Available online at www.sciencedirect.com

ScienceDirect PARALLEL

COMPUTING

oo ¥ 25
ELSEVIER Parallel Computing 33 (2007) 328-338

www.elsevier.com/locate/parco

DynaGrid: A dynamic service deployment and resource
migration framework for WSRF-compliant applications

Eun-Kyu Byun *, Jin-Soo Kim

Division of Computer Science, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Guseong-dong,
Yuseong-gu, Daejeon 305-701, South Korea

Available online 20 February 2007

Abstract

Large-scale Grid is a computing environment composed of Internet-wide distributed resources shared by a number of
applications. Although WSRF and Java-based hosting environment can successfully deal with the heterogeneity of
resources and the diversity of applications, the current Grid systems have several limitations to support the dynamic nature
of large-scale Grid.

This paper proposes DynaGrid, a new framework for building large-scale Grid for WSRF-compliant applications.
Compared to the existing Grid systems, DynaGrid provides three new mechanisms: dynamic service deployment, resource
migration, and transparent request dispatching. Two core components, ServiceDoor and dynamic service launcher (DSL),
have been implemented as WSRF-compliant Web services to realize DynaGrid, which are applicable to any Java-based
WSRF hosting environment. We construct a real testbed with DynaGrid on the Globus Toolkit 4 and evaluate the effec-
tiveness of our framework using two practical applications. The evaluation results show that dynamic service deployment
and resource migration in DynaGrid bring many advantages to large-scale Grid in terms of performance and reliability
with minimal overhead.
© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Grid computing is the technology for building Internet-wide computing environment integrating distrib-
uted and heterogeneous resources [1]. The ultimate goal of Grid computing is to create a virtual organization
(VO) for secure and coordinated resource sharing among Grid participants and to provide standard mecha-
nisms for users to exploit Grid resources in the VO. Open Grid services architecture (OGSA) [2]is a standard
Grid architecture which assures interoperability on heterogeneous Grid resources by exploiting Web services
protocols. Recently, Web services resource framework (WSRF) [3], a new Web services standard, has been
introduced to realize OGSA by the joint efforts of Grid and Web services communities.

* Corresponding author. Tel.: +82 42 869 3569.
E-mail address: ekbyun@camars.kaist.ac.kr (E.-K. Byun).

0167-8191/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.parco.2007.02.005

mailto:ekbyun@camars.kaist.ac.kr

E.-K. Byun, J.-S. Kim | Parallel Computing 33 (2007) 328-338 329

WSREF is a group of specifications which define a generic and open framework for modeling and accessing
stateful resources using Web services. A stateful resource is a set of data values that persist across, and evolve
as a result of, Web service interactions. Note that the term resource used in WSRF should not be confused
with the resource in Grid computing, a general term to denote a computational or storage resource. In the
rest of this paper, we use the term “ServiceResource” to explicitly indicate the stateful resource defined in
WSREF specifications. A WS-Resource is the composition of a ServiceResource and a Web service through
which the ServiceResource can be accessed. Each WS-Resource is identified by an endpoint reference contain-
ing the URI of the service and the key of the stateful ServiceResource.

Globus toolkit version 4 (GT4) [4] is a representative WSRF-compliant Grid middleware. GT4 provides a
GT4 container which is a Java-based hosting environment for WSRF-compliant Web services and ServiceRe-
sources. The GT4 container is executed on each host, and distributed GT4 containers eventually form a VO. A
typical step to run an application on a specific host is to implement the application as a WSRF-compliant ser-
vice and deploy it into the container of the host.

The focus of this paper is to construct an efficient and reliable large-scale Grid, where a number of appli-
cations share Internet-wide distributed resources. Especially, we pay attention to the following characteristics
of large-scale Grid. First, large-scale Grid is composed of a large number of heterogenous resources on which
diverse applications are executed. Second, the amount of resources demanded by an application may change
over time. Third, each resource may join or leave the Grid freely, hence the availability of the resources may
also vary dynamically.

Although GT4 has been successful in dealing with the heterogeneity of resources and the diversity of appli-
cations by the use of platform-independent Web services protocols and Java-based hosting environment, GT4
has several limitations to support the latter two characteristics. The dynamic nature of large-scale Grid
requires that new resources can be allocated adaptively to the application which demands more computing
power. It should be also possible to migrate the ServiceResource, the state of a running service, to another
stable resource when the current resource leaves the system or experiences unstability, overload, or failure.
In the current implementation of GT4, however, each container exports only the services that are manually
deployed by a local administrator. To deploy a new service, the existing container should be stopped which
leads a situation that all the services in the container become unavailable and the stateful ServiceResources
are lost. GT4 also lacks a facility that can migrate the ServiceResource to another resource to cope with
the varying conditions of a resource.

In this paper, we propose DynaGrid, a new framework for constructing an efficient and reliable large-scale
Grid for WSRF-compliant applications. DynaGrid aims at extending GT4 to provide the following three
functionalities required for large-scale Grid.

e Dynamic service deployment:
In our framework, services can be dynamically deployed on any resource without the restart of the running
container. This allows to maintain a certain level of quality-of-service even if the resource demand of an
application fluctuates.

e Dynamic ServiceResource migration:
DynaGrid provides the ability to migrate ServiceResources to another resource dynamically, which is nec-
essary to rescue an overloaded container or to terminate a container safely.

o Transparent request dispatching:
Due to dynamic service deployment and ServiceResource migration, the actual location of a service instance
can not be determined statically. Thus, DynaGrid provides a service-specific access point, called Service-
Door, through which users can access the service instances and ServiceResources in a transparent way.

Our experimental evaluations show that these functionalities can be supported effectively with minimal
overhead on the current GT4 implementation. Since DynaGrid is implemented as Web services, it can be used
not only with GT4 container but also with any Java-based hosting environment which complies with WSRF.

The rest of the paper is organized as follows. In Section 2, we briefly overview the related work. Section 3
presents the overall architecture and the main functionalities of DynaGrid. Section 4 provides the evaluation
results of our framework with two practical applications. Finally, we conclude in Section 5.

330 E.-K. Byun, J.-S. Kim | Parallel Computing 33 (2007) 328-338

2. Related work

PlanetLab [5] is a large-scale distributed platform which integrates Internet-wide resources to obtain mas-
sive computing power. Although PlanetLab has been successfully used as a testbed for computer networking
and distributed systems research, PlanetLab can be run only on Linux platforms with special configurations
and there is no systematic mechanism to deploy a new service or to migrate the existing services.

Several previous studies have dealt with dynamic service deployment mechanisms. Weissman et al. [6] sug-
gested a new Grid architecture which supports dynamic service deployment and dynamic service leasing
according to the changes of service demands. Smith et al. [7] proposed a Service-Oriented Ad Hoc Grid which
provides peer-to-peer based node discovery, automatic node property assessment, and hot deployment of ser-
vices into a running system. Our earlier work was also devoted to the development of a dynamic service
deployment mechanism for globus toolkit version 3 (GT3) in which universal factory service (UFS) enables
to start a new Web service instance without any intervention of the administrator [8]. These solutions, how-
ever, have restrictions that they provide dynamic service deployment mechanisms in OGSI-based Grid envi-
ronments. Open Grid services infrastructure (OGSI) [9] is an extension of Web services specification for
implementing OGSA. Since OGSI supports stateful services by introducing a new type of Web service called
Grid service, OGSI does not comply with Web services standards and thus now it is deprecated in favor of
WSRF.

Recently, HAND [10] is proposed as a dynamic service deployment mechanism for the GT4 container and
it is known to be included in the later version of GT4. However, since HAND requires a special function
which modifies internal data of the GT4 container with the special privilege, its implementation can not be
generally applicable to other hosting environments.

Our approach is the first attempt to build large-scale WSRF-compliant Grid systems. DynaGrid effectively
handles the dynamic nature of large-scale Grid, the heterogeneity of resources, and the diversity of applica-
tions by introducing three new mechanisms such as dynamic service deployment, ServiceResource migration,
and transparent request dispatching. Our dynamic service deployment mechanism differs from HAND in that
our approach can be applicable to any Java-based hosting environment instead of being a GT4-specific solu-
tion. In addition, ServiceResource migration is unique to DynaGrid and, to the best of our knowledge, any
similar mechanism has not been investigated for WSRF in the previous work.

3. DynaGrid
3.1. Overall architecture

Fig. 1 shows the overall architecture of large-scale Grid constructed with DynaGrid framework. Two core
components of DynaGrid are ServiceDoor and dynamic service launcher (DSL). ServiceDoor is a service-

Virtual Organization —
Service Container —— Contai
requests — Container
Container — Service Door B q DSL
Service Door A \‘Imlwl
/
Deployment .
Request delivery| / Migration Container

Container 1 ontainer DSL

DSL DSL LIService A| |Service B|

ServiceResource ServiceResource
Service A[seviceResource Service A 7S
L 'S »

Fig. 1. The overall architecture of DynaGrid.

E.-K. Byun, J.-S. Kim | Parallel Computing 33 (2007) 328-338 331

specific front-end. Every service should have its own ServiceDoor somewhere and its location is published by
the register service. Each ServiceDoor keeps track of a list of containers on which the corresponding service is
deployed and the user’s request is delivered to an appropriate DSL in one of the available containers. Service-
Doors also make decisions on dynamic service deployment and ServiceResource migration and ask DSLs to
perform such tasks if necessary. DSL is a passive service controlled by ServiceDoor which actually deploys
services, creates ServiceResources, invokes the requested service, and transfers ServiceResource objects for
migration.

Since the interface of ServiceDoor is identical to the standard Web service interface, users can access Ser-
viceDoors just like normal Web services. We provide a utility called DoorCreator which automatically creates
the ServiceDoor code that is customized to each service from the corresponding service codes such as Web
services description language (WSDL) and Web services deployment descriptors (WSDD).

Fig. 2 depicts the internal structures of ServiceDoor and DSL. ServiceDoor is composed of Service Port-
Types, Resource manager, service deployment module, Scheduling module, and migration module. Service
PortTypes receive and dispatch the user’s requests to local DSLs. Resource manager maintains ServiceRe-
source information and a list of containers where the service is deployed. Scheduling module decides the loca-
tion where a new ServiceResource is created. Service deployment module and migration module automatically
carry out dynamic service deployment and ServiceResource migration, respectively, in the background.

DSL consists of DSLResourceHome and a set of methods required for dynamic service deployment, service
invocation, and ServiceResource migration. DSLResourceHome is responsible for creating, destroying, and
finding Meta ServiceResources and normal ServiceResources. Meta ServiceResource is used to distinguish
various services in DSL, while normal ServiceResource is used to preserve the state of each service request
as defined in WSRF specifications.

In the following subsections, we explain in more detail how these modules interact each other to achieve
transparent request dispatching, dynamic service deployment, and ServiceResource migration.

3.2. Transparent request dispatching

The first step to invoke a service in WSRF is to create a ServiceResource and to obtain the key of the newly
created ServiceResource. The key, along with the URI of the service, forms an endpoint reference (EPR)
which is used to make a service execution request. Since the exact locations of the service and the ServiceRe-
source are determined dynamically under DynaGrid due to dynamic service deployment and ServiceResource
migration, we use ServiceDoors to transparently dispatch incoming requests to the relevant DSLs.

To create a ServiceResource in DynaGrid, a user contacts the PortType of the creation method in Service-
Door. The creation method invokes Scheduling module to find an appropriate container among the container
list kept in Resource manager. If there is no available container in the list, Service deployment module
is invoked and the service is deployed to one of idle containers (details will be discussed in Section 3.3).

» | Information Service of VO |
(Users)

|* Service Door — r Dynamic Service Launcher

(D Service PortTypes L

]
Resource manager/ b Scheduling

[l
:
ServiceResource V4 module ,. > . createResource() :
mapping table]
Migration ' ,)J-_) d
Ki EPR
[Crey] P getResource() ServiceResource3
]
]
]
]

DSL Resource Home

i—---»

))invokeMethod()

Meta Resource A

]

module
putResource()

Container List Service

Container entry deployment y "Patt Meta Resource B
' =]) deployService()

Container entry M module

A 4

A 4

Monitor

Fig. 2. The internal structures of ServiceDoor (left) and DSL (right).

332 E.-K. Byun, J.-S. Kim | Parallel Computing 33 (2007) 328-338

Scheduling module finally composes an EPR indicating the Meta ServiceResource of the corresponding ser-
vice in the selected container and uses this EPR to invoke createResource() method of the target DSL. DSL-
ResourceHome in the invoked DSL then creates a new ServiceResource according to the information in the
Meta ServiceResources and returns a new local EPR containing the key of the newly created ServiceResource.
Note that this local EPR can not be delivered to users directly because DynaGrid may dynamically relocate
the ServiceResource if necessary. Instead, Scheduling module provides users with a new key associated with
the local EPR and maintains a mapping table between them in Resource manager.

The actual service execution request is also sent to ServiceDoor with a key previously obtained from Ser-
viceDoor. Since the information associated with the key is already stored in the mapping table in Resource
manager, ServiceDoor can easily retrieve the EPR of the ServiceResource which indicates the current location
of the ServiceResource. Using the EPR, ServiceDoor calls invoke Method() of the target DSL, and as a result
of it, the service is executed.

3.3. Dynamic service deployment

Dynamic service deployment is one of the most distinctive features in DynaGrid. In order to compare it
with the existing Grid system, we first describe the traditional approach to handling users’ requests to execute
a service.

Fig. 3a shows how a service is executed in the current GT4 container. First, users ask a GT4 container
which hosts the service to create a ServiceResource and obtain the key of the ServiceResource. Second, users
issue a service execution request with an EPR composed of the URI of the service and the ServiceResource
key. Then the container parses the EPR and finds the corresponding service in the deployed service list.
ResourceHome of the service retrieves the corresponding ServiceResource according to the key. Finally, a
thread called context is started with the ServiceResource.

Deploying a new service into the GT4 container can be done by adding an entry to the container’s deployed
service list. In the current implementation of GT4, the change in the list is reflected only after the container is
restarted. In order to overcome this limitation, HAND [10] proposed a dynamic service deployment mecha-
nism by modifying the GT4 container. It adds an internal function into the container which allows to reload
the deployed service list dynamically. However, this approach is not generally applicable to other hosting envi-
ronments since this is only a GT4-specific solution and requires administrative privilege to access the internal
data structure of the container.

a b
Users j EPR= ServiceA, Resourcel Users j EPR= DSL, ServiceA_Resourcel
— Container — Container
DSL
— Service A ——— — Service B —— Context - the configuration
\ is replaced for Service A
i t
Context of Service A ServicéA_Resourced SNA § execute
ResourceHome [L
Resopirce execute
DSL ResourceHome
.
f esource
ResourceHome Meta Se_rwceResource e
| Resource 1 I | Resource 3 | u
= = [] Meta ServiceResource M
[Resource 2 || Resource 4 | - for Service B

Fig. 3. The service execution mechanisms in (a) GT4 and (b) DynaGrid.

E.-K. Byun, J.-S. Kim | Parallel Computing 33 (2007) 328-338 333

On the contrary, our approach is to devise a dynamic service deployment mechanism which requires no
modification in the GT4 container, hence being applicable to any Java-based hosting environment. The mech-
anism is implemented as a part of DSL which is a standard Web service. We define a new type of ServiceRe-
source named Meta ServiceResource to be used in DSL. When a new service is deployed, a new Meta
ServiceResource is created. It keeps the information of the deployed service including the service ID, the inter-
face class, service options, and ClassLoader. Meta ServiceResource is also used for createResource() and put-
Resource() methods, which are service-specific but not related to any ServiceResource. Another role of Meta
ServiceResource is to notify the current status of the container to ServiceDoor. This information is later used
by ServiceDoor for dynamic deployment or migration decision.

Fig. 3b shows the service execution mechanism in DynaGrid. When the container accepts a request from
ServiceDoor, it starts a context to execute the invokeMethod() of DSL with the key composed of both service
ID and a local ServiceResource key. DSLResourceHome parses the key to retrieve the Meta ServiceResource
related to the service ID and the ServiceResource corresponding to the local ServiceResource key. DSL
changes the context’s ClassLoader and service options according to the information stored in the Meta Ser-
viceResource in order to configure the context compatible for executing the service. Finally, DSL executes the
service with the ServiceResource and returns the result to the user.

In DynaGrid, dynamic service deployment is initiated by invoking Service deployment module in Service-
Door. There are two cases in which the module is invoked. First, Scheduling module uses Service deploy-
ment module to create a new ServiceResource when all the containers currently hosting the service are
busy or inaccessible. Second, Migration module uses Service deployment module in case there is no available
container to migrate. Dynamic service deployment in DynaGrid works as follows. Service deployment mod-
ule searches for an idle and stable container using the information service of VO. After finding a suitable
container, it transfers the package file containing the service code and ServiceResource class, and deploys
the service to the selected container through deployService() of DSL. At the end of the deployment process,
DSL returns the EPR of the created Meta ServiceResource. The EPR is inserted in the container list of
Resource manager in ServiceDoor.

DynaGrid provides two package file transfer mechanisms. The first one is to transfer a file in a SOAP mes-
sage as a byte array. The advantage of this approach is that all the steps of service deployment can be done
only with standard Web services protocols. This approach, however, increases the transfer time because the
overhead of SOAP is considerably high and SOAP encodes a byte array to a base-64 array, which increases
the file size by about 30%. In order to overcome such performance degradation, we run a simple Web server in
ServiceDoor through which DSL can receive files over HTTP. Even though this approach achieves better per-
formance than the previous one, it has a drawback that an additional network port is required. This can be a
problem in an environment where only the SOAP port is allowed to access.

3.4. ServiceResource migration

All of the existing WSRF-compliant systems are designed for each ServiceResource to be handled only on
its birthplace since ServiceResource migration is not a standard feature of WSRF specifications. However,
since the availability of a container can affect the availability of ServiceResource, we developed a mechanism
to dynamically migrate ServiceResource. Again, our approach to ServiceResource migration is independent of
the GT4 implementation, and can be used for any Java-based WSRF hosting environment.

Once a service is deployed in a container, Resource manager in ServiceDoor monitors the status of the con-
tainer. If the container’s status meets a predefined condition, the migration is initiated and a half of Service-
Resources in the container is migrated to another container. In the current implementation of DynaGrid,
service developers can set various migration conditions using the CPU utilization, the used heap size, and
the number of ServiceResources described in the WSDD of the service. In addition, DynaGrid uncondition-
ally migrates all the ServiceResources when a container sends a “‘container stop’’ notification in order to leave
the VO. In this case, Migration module distributes ServiceResources evenly to all the containers in the con-
tainer list of Resource manager as long as any of the migration condition is not violated. If the ServiceRe-
sources can not be accommodated in the existing containers, Service deployment module is invoked and
asked to secure new containers for the service.

334 E.-K. Byun, J.-S. Kim | Parallel Computing 33 (2007) 328-338

One of the basic requirements of migrating ServiceResources is that ServiceResources must be serializable
Java objects. DSL provides getResource() and putResource() methods for transferring serialized ServiceRe-
sources. To make service developers easily implement their ServiceResources, DynaGrid also provides APIs to
implement ServiceResources as serializable classes.

The initial step to migrate a ServiceResource is to acquire a migration lock of the ServiceResource to make
sure no users are allowed to access it during migration. After successful acquisition of the lock, Migration
module obtains the serialized ServiceResource object using getResource() of the source DSL and puts the
object to the destination DSL using putResource(). Finally, the ServiceResource lists in DSLResourceHome
of both the source and the destination DSL and the mapping table in Resource manager are updated.

DynaGrid also provides mechanisms to subscribe to various topics on the ServiceResource. A topic is an
event that notifies the change of data in ServiceResource as defined in WS-Notification of WSRF specifica-
tions. DynaGrid guarantees that all the subscriptions are maintained transparently to users even if the Service-
Resource is migrated. When a ServiceResource is migrated, all the subscriptions related to the
ServiceResource are removed from the source container and re-registered in the new container. Note that Ser-
viceResources have a buffer for topics to prevent loss of notifications during migration.

4. Evaluation

In this section, we show that the overhead incurred by our framework is fairly small and that dynamic ser-
vice deployment and ServiceResource migration bring many advantages to large-scale Grid particularly in
terms of performance and reliability.

4.1. Experimental environment

Our testbed consists of eight servers connected by 100 Mbps Ethernet. Each server is powered by dual
2.4 GHz Pentium 4 processors and 1 GB memory running Linux 2.4.20 and JDK 1.4.2. We use the container
of Globus Toolkit 4.0.1 as WSRF-compliant hosting environment.

For our evaluation, we implemented two benchmark applications, streaming buffer service and ray tracing
service, as WSRF-compliant Web services. Their functions and characteristics are as follows.

o Streaming buffer service exploits the server’s physical memory to buffer streaming data similar to ring buf-
fered network bus (RBNB) [11]. RBNB has been used in many Grid systems including NEESGrid [13] for
data aggregation, streaming, and synchronization. The ServiceResource in streaming buffer service is in
charge of buffering data generated from a source channel. The service provides methods for storing and
fetching buffered data. The size of the ServiceResource in this service can be large up to tens of megabytes.

e Ray tracing service is a Web service implementation of RAJA [12], an open source ray tracer. Its Service-
Resource maintains a result buffer and a request queue on which scene data and the required quality
options are placed. The service continuously executes requests on the queue and stores the result in the Ser-
viceResource. The users are notified when a new result is available to download. Since the service is CPU-
intensive, a large number of concurrent executions may increase the response time.

The ServiceDoors corresponding to two benchmarks are automatically generated by DoorCreator. We use
two servers for executing ServiceDoors and client programs, and the remaining servers for deploying and exe-
cuting services through DSL.

4.2. The effectiveness of DynaGrid framework

In the traditional Grid system, computational resources are allocated statically and the services are man-
ually deployed in advance to cope with the peak demand. This results in an inefficient resource utilization
and high maintenance cost. Dynamic service deployment can resolve this problem by allocating only the
required number of containers on demand according to the amount of incoming requests. We carried out
two experiments to show that DynaGrid can utilize the containers in a more effective way.

E.-K. Byun, J.-S. Kim | Parallel Computing 33 (2007) 328-338 335

First, we measure the amount of occupied memory by the streaming buffer service. Fig. 4 shows the change
of the aggregated buffer size of 24 streaming channels on which data are generated at 100 KB/s. On each con-
tainer, the total memory capacity allocated to a buffer is limited to 100 MB. In the case of dynamic service
deployment, the service is initially deployed on a single container and all channels are created on it. When
the heap of the container is filled with the buffers, the service is deployed on a new container and a half of
buffers are migrated. In static deployment cases, the channels are created evenly on the allocated containers.
We can observe that, for the dynamic deployment case, the aggregated buffer size is constantly expanded until
they occupy most of the heap memory of every container. Meanwhile, the total buffer size is limited in the
static allocation cases, where only 1/3 or 2/3 of containers are allocated. The slower growth rate of the aggre-
gated buffer size in the dynamic deployment case is due to the migration cost of ServiceResources.

Second, we compare the average execution time in the ray tracing service as shown in Fig. 5. In this exper-
iment, clients continuously generate the requests according to the poison distribution and the individual
request takes about 10 min on a dedicated container. In the dynamic case, the service is deployed to a new
container when the CPU utilization exceeds 90%. Fig. 5 illustrates that the variance in the average execution
time is kept small when dynamic service deployment is performed. Apparently, the static allocation scheme
which exploits only a half of containers does not appear resilient enough to support the high resource demand.
Compared to the case which uses all the containers statically, the dynamic scheme slightly increases the aver-
age response time due to the overhead in ServiceDoor and DSL, but as can be seen in Fig. 5, the overhead is
negligible. The overhead in DynaGrid is analyzed in detail in the following subsections.

6 /_/
5 /
N
3
//,J === Dynamic from 0 to full
2 2 Static - 2/3 containers
1= Static - 1/3 containers ||
0 [Il Il Il

0 100 200 300 400

The aggregated buffer size (100 MB)

Elapsed time (sec)

Fig. 4. The aggregated buffer size in the streaming buffer service.

1800 | —e—Dynamic deployment /
1600 H =—#A—Static - Half containers
—u— Static - All containers /

1400 H
1200 /
1000

800 W

The average execution time (sec)

O s X C— X,
400
200
0 ‘ ‘ ‘ ‘
0 0.5 1 1.5 2 25

Request rate(reqs/min)

Fig. 5. The average execution times in the ray tracing service.

336 E.-K. Byun, J.-S. Kim | Parallel Computing 33 (2007) 328-338

Table 1

The average latency comparison between direct and indirect (via ServiceDoor) invocation

Service name Method name Direct (ms) via ServiceDoor (ms) SOAP size (bytes)

Streaming buffer createChannel() 47 1177 1267
putData() 67 132 2623
putData() 171 301 125,345
putData() 437 927 525,532
putData() 2410 4914 6,432,914

Ray tracing createQueue() 41 1259 1252
addScene() 58 114 14,231

4.3. The overhead of ServiceDoor

The use of ServiceDoor may increase the latency since it requires one more TCP connection and SOAP
message parsing. In Table 1, we compare the latencies to invoke several representative methods in our bench-
marks either directly or indirectly via ServiceDoor. We can see that using the ServiceDoor approximately dou-
bles the latency compared to the direct invocation for putData() and addScene(). Although the amount of
overhead is related to the SOAP message size, the overhead is kept low less than several hundreds of millisec-
onds unless the SOAP message size is larger than a few megabytes, which is not common in many applications.
Note that ServiceDoor adds more than one second to the latencies of createChannel() and createQueue()
which are methods for creating new ServiceResources. This is because it takes about one second to find an
idle container in Scheduling module of ServiceDoor. Such overhead is not critical since the creation of Service-
Resource is performed only once for the first request.

4.4. The overhead of dynamic service deployment

Since ServiceDoor tries to deploy the service to a new container on demand, fast deployment can minimize
the overloaded period of a container. Table 2 compares the deployment times of two services. We can see that
the time for transferring a service code (represented as “transfer’”) is a dominant factor, which is directly
related to the service code size. The other costs, such as the time for finding an available container and the
time for configuring the new container, are small enough and they are nearly constant regardless of the service.

As described in Section 3.3, we provide two file transfer mechanisms: SOAP and HTTP. Fig. 6 presents the
performance of two mechanisms in our testbed. As expected, the use of HTTP shows significantly better

Table 2
The comparison of the service deployment time over SOAP (in milliseconds)
Service name Size (bytes) Total Transfer Find container Config. Others
Streaming buffer 61,440 1062 348 529 41 144
Ray tracing 16,777,216 5862 5151 532 41 138
30 T

5 o5 [—A—SOAP —x—HTTP| A

8 /

° 20 /

E 15

3 10 e

2 X

g K

P o BN

10K 100K ™M 10M 100M

size (Bytes)

Fig. 6. The performance comparison of SOAP and HTTP for transferring a service code.

E.-K. Byun, J.-S. Kim | Parallel Computing 33 (2007) 328-338 337

-c 3 . . .
S3M [others (parsing, network) |I|]Conf|gurat|on
§ Moving subscriptions E Put object
o || Get object
£2
c
Ke]
©
21
=
E— o]

Ray tracing#1 Ray tracing#2 Buffer#1 Buffer#2 Buffer#3 Buffer#4
(18Kbytes) (27Kbytes) (55Kbytes) (105Kbytes) (505Kbytes) (5Mbytes)

Fig. 7. The breakdown of ServiceResource migration time.

performance compared to SOAP. Therefore, it is desirable to adopt HTTP in order to reduce the service
deployment time when the size of the application is large and opening a new port is allowed.

4.5. The overhead of ServiceResource migration

During ServiceResource migration, DynaGrid transfers the serialized object, re-establishes subscriptions,
and re-configures DSLResourceHome and Resource manager. In addition, the user’s requests are delayed
since accessing ServiceResource is not permitted during migration. Fig. 7 shows the breakdown of the
migration time with various sizes of ServiceResources. Obviously, the migration time is dominated by
the size of ServiceResource object and most of the time is spent for getResource() and putResource().
Thus, the migration of large ServiceResources should be carefully decided to minimize the increase in
the latency. In our streaming buffer service, for example, we select the least frequently accessed channel
for the migration.

5. Conclusion

In this paper, we present several limitations of the current WSRF-based Grid system for efficient and reli-
able resource sharing on large-scale Grid. The heterogeneity of resources and the diversity of applications
along with the dynamic nature of the large-scale Grid demands a new Grid computing framework. This paper
proposes DynaGrid for building large-scale Grid for WSRF-compliant applications. We adopt WSRF and
Java-based hosting environment to overcome the heterogeneity of resources and the diversity of applications.
We also developed dynamic service deployment and ServiceResource migration mechanisms for WSRF-com-
pliant applications to handle the dynamic nature of large-scale Grid. Under DynaGrid, applications can
exploit various resources dynamically and their running contexts can be migrated to another resource if
needed. Two core components, ServiceDoor and DSL, have been implemented to realize DynaGrid, which
are compatible with any Java-based hosting environment.

We built a real testbed on GT4 and evaluated DynaGrid with two benchmark applications. Our evaluation
shows that dynamic service deployment and ServiceResource migration bring many advantages to large-scale
Grid particularly in terms of performance and reliability with minimal overhead.

Acknowledgement

This work was supported by Korea Research Foundation Grant funded by Korea Government
(MOEHRD, Basic Research Promotion Fund) (KRF-2005-003-D00291).

338 E.-K. Byun, J.-S. Kim | Parallel Computing 33 (2007) 328-338

References

[1]I. Foster, C. Kesselman, S. Tuecke, The anatomy of the grid: enabling scalable virtual organizations, International Journal of
Supercomputer Applications 15 (3) (2001).

[2] L. Foster, C. Kesselman, J. Nick, S. Tuecke, The physiology of the grid: an open grid services architecture for distributed systems
integration, Open Grid Service Infrastructure WG, GGF, June 2002.

[3] OASIS Web Services Resource Framework (WSRF) TC, http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf.

[4] L. Foster, Globus toolkit version 4: software for service-oriented systems, Lecture Notes in Computer Science, vol. 3779, Springer-
Verlag, 2005.

[5] L. Peterson, T. Anderson, D. Culler, T. Roscoe, A blueprint for introducing disruptive technology into the internet, in: Proceedings of
ACM HotNets-I Workshop, 2002.

[6] J. Weissman, S. Kim, D. England, A framework for dynamic service adaptation in the grid: next generation software program
progress report, in: Proceeding of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2005.

[7] M. Smith, T. Friese, B. Freisleben, Towards a service-oriented Ad Hoc grid, in: Proceedings of the 3rd International Symposium on
Parallel and Distributed Computing/the 3rd International Workshop on Algorithms, Models and Tools for Parallel Computing on
Heterogeneous Networks (ISPDC/HeteroPar), 2004, pp. 201-208.

[8] E.-K. Byun, J.-W. Jang, W. Jung, J.-S. Kim, A dynamic grid services deployment mechanism for on-demand resource provisioning,
in: Proceedings of the 5th IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID), 2005.

[9] S. Tuecke, K. Czajkowski, 1. Foster, J. Frey, S. Graham, C. Kesselman, T. Maguire, T. Sandholm, P. Vanderbilt, D. Snelling, Open
grid services infrastructure (OGSI) version 1.0, Global Grid Forum Draft Recommendation, June 27, 2003.

[10] L. Qi, H. Jin, I. Foster, J. Gawor, HAND: highly available dynamic deployment infrastructure for globus toolkit 4, http://
www.globus.org/alliance/publications/papers/HAND-Submitted. pdf.

[11] Creare Inc., Ring buffered network bus, http://rbnb.creare.com/RBNB.

[12] The Raja Project, http://raja.sourceforge.net/.

[13] The NEESGrid Project, http://it.nees.org/.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://www.globus.org/alliance/publications/papers/HAND-Submitted.pdf
http://www.globus.org/alliance/publications/papers/HAND-Submitted.pdf
http://rbnb.creare.com/RBNB
http://raja.sourceforge.net/
http://it.nees.org/

	DynaGrid: A dynamic service deployment and resource migration framework for WSRF-compliant applications
	Introduction
	Related work
	DynaGrid
	Overall architecture
	Transparent request dispatching
	Dynamic service deployment
	ServiceResource migration

	Evaluation
	Experimental environment
	The effectiveness of DynaGrid framework
	The overhead of ServiceDoor
	The overhead of dynamic service deployment
	The overhead of ServiceResource migration

	Conclusion
	Acknowledgement
	References

