
initialization cost and buffer cache flushing overhead. 
Moreover, the method using a fork() system call exploits 
whole the address space and is a robust method for 
dynamic environments. 

This paper is organized as follows. In section 2, we 
discuss the atomic page update problem in detail. We 
briefly introduce our OpenMP-aware SDSM system in 
section 3 and present four methods to solve the problem in 
section 4. We investigate four methods by using micro-
benchmarks and give experimental results with several 
applications in section 5. Section 6 concludes the paper. 
 
2. The Atomic Page Update Problem 
 
A typical page fault handling process of conventional 
page-based SDSM is illustrated in Figure 1. In general, 
this kind of SDSM uses SIGIO and SIGSEGV signals to 
implement memory consistency protocols. When the 
application (T2) accesses the invalid page denoted by A, 
the operating system generates a SIGSEGV signal and 
hands over program control to SDSM by invoking a user-
defined SIGSEGV handler. Inside the handler, the system 
allocates a writable page by dynamically creating an 
anonymous page or by retrieving a page from the shared 
memory pool prepared in the initialization step. Then, the 
system requests the most up-to-date page from a remote 
node and waits for the page. When the page request 
arrives at the remote node, the remote operating system 

generates a SIGIO signal and a user-defined SIGIO 
handler serves the request. After that, the local SDSM 
replaces the invalid page with the new one and sets the 
page readable by using an mprotect() system call. 
 

Read(A)

SIGSEGV

mprotect(A, PROT_READ)

Request

Page

SIGSEGV Handler
SIGIO Handler

mmap(A, PROT_WRITE)

Read(A) : garbage

T2T1 T1

Process 1 Process 2  

Figure 1. A typical procedure of page fault handling in 
a conventional page-based SDSM system 

 
In a single-threaded system, this page update is atomic 

with respect to the application since the program control is 
returned to the application only after the system completes 
in replacing the invalid page with a valid one. Atomicity, 
however, is not guaranteed when multiple threads compete 
to access a page. Figure 1 illustrates the situation where 
T1 accesses the same page while T2 is waiting for the up-
to-date page after it has set the page writable. T1 
continues its computation with garbage data without 
raising any protection fault. This depicts the atomic page 
update problem. 

A known solution to this problem is to map a file to two 
virtual addresses and to create two independent access 
paths to the file: one for application and the other for 
SDSM. The system can update the file through the virtual 
address mapped to it while the access from an application 
thread is controlled by a memory consistency protocol. 
From the viewpoint of operating system, file mapping is to 
attach physical pages, used as cache for a file, to the 
process’s virtual address space. When a file is mapped to 
two virtual addresses, each physical page is pointed by 
two page table entries and different access permission can 
be assigned to different virtual addresses. In consequence, 
the SDSM system guarantees the atomic page update with 
respect to all application threads by changing the access 
permission of the virtual pages mapped for application 
only after it updates the physical pages through the virtual 
address mapped for system. 

A scenario of thread-safe page update in data race by 
separating the access paths is illustrated in Figure 2. When 
an application thread tries to access the invalid page 
denoted by A, SDSM updates the invalid page with the 
up-to-date page through the system address denoted by S. 
After the page update is completed, the system changes 
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the page A in the application address space readable and 
hands over program control to the application thread again. 
If another threads attempt to access the same page during 
the update period, they see the page is still invalid and are 
blocked inside the SIGSEGV handler. When the page 
update is completed, the signal handler wakes up all the 
threads waiting for the page. 

 

Read(A)

SIGSEGV

mprotect(A, PROT_READ)

SIGSEGV Handler

Read(A)

T2T1

mprotect(S, PROT_WRITE)

Wait
SIGSEGV

Wakeup

Process 1 Process 2

T1

Request

Page

Tc

 

Figure 2. A scenario of the thread-safe page update in 
data race 

 
File mapping, however, is not the only way to create 

multiple access paths to a physical page. We seek for 
other methods to achieve the same goal without 
performance degradation. In this paper, we propose three 
more methods and study their characteristics. 
 
3. The ParADE System 
 

Communication protocols
(VIA, TCP/IP)

Communication protocols
(VIA, TCP/IP)

OpenMP applicationsOpenMP applicationsOpenMP

translator

Runtime

system

Kernel

Message passing library
(MPI)

System calls
(Page fault and protection)

OS kernel

Multithreaded DSM
(POSIX threads)

ParADE APIs

 

Figure 3. Architecture of the ParADE system 

 
Our SDSM is a component of an OpenMP-based parallel 
programming environment for SMP clusters called 
ParADE [7]. Figure 3 depicts the architecture of the 
ParADE system. Two key components of ParADE are the 
ParADE runtime system and the OpenMP translator. A 
multi-threaded SDSM and a message-passing library 

compose the runtime system. To provide thread-safe 
communication, we implemented a subset of MPI [8] 
library for Virtual Interface Architecture (VIA) [9]. We 
also developed our own SDSM system, which provides a 
home-based lazy release consistency (HLRC) [10] with 
migratory home to exploit data locality. Meanwhile, the 
OpenMP translator converts an OpenMP program to a 
multi-threaded program with hybrid communication 
interfaces by using the ParADE runtime library, and 
enables the program to be executable on the SMP cluster. 
For more information about ParADE, refer to [7]. 
 
4. Four Atomic Page Update Methods 
 
In this section, we present four methods to provide 
multiple access paths to a physical page: file mapping, 
System V shared memory IPC, a new mdup() system call, 
and a fork() system call. All the methods except the 
mdup() method are implemented at user-level. 
 
4.1. File mapping 
 
An mmap() system call enables a process to access a file 
through memory operations by mapping the file to the 
process address space. Moreover, the system call with the 
MAP_SHARED flag enables a file to be mapped to a 
process multiple times. Figure 4 illustrates how to make 
two virtual addresses refer to the same file by mapping a 
file multiple times. 
 

Application View System View

A = mmap(0, Size, 
PROT_READ|PROT_WRITE, 
MAP_SHARED|MAP_FILE,
fd, 0);

mprotect(A, Size, PROT_NONE)

S = mmap(0, Size, 
PROT_READ|PROT_WRITE, 
MAP_SHARED|MAP_FILE,
fd, 0);

fd = open(FileName, O_RDWR|O_CREAT, S_IRWXU)
write(fd, zero, Size)

Protected Address Space Freely Accessible Address Space

File

 

Figure 4. Mapping a file to two virtual addresses 

 
File mapping is very portable and the performance of 

SDSM with this method is fairly good. Nevertheless, this 
method has several drawbacks. First, the size of the shared 
address space should be smaller than the size of the file. 
When the area beyond the file size is accessed, the 
operating system signals an error. To avoid this 
unexpected error, the SDSM system should create a large 
regular file enough to contain the shared pages or it 
should dynamically enlarge the file size by explicitly 
using the write() or ftruncate() operations. However, this 
initialization cost is not negligible. 
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Another drawback is unnecessary disk writes at runtime. 
Although FreeBSD supports the MAP_NOSYNC flag to 
avoid dirty pages to be flushed to disk at runtime, many 
operating systems flush buffer caches to disk regularly, or 
explicitly when the munmap() system call is invoked to 
eliminate the mapping. Disk write is a costly operation so 
that it may damage performance significantly. In 
consequence, the performance of a system based on the 
file mapping method depends on the system buffer cache 
(page cache) size and the buffer cache management 
scheme. Experiments on IBM SP Night Hawk system with 
an AIX 4.3.3 PSSP 3.2 version revealed significant 
performance degradation when the machine is not wholly 
dedicated to SDSM. 

 
4.2. System V shared memory IPC 
 
Another method to map a physical page to different virtual 
addresses is to use System V shared memory IPC. An 
shmget() system call enables a process to create a shared 
memory object in the kernel and the shmat() system call 
enables the process to attach the object to its address 
space. In addition, shown in Figure 5, a process can attach 
the shared memory object to its address space more than 
once and a different virtual address is assigned to each 
attachment. 
 

Segment Segment Segment

Application View System View

A = shmat(ID, 0, 0) S = shmat(ID,0,0)

ID = shmget(IPC_PRIVATE, Size, IPC_CREAT|IPC_EXCL|SHM_R|SHM_W)

mprotect(A, Size, PROT_NONE)

Freely Accessible Address SpaceProtected Address Space

 

Figure 5. Attaching shared memory segments to two 
virtual addresses 

 
Compared to file mapping, creating shared memory 

segments is very cheap. Nevertheless, this mechanism has 
several restrictions. In some operating systems, the size 
and the number of shared memory segments are limited. 
Solaris systems determine the size and the number of 
segments at boot time by checking the shmsys field of the 
/etc/system file. In the case of Linux systems, the 
maximum size of a segment is 32 megabytes and the 
system-wide maximum number of segments is limited to 
128. Some operating systems just allow less than 10 
segments whose size should be smaller than tens of 
kilobytes. As a result, they fail to allocate large shared 
memory with this method. Moreover, observed in the IBM 
SP Night Hawk system, the mprotect() system may not be 
used to change the access permission of shared memory 
segments allocated by System V shared memory IPC. 

Another problem is that a group of segments should be 
mapped to a continuous address space. When one forces 
to attach a shared memory segment to a user-assigned 
address, the attachment will fail if the address is not a 
predefined address for segment low boundaries. Therefore, 
we should allocate a segment according to the low 
boundary address and attach it to a continuous address 
space. The last consideration is memory leak. Shared 
memory segments are not released automatically when a 
program terminates. SDSM should make sure that shared 
memory segments are released at termination, even at 
abnormal termination. 

 
4.3. mdup() system call 
 
We implement a new system call, mdup(), to easily 
duplicate the per-process page table. The prototype of 
mdup() is as follows. 

void* mdup(void* addr, int size), 
where addr is the virtual address of the anonymous 
memory region created by the mmap() system call with 
the MAP_ANONYMOUS and MAP_SHARED  flags and 
size is the size of the region. 

The basic mechanism of mdup() is to allocate new page 
table entries for the detour and to copy the page table 
entries of the anonymous memory to new ones. The 
reasons why we use anonymous memory are following: 
(1) no initialization step is required and (2) there is no size 
limit. Even though kernel modification damages 
portability of SDSM, the mdup() system call is easy to use 
and overcomes many drawbacks of the previous methods. 

 
4.4. fork() system call 
 
The total amount of physical memory in a cluster system 
increases with the size of cluster. Nevertheless, the size of 
the virtual address space is fixed and puts restriction on 
the problem size of applications. The previous methods 
reduce the virtual address space available for applications 
because the application and the system partition the 
address space. Therefore, we propose another method to 
support thread-safe memory management without 
sacrificing the address space. 

When a process forks a child process, the child process 
inherits the execution image of the parent process. The 
parent process creates shared memory regions and forks a 
child process. Then, they have independent access paths 
even though they use the same virtual address to access 
the same physical page. We let the parent process execute 
applications and the child process perform memory 
consistency mechanisms. Hence, the SDSM system can 
successfully update the shared memory region in a thread-
safe way through the child process’s address space. 
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However, this method experiences additional latency 
due to communication and synchronization overheads 
between the parent and the child processes. Nonetheless, 
this method is very portable and it survives even under a 
harsh working environment like IBM SP Night Hawk. 

 
5. Experiments 
 
We have implemented four methods in the ParADE 
runtime system. We first measured the costs of basic 
operations and compared the performance of the methods 
with several applications. Our experiments were 
performed on an IBM SP Night Hawk system and a Linux 
cluster. The IBM SP system consists of nine 375Mhz 
POWER3 SMP nodes with sixteen processors and 16GB 
main memory per node. The Linux cluster consists of four 
dual-Pentium III 550Mhz SMP nodes and four dual-
Pentium III 600Mhz SMP nodes. Each node has 512 MB 
main memory and it is connected to a Giganet’s cLAN 
VIA switch. Redhat 8.0 with a kernel of 2.4.18-14 SMP 
version runs on each node. We used a GNU gcc compiler 
with the -O2 option for Linux cluster and an xlc complier 
with the -O2 -qarch=pwr3 -qtune=pwr3 -qmaxmem=-1 -
qstrict options for the IBM SP system. 
 
5.1. Costs of basic operations 
 
Table 1 shows the costs of the basic operations used by 
four methods. The operations in the top group are used in 
the initialization step, those in the middle are used at 

runtime, and those in the bottom are used at finalization. 
We take the average execution time after 100 executions 
of micro-benchmark programs. 

Since the top operations are used to create a shared 
memory pool, the execution time for handling large 
memory is important. Note that creating a 64-megabyte 
file is very expensive compared to System V shared 
memory and anonymous memory. The main difference 
between file mapping and the others is the time of actual 
memory allocation. In the case of file mapping, physical 
pages are allocated at the initialization step in the form of 
buffer cache or page cache. However, the other methods 
delay the page allocation until a page is actually 
referenced at runtime. 

Since the page size of both operating systems is 4 
kilobytes, the costs for the operations handling 4 kilobytes 
memory are important at runtime. The cost of memcpy() 
operation for the mapped file is lower than that for the 
other methods. The shorter elapsed time mainly stems 
from the fact that the other methods experience additional 
memory allocation overhead.  However, the results with 
64-megabyte memory are different. For file mapping on 
the IBM SP machine, the copy operation suffers from long 
latency because of buffer cache flushing overhead. 

To understand how these basic operations affect the 
system actually at runtime, we analyze the page fetch 
latency. Figure 6 shows the factors in fetching a page from 
a remote node on a read fault on two dual-Pentium III 600 
MHz nodes. To avoid caching effect, we allocate large 
shared memory and measure the page fetch latency 

 
Linux 

Pentium III 600Mhz 
IBM SP 

POWER3 375Mhz 
Operations 4 KB 64 MB 4 KB 64 MB 

mmap()-file mapping 5.0 35.9 21.2 88.9 
mmap()-anonymous memory 6.5 43.9 19.4 82.7 
shmget() 7.2 54.7 10.4 57.0 
shmat() 4.9 31.4 6.7 25.4 
mdup() 316.6 1720.7 N/A N/A 
fork() 94.0 17348.8 2998.7 5777.1 
write() 43.6 849617.2 47.6 865767.7 
mprotect()-file mapping 3.4 37.5 10.9 40074.4 
mprotect()-anonymous memory 2.9 33.7 9.4 20.7 
mprotect()-System V shared memory 4.4 34.1 N/A N/A 
memcpy()-file mapping 5.0 472543.6 16.2 1371498.1 
memcpy()-anonymous memory 7.8 492053.5 32.6 659901.3 
memcpy()-System V shared memory 7.9 530368.3 27.1 499294.0 
SIGSEGV handler 9.8 10.2 
munmap()-file mapping 5.7 17117.9 19.1 108993.7 
munmap()-anonymous memory 10.2 46934.5 27.1 174688.1 
shmdt() 28.0 14528.1 6.0 30.2 
shmctrl() 8.6 30821.6 16.8 110888.6 

Table 1. Costs of basic operations (us) 
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changing the accessing points in the shared memory area. 
Executing the SIGSEGV handler (Fault handler call) and 
sending a page request to the home node (Request 
transfer) are independent of the methods. In the case of 
protocol overhead, the fork() method experiences about 
twice longer latency than the others due to inter-process 
communication overhead between the parent and the child 
processes. The page preparation and page transfer factors 
are dependent on the methods. However, as shown in 
Table 1, all the methods have comparable performance of 
the mprotect() and the memcpy() system calls with 4 
kilobyte page. Figure 6 shows the similar result that these 
two factors little influence on the total page fetch latency 
regardless of the methods. 
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Figure 6. Page fetch latency on two Pentium III 
600Mhz nodes (us) 

 
5.2. Application performance 
 
We compare the performance of four methods by 
measuring the execution time of the NPB CG kernel [11] 
and two real applications [12,13]. We ported the Fortran 
programs to the C versions. We take the average 
execution time after 10 executions of the programs. Only 
the results on the Linux cluster are presented because the 
System V shared memory method and the mdup() system 
call cannot be implemented in the SP system and the file 

mapping method reveals extremely long execution time 
due to the high memory copy overhead in a shared 
working environment. We use the vmstat command to 
monitor the system dynamics. 

The characteristics of the programs and the 
initialization costs of the methods are shown in Table 2 
and Table 3, respectively. The CG and the Helmholtz 
programs have large shared memory while the MD 
program has small one. As shown in Table 1, the 
initialization cost of the file mapping method with large 
shared memory is very expensive. In case an application 
has relatively short execution time, this high initialization 
cost can be critical to overall performance. However, 
applications with small shared memory are little 
influenced by the initialization cost regardless of methods. 

One fundamental question about the atomic page 
update problem is whether it is serious in real applications. 
Figure 7 shows the ratio of the number of faults in the 
racing condition to the number of total read faults. It 
demonstrates that the atomic page problem is common 
and it is dependent on the computing pattern, not on the 
amount of shared memory. 
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Figure 7. Ratio of the number of racing faults to the 
number of read faults 

 
Figure 8 shows the execution time of the CG kernel of 

A class varying the number of nodes. With respect to the 

Application Input size Declared shared memory (MB) 
CG A-class 64 
Helmholtz 1000 x 1000 matrix 32 
MD 1000 iterations 1 

Table 2. Application characteristics 

 
Application File mapping System V shared memory mdup() fork() 
CG 0.891 0.002 0.002 0.001 
Helmholtz 0.446 0.001 0.002 0.002 
MD 0.015 0.001 0.002 0.001 

Table 3. Initialization costs on a dual-Pentium III 600 MHz node (s) 



7 

overall execution time, file mapping shows the worst 
performance though the performance difference is not 
huge. To understand the performance of file mapping, we 
monitor the number of block transfers. At the initialization 
step, over fifteen thousand blocks are read from disk and 
over one hundred thousand blocks are written to disk. 
However, only about one hundred blocks are written to 
disk at runtime. Therefore, the disk-write penalty affects 
the system severely at the initialization step but little at 
runtime. This phenomenon occurs consistently regardless 
of the number of nodes. As the portion of CPU resource 
assigned to communication increases with the number of 
nodes, the performance with 8 nodes becomes worse than 
with 4 nodes.  

In the case of MD, the size of shared memory is only 
about 1 megabyte and the initialization cost does not 
affect the overall performance severely. The net execution 
time of file mapping is a few seconds longer than the 
others but it is hardly noticeable in Figure 9. Meanwhile, 
Helmholtz requires 32 megabytes shared memory but the 
initialization cost is amortized over the computation. One 
interesting result in Figure 10 is that the process creation 
method achieves the best performance. In fact, the number 
of context switchings of the process creation method is 
twice of the number of the others. However, other system 
dynamics overwhelm the context-switching overhead. 

 
6. Conclusions 
 
In this paper, we presented four methods to solve the 
atomic page update problem and studied their 
characteristics extensively. Table 4 summarizes their 
characteristics with respect to performance, portability, 
and properties. Experiments on a Linux based cluster and 
on an IBM SP2 machine showed that the three proposed 
methods overcome the drawbacks of the file mapping 
method such as high initialization cost and buffer cache 
flushing overhead. In particular, the method using a fork() 
system call is portable and preserves the whole address 
space to the application even though the others can use 
only the half of the virtual address space. The System V 
shared memory method shows low initialization cost and 
runtime overhead, and the new mdup() system call method 
has the least coding overhead in the application code. Not 
all the methods can be implemented on a given SMP 
cluster system due to the limitations of the operating 
system as observed in the IBM SP System. The methods 
proposed for thread-safe memory management will allow 
us to port the ParADE environment to various systems. 
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Figure 8. Execution time of CG of A class using two 
processors 
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Figure 9. Execution time of MD using two processors 
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Figure 10. Execution time of Helmholtz using two 
processors 
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