
www.elsevier.com/locate/parco

Parallel Computing 30 (2004) 121–138
Memory management for multi-threaded
software DSM systems

Yang-Suk Kee a,*, Jin-Soo Kim b, Soonhoi Ha a

a School of Electrical Engineering and Computer Science, Seoul National University,

Seoul 151-742, South Korea
b Division of Computer Science, KAIST, Daejeon 305-701, South Korea

Received 22 January 2003; received in revised form 25 August 2003; accepted 2 September 2003
Abstract

When software distributed shared memory (SDSM) systems provide multithreading to ex-

ploit cluster of symmetric multiprocessors (SMPs), a challenge is how to preserve memory

consistency in a thread-safe way, which is known as ‘‘atomic page update problem’’. In this

paper, we show that this problem can be solved by creating two independent access paths

to a physical page and by assigning different access permissions to them. Especially, we pro-

pose three new methods using System V shared memory inter-process communication (IPC), a

new mdup() system call, and a fork() system call in addition to a known method using file

mapping. The main contribution of this paper is to introduce various solutions to the atomic

page update problem and to compare their characteristics extensively. Experiments carried out

on a Linux-based cluster of SMPs and an IBM SP Night Hawk system show that the proposed

methods overcome the drawbacks of the file mapping method such as high initialization cost

and buffer cache flushing overhead. In particular, the method using a fork() system call pre-

serves the whole address space to the application.

� 2003 Elsevier B.V. All rights reserved.

Keywords: Distributed shared memory; Atomic page update; Memory consistency; Cluster of symmetric

multiprocessors
*Corresponding author. Fax: +82-2-879-1532.

E-mail addresses: yskee@iris.snu.ac.kr (Y.-S. Kee), jinsoo@cs.kaist.ac.kr (J.-S. Kim), sha@iris.

snu.ac.kr (S. Ha).

0167-8191/$ - see front matter � 2003 Elsevier B.V. All rights reserved.

doi:10.1016/j.parco.2003.09.001

mail to: yskee@iris.snu.ac.kr


122 Y.-S. Kee et al. / Parallel Computing 30 (2004) 121–138
1. Introduction

Software distributed shared memory (SDSM) systems have been powerful plat-

forms to provide shared address space on distributed memory architectures. The

early SDSM systems like IVY [1], Midway [2], Munin [3], and TreadMarks [4] as-
sume uniprocessor nodes, thus allow only one thread per process on a node. Cur-

rently, commodity off-the-shelf microprocessors and network components are

widely used as building blocks for parallel computers. This trend has made cluster

systems consisting of symmetric multiprocessors (SMPs) attractive platforms for

high performance computing. However, the early single-threaded SDSM systems

are too restricted to exploit multiprocessors in SMP clusters. The next generation

SDSM systems like Quarks [5], Brazos [6], DSM-Threads [7], and Murks [8] are

aware of multiprocessors and exploit them by means of multiprocesses or multith-
reads. In general, naive process-based systems experience high context switching

overhead and additional inter-process communication delay within a node, so our

focus in this paper is on multi-threaded SDSM systems.

Many single-threaded SDSM systems are implemented at user-level by using the

page fault handling mechanisms. This kind of SDSM detects an unprivileged access

of application to a shared page by catching a SIGSEGV signal and a user-defined

signal handler updates the invalid page with a valid one. From the application point

of view, this page-update is atomic since program control is returned to the applica-
tion only after the signal handler completes the service on the fault. However, the

conventional fault-handling process will fail in multithreaded environments because

other threads may try to access the same page during the update period. The SDSM

system faces a dilemma when multiple threads compete to access an invalid page

within a short interval. On the first access to an invalid page, the system should

set the page writable to replace with a valid one. Unfortunately, this change also al-

lows other application threads to access the same page freely. This phenomenon is

known as atomic page update and change right problem [7] or mmap() race condi-
tion [8]. For short, we call this the atomic page update problem.

A known solution to this problem adopted by major multithreaded SDSM sys-

tems like TreadMarks [9], Brazos [6], and Strings [10] is to map a file to two different

virtual addresses. Even though the file mapping method achieves good performance

on some systems, file mapping is not always the best solution. Operating system and

working environment may severely affect the performance of these systems. The file

mapping method performs poorly in some cases; for example, an IBM SP Night

Hawk system with AIX 4.3.3 PSSP 3.2 version. This observation motivates the re-
search of other solutions to the atomic page update problem. Moreover, file mapping

has high initialization cost and reduces the available address space because SDSM

and application partition the address space.

We note the cause of the atomic page update problem is that SDSM and applica-

tion share the same address space. When SDSM changes a page writable, the page is

also accessible to the application. A general solution to this problem is to separate

the application address space from the system address space for the same physical

memory, and to assign different access permission to each address space. Since the



Y.-S. Kee et al. / Parallel Computing 30 (2004) 121–138 123
virtual memory protection mechanism is implemented in the per-process page table,

different virtual addresses (pages) can have different access permission even though

they refer to the same physical page. Then, the system can guarantee the atomic page

update by changing the access permission of a virtual page in the application address

space only after it completes the page update through the system address space.
In this paper, we propose three new solutions using System V shared memory in-

ter-process communication (IPC), a new mdup() system call for page table duplica-

tion, and a fork() system call in addition to a known solution using file mapping. The

main contribution of this paper is to present various solutions to the atomic page

update problem and to compare their characteristics extensively. However, it is ob-

served that it is not always possible to implement all of them in a given SMP cluster

system due to the various limitations of operating system. Experiments on a Linux-

based cluster and on an IBM SP2 machine show that the proposed methods over-
come the drawbacks of the file mapping method such as high initialization overhead

and buffer cache flushing overhead. In particular, the method using a fork() system

call preserves the whole address space to the application.

This paper is organized as follows. In Section 2, we discuss the atomic page up-

date problem in detail. We briefly introduce our SDSM system in Section 3 and pres-

ent four methods to solve the problem in Section 4. We investigate four methods by

using micro-benchmarks and give experimental results with several applications in

Section 5. Section 6 concludes the paper.
2. The atomic page update problem

A typical page fault handling process of conventional page-based SDSM is illus-

trated in Fig. 1. In general, this kind of SDSM uses SIGIO and SIGSEGV signals to

implement memory consistency protocols. When the application accesses the invalid
Fig. 1. A typical procedure of page fault handling in a conventional page-based SDSM system.



124 Y.-S. Kee et al. / Parallel Computing 30 (2004) 121–138
page denoted by A, the operating system generates a SIGSEGV signal and hands

over the program control to SDSM by invoking a user-defined SIGSEGV handler.

Inside the handler, the system allocates a writable page by dynamically creating an

anonymous page or by retrieving a page from the shared memory pool prepared in

the initialization step. Then, the system requests the most up-to-date page from a re-
mote node and waits for the page. When the page request arrives at the remote node,

the remote operating system generates a SIGIO signal and a user-defined SIGIO

handler serves the request. After that, the local SDSM replaces the invalid page with

the new one and sets the page readable using an mprotect() system call.

In a single-threaded system, this page update is atomic with respect to the appli-

cation since the system performs the series of operations sequentially. Atomicity,

however, is not guaranteed when multiple threads compete to access a page. Fig. 2

illustrates the situation where T1 accesses the same page while T2 is waiting for the
up-to-date page after it has set the page writable. T1 continues its computation with

garbage data without raising any protection fault. This depicts the atomic page up-

date problem.

In order to guarantee the atomic page update, other threads should be prevented

from accessing the page while a thread is waiting for a valid page. Several possible

solutions can be categorized as follows:

• Suspend all the application threads until the system finishes updating the invalid
page.

• Modify the OS scheduler not to schedule the threads that may access the invalid

page [8].

• Implement a new thread package [5,7].

• Map a file to two virtual addresses and assign different access permission to them

[6,9,10].
Fig. 2. The atomic page update problem in a conventional page-based SDSM system.



Y.-S. Kee et al. / Parallel Computing 30 (2004) 121–138 125
The first brute-force method suspends all application threads temporarily by

broadcasting a SIGSTOP signal during the page update period and awakes the

threads again after the page update is completed. This method is very simple but

it obstructs even the execution of the threads unrelated to the page. Consequently,

this method degrades the CPU utilization prohibitively and the expected perfor-
mance is poor. The second approach is to modify the OS kernel to schedule only

the threads that do not access the same page. Murks [8] is this type of system. Even

though this approach is efficient, it damages portability of the system. The third one

is to implement a new thread package to control thread scheduling at the user-level.

DSM-Threads [7] and Quarks [5] are two well-known systems but they lack portabil-

ity.

The last method is to map a file to two virtual addresses and to create two inde-

pendent access paths to the file: one for application and the other for SDSM. The
system can update the file through the virtual address mapped to it while the access

from an application thread is controlled by a memory consistency protocol. From

the viewpoint of operating system, file mapping is to attach physical pages, used

as cache for a file, to the process’s virtual address space. When a file is mapped to

two virtual addresses, each physical page is pointed by two page table entries and

different access permission can be assigned to different virtual addresses. In conse-

quence, the SDSM system guarantees the atomic page update with respect to all ap-

plication threads by changing the access permission of the virtual pages mapped for
application only after it updates the physical pages through the virtual address

mapped for system.

Specifically, we notice the last method. The key point of file mapping is to create

two independent access paths to a physical page. A scenario of thread-safe page up-

date in data race by separating the access paths is illustrated in Fig. 3. When an ap-

plication thread tries to access the invalid page denoted by A, SDSM updates the

invalid page with the up-to-date page through the system address denoted by S.
Fig. 3. A scenario of the thread-safe page update.



126 Y.-S. Kee et al. / Parallel Computing 30 (2004) 121–138
After the page update is completed, the system changes the page A in the application

address space readable and hands over the program control to the application thread

again. If another thread attempts to access the same page during the update period,

it sees the page is still invalid and is blocked inside the SIGSEGV handler. When the

page update is completed, the signal handler wakes up all the threads waiting for the
page.

File mapping, however, is not the only way to create multiple access paths to a

physical page. We seek for other methods to achieve the same goal without perfor-

mance degradation. In this paper, we propose three more methods and compare

their characteristics.
3. The ParADE system

Our SDSM is a component of an OpenMP-based parallel programming environ-

ment for SMP clusters called ParADE [11]. OpenMP [12] is becoming the de facto

standard for shared-address-space programming model. In addition to programming

easiness inherent in shared-address-space model, OpenMP anticipates high perfor-

mance in scientific applications. Even though the general target architecture of

OpenMP is a single multiprocessor node, this model is applicable to a cluster of mul-

tiprocessors. An intuitive way to extend OpenMP to cluster of multiprocessors is to
use a multi-threaded SDSM system.

Fig. 4 depicts the architecture of the ParADE system. Two key components of

ParADE are the ParADE runtime system and the OpenMP translator. A multi-

threaded SDSM and a message-passing library compose the runtime system. To pro-

vide thread-safe communication, we implemented a subset of MPI [13] library for

Virtual Interface Architecture (VIA) [14]. Our SDSM system provides a home-based

lazy release consistency (HLRC) [15] with migratory home to exploit data locality.

Meanwhile, the OpenMP translator converts an OpenMP program to a multi-
Fig. 4. Architecture of the ParADE system.



Y.-S. Kee et al. / Parallel Computing 30 (2004) 121–138 127
threaded program with hybrid communication interfaces using the ParADE runtime

library, and enables the program to be executable on the SMP cluster. For more in-

formation about ParADE, refer to [11].
4. Four atomic page update methods

In this section, we present four methods to provide multiple access paths to a

physical page: file mapping, System V shared memory IPC, a new mdup() system

call, and a fork() system call. All the methods except the mdup() method are imple-

mented at user-level.

4.1. File mapping

An mmap() system call enables a process to access a file through memory opera-

tions by mapping the file to the process address space. This mechanism is known as

memory-mapped I/O. Such a mapping creates a one-to-one correspondence between

data in the file and data in the mapped memory region. Moreover, the system call

with the MAP_SHARED flag enables a file to be mapped to a process multiple

times. As shown in Fig. 5, multiple virtual addresses refer to the same file when

the file is mapped multiple times, creating multiple independent access paths to a
same physical page.

File mapping is very portable and the performance of SDSM using this method is

good. Nevertheless, this method has several drawbacks. First, the size of the shared

address space should be smaller than the size of the file. When the area beyond the

file size is accessed, the operating system signals an error. To avoid this unexpected

error, the SDSM system should create a large regular file enough to contain the

shared pages or it should dynamically enlarge the file size by explicitly using the

write() or ftruncate() operations. Nonetheless, this initialization cost is not negligible.
Another drawback is unnecessary disk writes at runtime. Although FreeBSD sup-

ports the MAP_NOSYNC flag to avoid dirty pages to be flushed to disk at runtime,

many operating systems flush buffer caches to disk regularly, or explicitly when the

munmap() system call is invoked to eliminate the mapping. Disk write is a costly

operation so that it may damage performance significantly. In consequence, the
Fig. 5. Mapping a file to two virtual addresses.



128 Y.-S. Kee et al. / Parallel Computing 30 (2004) 121–138
performance of a system based on the file mapping method depends on the system

buffer cache (page cache) size and the buffer cache management scheme. Experiments

on IBM SP Night Hawk system with an AIX 4.3.3 PSSP 3.2 version revealed signif-

icant performance degradation when the machine is not wholly dedicated to SDSM.

4.2. System V shared memory

Another method to map a physical page to different virtual addresses is to use

System V shared memory IPC. The shmget() system call enables a process to create

a shared memory object in the kernel and the shmat() system call enables the process

to attach the object to its address space. Meanwhile, as shown in Fig. 6, a process can

attach the shared memory object to its address space more than once and a different

virtual address is assigned to each attachment.
Compared to file mapping, creating shared memory segments is very cheap. Nev-

ertheless, this mechanism has several restrictions. In some operating systems, the size

and the number of shared memory segments are limited. Solaris systems determine

the size and the number of segments at boot time by checking the shmsys field of

the /etc/system file. In the case of Linux systems, the maximum size of a segment

is 32 megabytes and the system-wide maximum number of segments is limited to

128. Some operating systems just allow less than 10 segments whose size should

be smaller than tens of kilobytes. As a result, they fail to allocate large shared mem-
ory using this method. Moreover, in the IBM SP Night Hawk system, mprotect()

may not be used to change the access permission of System V shared memory seg-

ments.

Another problem is that a group of segments should be mapped to a continuous

address space. When one forces to attach a shared memory segment to a user-

assigned address, the attachment will fail if the address is not a predefined address

for segment low boundaries. Therefore, we should allocate a segment according to

the low boundary address and attach it to a continuous address space. The last con-
sideration is memory leak. Shared memory segments are not released automatically

when a program terminates. SDSM should make sure that shared memory segments

are released at termination, even at abnormal termination.

4.3. mdup() system call

We implement a new system call, mdup(), to easily duplicate the process page

table. The prototype of mdup() is as follows:
Fig. 6. Attachment of shared memory segments to two virtual addresses.



Fig. 7. Duplication of the per-process page table using the mdup() system call.

Y.-S. Kee et al. / Parallel Computing 30 (2004) 121–138 129
void �mdupðvoid � addr; int sizeÞ;

where addr is the virtual address of the anonymous memory region created by the

mmap() system call with the MAP_ANONYMOUS and MAP_SHARED flags and

size is the size of the region.

The mdup() method is illustrated in Fig. 7. The basic mechanism of mdup() is to

allocate new page table entries for the detour and to copy the page table entries of

the anonymous memory to new ones. The reasons why we use anonymous memory

are following: (1) no initialization step is required, (2) there is no size limit, and (3)
the memory region is released automatically at program termination. Even though

kernel modification damages portability of SDSM, the mdup() system call is easy

to use and overcomes many drawbacks of the previous methods.

4.4. fork() system call

The total amount of physical memory in a cluster system increases with the size of

cluster. Nevertheless, the size of the virtual address space is fixed and puts restriction
on the problem size of applications. The previous methods reduce the virtual address

space available for applications because the application and the system partition the

address space. We propose another method to support thread-safe memory manage-

ment without sacrificing the address space.

When a process forks a child process, the child process inherits the execution

image of the parent process. Especially, the content of the child process page table

is copied from that of the parent process except the data area where a Copy-

On-Write policy is applied. However, the Copy-On-Write policy is not applied
to shared memory regions. The parent process creates shared memory regions

and forks a child process. As shown in Fig. 8, they have independent access paths

even though they use the same virtual address to access the same physical page.

We let the parent process execute applications and the child process perform mem-

ory consistency mechanisms. Hence, the SDSM system can successfully update the

shared memory region in a thread-safe way through the child process’s address

space.

However, this method experiences additional latency due to communication and
synchronization overheads between the parent and the child processes. Nonetheless,



Fig. 8. Duplication of the per-process page table using the fork() system call without sacrificing the avail-

able address space.

130 Y.-S. Kee et al. / Parallel Computing 30 (2004) 121–138
this method is very portable and it survives even under a harsh working environment

like IBM SP Night Hawk.
5. Experiments

We have implemented four methods in the ParADE runtime system. We first mea-

sured the costs of basic operations and compared the performance of the methods

with several applications. Our experiments were performed on an IBM SP Night

Hawk system and a Linux cluster. The IBM SP system consists of nine 375 MHz

POWER3 SMP nodes with 16 processors and 16 GB main memory per node. The
Linux cluster consists of four dual-Pentium III 550 MHz SMP nodes and four dual-

Pentium III 600 MHz SMP nodes. Each node has 512 MB main memory and it is

connected to a Giganet’s cLAN VIA switch. Redhat 8.0 with a kernel of 2.4.18-14

SMP version runs on each node. We used a GNU gcc compiler with the )O2 option

for Linux cluster and an xlc complier with the )O2) qarch¼ pwr3) qtune¼
pwr3) qmaxmem¼) 1) qstrict options for the IBM SP system.

5.1. Architecture of the ParADE multi-threaded SDSM

A skeleton of the ParADE multi-threaded SDSM is shown in Fig. 9. The left

configuration corresponds to the three methods of the file mapping, System V

shared memory IPC, and the mdup() system call. In the beginning, the system al-

locates a virtual shared memory pool and initializes its access permission. The SIG-

SEGV handler is an entry point to the SDSM system from the application and

fetches the up-to-date page from the home node. Asynchronous Message Server

thread in the home node serves the page request. The right one is for the fork()
method. Unix domain socket is used for control message exchange and synchroni-

zation between the parent and the child processes. For communication, the parent

creates one socket per application thread and the child process forks a thread

called Request Server to handle requests from the parent. An application thread

sends a control message to the child process through the socket and waits for a



Fig. 9. Skeleton of prototype system: the left configuration is for the file mapping, System V shared mem-

ory, and mdup() methods and the right configuration is for the fork() method.

Y.-S. Kee et al. / Parallel Computing 30 (2004) 121–138 131
reply from the child process on this socket. When the requested page arrives at the

child, Request Server wakes up the application thread.

5.2. Costs of basic operations

Table 1 shows the costs of the basic operations used by four methods. The oper-

ations in the top group are used in the initialization step, those in the middle are used

at runtime, and those in the bottom are used at finalization. We take the average ex-

ecution time after 100 executions of micro-benchmark programs. In the IBM SP

Night Hawk system, the mprotect() system call is not allowed to change the access
permission of the memory area allocated by System V shared memory IPC, so the

corresponding fields are omitted.

Since the top operations are used to create a shared memory pool, the execution

time for handling large memory is important. Note that creating a 64 megabytes file

is very expensive compared to System V shared memory and anonymous memory.

The main difference between file mapping and the others is the time for actual mem-

ory allocation. In the case of file mapping, physical pages are allocated at the initial-

ization step in the form of buffer cache or page cache. However, the other methods
delay the page allocation until a page is actually referenced at runtime.

Since the page size of both operating systems is 4 kilobytes, the costs for the op-

erations handling 4 kilobytes memory are important at runtime. The cost of the

memcpy() operation for the mapped file is a little bit lower than that for the other

methods. The longer elapsed time mainly stems from the fact that the other methods

experience additional memory allocation overhead. However, the results with 64

megabytes memory are different. For file mapping on the IBM SP machine, the copy

operation suffers from long latency because of high buffer cache flush overhead.



Table 1

Costs of basic operations (ls)

Operations Linux Pentium III 600 MHz IBM SP POWER3 375 MHz

4 KB 64 MB 4 KB 64 MB

mmap()-file mapping 5.0 35.9 21.2 88.9

mmap()-anonymous

memory

6.5 43.9 19.4 82.7

shmget() 7.2 54.7 10.4 57.0

shmat() 4.9 31.4 6.7 25.4

mdup() 316.6 1720.7 N/A N/A

fork() 94.0 17348.8 2998.7 5777.1

write() 43.6 849617.2 47.6 865767.7

mprotect()-file mapping 3.4 37.5 10.9 40074.4

mprotect()-anonymous

memory

2.9 33.7 9.4 20.7

mprotect()-System V

shared memory

4.4 34.1 N/A N/A

memcpy()-file mapping 5.0 472543.6 16.2 1371498.1

memcpy()-anonymous

memory

7.8 492053.5 32.6 659901.3

memcpy()-System V

shared memory

7.9 530368.3 27.1 499294.0

SIGSEGV handler 9.8 10.2

munmap()-file mapping 5.7 17117.9 19.1 108993.7

munmap()-anonymous

memory

10.2 46934.5 27.1 174688.1

shmdt() 28.0 14528.1 6.0 30.2

shmctl() 8.6 30821.6 16.8 110888.6

Fig. 10. Analysis of page fetch latency on two dual-Pentium III 600 MHz nodes (ls).

132 Y.-S. Kee et al. / Parallel Computing 30 (2004) 121–138
To understand how these basic operations affect the system actually at runtime,

we analyze the page fetch latency. Fig. 10 shows the factors in fetching a page from

a remote node on a read fault on two dual-Pentium III 600 MHz nodes. To avoid



Y.-S. Kee et al. / Parallel Computing 30 (2004) 121–138 133
caching effect, we allocate large shared memory and measure the page fetch latency

changing the accessing points in the shared memory area. Executing the SIGSEGV

handler (Fault handler call) and sending a page request to the home node (Request

transfer) are independent of the methods. In the case of protocol overhead, the fork()

method experiences about twice longer latency than the others due to inter-process
communication overhead between the parent and the child processes. The page prep-

aration and page transfer factors are also dependent on the methods. However,

shown in Table 1, all the methods have comparable performance of the mprotect()

and the memcpy() system calls with 4 kilobyte page. Fig. 10 shows the similar result

that these two factors little influence on the total page fetch latency regardless of the

methods.

5.3. Application performance

We compare the performance of four methods by measuring the execution time of

several programs. The CG and EP kernels of class-A are adopted from the NAS 2.3

benchmarks [16]. The CG kernel solves an unstructured sparse linear system by the

conjugate gradient method and the EP kernel measures the capability of floating-

point operations. Meanwhile, two real applications are adopted from the OpenMP

sample programs. The Helmholtz program [17] solves a wave equation on a regular

mesh using an iterative Jacobi method with over-relaxation and the MD program
[18] implements a simple molecular dynamics simulation in continuous real space.

We ported the Fortran programs to the C versions. We take the average execution

time after 10 executions of the programs. Only the results on the Linux cluster are

presented because the System V shared memory method and the mdup() system call

cannot be implemented in the SP system and the file mapping method reveals ex-

tremely long execution time due to high memory copy overhead in a shared working

environment. We use the vmstat command to monitor the system dynamics roughly.

The characteristics of the programs and the initialization costs of the methods are
shown in Tables 2 and 3 respectively. The CG and the Helmholtz programs have

large shared memory while the EP and the MD programs have small one. As shown

in Table 1, the initialization cost of the file mapping method with large shared mem-

ory is very expensive. In case an application has relatively short execution time, this

high initialization cost can be critical to overall performance. However, applications

with small shared memory are little influenced by the initialization cost regardless of

methods.
Table 2

Application characteristics

Application Input size Declared shared memory (MB)

CG A-Class 64

EP A-Class 0

Helmholtz 1000· 1000 matrix 32

MD 1000 iterations 1



Table 3

Initialization costs on a dual-Pentium III 600 MHz node (s)

Application File mapping System V shared

memory

mdup() fork()

CG 0.891 0.002 0.002 0.001

EP 0.000 0.000 0.000 0.000

Helmholtz 0.446 0.001 0.002 0.002

MD 0.015 0.001 0.002 0.001

Fig. 11. Ratio of the number of faults in data race to the number of read faults.

134 Y.-S. Kee et al. / Parallel Computing 30 (2004) 121–138
One fundamental question about the atomic page update problem is whether it is

serious in real applications. Fig. 11 shows the ratio of the number of faults in the

racing condition to the number of total read faults. It reveals that the atomic page

problem is common and it is dependent on the computing pattern, not on the

amount of shared memory.
Fig. 12 shows the execution time of the CG kernel of A class varying the number

of nodes. With respect to the overall execution time, file mapping shows the worst

performance though the performance difference is not huge. To understand the per-
Fig. 12. Execution time of CG of A class using two computational threads on a Linux cluster.



Y.-S. Kee et al. / Parallel Computing 30 (2004) 121–138 135
formance of file mapping, we monitor the number of block transfers with the single

node configuration. At the initialization step, over 15,000 blocks are read from disk

and over 100,000 blocks are written to disk. However, only about 100 blocks are

written to disk at runtime. The disk-write penalty affects the system severely at the

initialization step but little at runtime. Similar phenomenon occurs consistently re-
gardless of the number of nodes. As the portion of CPU resource assigned to com-

munication increases with the number of nodes, the performance with 8 nodes

becomes worse than that with 4 nodes. In the case of EP, there is little shared mem-

ory, so the file mapping method does not experience initialization overhead. As

shown in Fig. 13, all the methods achieve comparable performance.

In the case of MD, the size of shared memory is only about 1 megabyte and the

initialization cost rarely affects the overall performance severely. The net execution

time of file mapping is a few seconds longer than the others but it is hardly noticeable
in Fig. 14. Meanwhile, Helmholtz requires 32 megabytes shared memory but the
Fig. 13. Execution time of EP of A class using two computational threads on a Linux cluster.

Fig. 14. Execution time of MD using two computational threads on a Linux cluster.



Fig. 15. Execution time of Helmholtz using two computational threads on a Linux cluster.

136 Y.-S. Kee et al. / Parallel Computing 30 (2004) 121–138
initialization cost is amortized over the long computation. As shown in Fig. 15, the

difference is not significant.

5.4. Implementation cost

We implemented four methods with the following unified interfaces:

createGlobalHeap Creates a regular file or several System V shared memory seg-

ments to contain a shared memory pool.

initAppArea Prepares application address space.

initSysArea Prepares system address space.

All require similar amount of codes to implement in spite of the difference in detailed

mechanisms. In the createGlobalHeap routine, the file mapping method opens a file
and initializes it with zero. The System V shared memory method creates a series of

shared memory segments according to the maximum size of a segment. The mmap()

and the shmat() system calls are used to prepare the application address space and

the mmap(), shmat(), and mdup() system calls are used to make the system address

space.

Since all the methods except the fork() method are implemented in a process, the

application and the SDSM system share the same data structures. In the case of

the fork() method, however, all the shared data structures between the parent and
the child should be identified and they should be located in a system-defined shared

area. In addition, when MPI library is used for the inter-node communication, com-

munication must be isolated to the child process because most MPI libraries are

based on version 1 that does not support dynamic process creation.
6. Conclusions

In this paper, we present four methods to solve the atomic page update problem

and compare their characteristics extensively. Table 4 summarizes their characteris-



Table 4

Summary of four atomic page update methods

File mapping System V

shared

memory

mdup() fork()

System calls Application

path

open()+write() shmget() mmap() mmap()

mmap() shmgat()

System path mmap() shmat() mdup() fork()

Initialization cost Very expensive Very cheap Cheap Cheap

Portability Excellent Limits in size

and number of

segments

Poor Excellent

Address space Partially available Fully available

Miscellaneous Disk write

penalty

Segment clean-

up cost mpro-

tect() constraint

– IPC delay

between parent

and child

Performance Comparable

Environment Dedicated Shared

Y.-S. Kee et al. / Parallel Computing 30 (2004) 121–138 137
tics with respect to performance, portability, and properties. Experiments on a Li-

nux-based cluster and on an IBM SP2 machine show that the three proposed meth-

ods overcome the drawbacks of the file mapping method such as high initialization

cost and buffer cache flushing overhead. In particular, the method using a fork() sys-

tem call is portable and preserves the whole address space to the application even

though the others can use only the half of the virtual address space. The System V

shared memory method shows low initialization cost and runtime overhead, and

the new mdup() system call method has the least coding overhead in the application
code. Not all the methods can be implemented on a given SMP cluster system due to

the limitation of the operating system as observed in the IBM SP System. The meth-

ods proposed for thread-safe memory management will allow us to port the ParADE

environment to various systems.
Acknowledgements

This work was supported by National Research Laboratory Program (No. M1-

104-00-0015) and Brain Korea 21 Project. The ICT at Seoul National University

provides research facilities for this study.
References

[1] L. Kai, IVY: a shared virtual memory system for parallel computing, International Conference on

Parallel Processing (1988) 94–101.



138 Y.-S. Kee et al. / Parallel Computing 30 (2004) 121–138
[2] B.N. Bershad, M.J. Zekauskas, W.A. Sawdon, The midway distributed shared memory system, IEEE

International Computer Conference, February 1993, pp. 528–537.

[3] J.K. Bennett, J.B. Carter, W. Zwaenepoel, Munin: distributed shared memory based on type-specific

memory coherence, Principles and Practice of Parallel Programming (1990) 168–176.

[4] C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, W. Zwaenepoel,

TreadMarks: shared memory computing on networks of workstations, IEEE Computer 29 (2) (1996)

18–28.

[5] D.R. Khandekar, Quarks: distributed shared memory as a basic building block for complex parallel

and distributed systems, Master’s Thesis, University of Utah, 1996.

[6] E. Speight, J.K. Bennett, Brazos: a third generation DSM system, USENIXWindows NTWorkshop,

August 1997, pp. 95–106.

[7] F. Mueller, Distributed shared-memory threads: DSM-Threads, Workshop on RunTime systems for

Parallel Programming, April 1997, pp. 31–40.

[8] M. Pizka, C. Rehn, Murks––A POSIX threads based DSM system, in: Proceedings of the

International Conference on Parallel and Distributed Computing Systems, 2001.

[9] Y.C. Hu, H. Lu, A.L. Cox, W. Zwaenepoel, OpensMP for networks of SMPs, Journal of Parallel and

Distributed Computing 60 (12) (2000) 1512–1530.

[10] S. Roy, V. Chaudhary, Strings: a high-performance distributed shared memory for symmetric

multiprocessor clusters, in: International Symposium on High Performance Distributed Computing,

July 1998, pp. 90–97.

[11] Y.-S. Kee, J.-S. Kim, S. Ha, ParADE: an OpenMP programming environment for SMP cluster

systems, in: Proceedings of ACM/IEEE Supercomputing, November 2003.

[12] OpenMP C and C++ Application Programming Interface, Version 1.0, October 1998. Available from

<http://www.openmp.org>.

[13] Message-passing Interface Forum, MPI: a message-passing interface standard, International Journal

of Supercomputer Applications and High Performance Computing, 8 (3–4) (1994) 159–416.

[14] D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shubert, F. Berry, A. Marie Merritt, Ed.

Gronke, C. Dodd, The virtual interface architecture, IEEE Micro 18 (2) (1998) 66–76.

[15] L. Iftode, Home-based shared virtual memory, Ph.D. Thesis, Princeton University, 1998.

[16] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo, M. Yarrow, The NAS Parallel

Benchmarks, Report NAS-95-020, 1995. Available from <http://www.nas.nasa.gov/Software/NPB>.

[17] J. Robicheaux, 1998. Available from <http://www.openmp.org/samples/jacobi.f>.

[18] B. Magro et al., 1998. Available from <http://www.openmp.org/samples/md.f>.

http://www.openmp.org
http://www.nas.nasa.gov/Software/NPB
http://www.openmp.org/samples/jacobi.f
http://www.openmp.org/samples/md.f

	Memory management for multi-threaded software DSM systems
	Introduction
	The atomic page update problem
	The ParADE system
	Four atomic page update methods
	File mapping
	System V shared memory
	mdup() system call
	fork() system call

	Experiments
	Architecture of the ParADE multi-threaded SDSM
	Costs of basic operations
	Application performance
	Implementation cost

	Conclusions
	Acknowledgements
	References


