
A Hash-Based Key-Value SSD FTL With Efficient
Small-Value Support

Carl Duffy
Dept. Computer Science and Engineering

Seoul National University
cduffy@snu.ac.kr

Sang-Hoon Kim
College of Information Technology

Ajou University
sanghoonkim@ajou.ac.kr

Jin-Soo Kim
Dept. Computer Science and Engineering

Seoul National University
jinsoo.kim@snu.ac.kr

Abstract—Key-value SSDs have shown promise in various
domains, as their ability to index key-value data inside the disk
itself can remove either all or most of the need to maintain and
transfer indexing data to and from the host system.

However, some KVSSDs suffer from an issue that will likely
be a sticking point in the road to adoption; they can’t efficiently
store small values. This work first adapts a previously-existing
key-value SSD FTL onto a realistic SSD performance model using
NVMeVirt, a software defined SSD emulator. Then, we introduce
an improved FTL wherein the key-value SSD can handle much
smaller key-value pairs with increased performance and without
excessive space amplification.

Our improved FTL, while being able to store significantly
smaller key-value pairs, outperforms the existing scheme across
a range of tests and metrics. For example, in write-heavy tests
our FTL outperforms the original scheme by up to 2×, with a
90% reduction in write amplification.

Index Terms—key-value storage, key-value ssd, flash transla-
tion layer

I. INTRODUCTION

Key-value SSDs (herein referred to as KVSSDs) index
key-value data inside the device itself, receiving key-value
commands directly via a key-value interface. This is in contrast
to the commonplace architecture where an index is stored in
the host system’s memory, and it is the user’s responsibility to
maintain and persist the index on a block interface-based SSD.
For example, users can store and retrieve key-value data by
sending store and retrieve commands directly to the KVSSD
itself [1].

KVSSDs introduce an attractive prospect; because data for
the index no longer needs to be transferred between the disk
and the host system, significant amounts of data transfer across
the data bus can be avoided, which can lead to increased
performance. Moreover, since the device itself accepts key-
value commands, it is possible to delegate the expensive task
of stale data removal to the device itself with the delete
command. Indeed, previous work has shown that KVSSDs
can outperform block-SSD KV stores [2], [3] and file systems
[4].

However, a class of KVSSD that indexes data in-disk using
a hash table suffers from the problem of space amplification
when KV pairs are small. Inside the KVSSD, flash space
is organized into grains of data, with a single grain being
the smallest write unit. Each grain is given an index into a
hash table that is mapped to a physical address on disk. In

existing KVSSDs and hash-table KVSSD FTLs, this grain size
is between 512 bytes and 1KB. This means that KV pairs of
for example 100 bytes will induce roughly 5× to 10× space
amplification per pair. The core problem with this scheme
is that a grain bitmap, which is assumed to be completely
memory-resident, is used to determine which KV pairs are
invalid during garbage collection (GC). Decreasing the grain
size increases the size of the grain bitmap to unacceptable
levels.

This work introduces an improved hash-table KVSSD FTL,
which we refer to as Plus, that puts two insights into practice to
enable small KV pair storage without high space amplification.
The first insight involves how modern SSDs perform GC. GC
is typically performed at the superblock level (large groups of
blocks spanning several hundreds of MB), invoking thousands
of KV pair reads and writes per iteration. However, hash index
to physical address mappings are very small, thus persisting
these invalidated mappings to flash during normal operation
and reading them before GC introduces a negligible amount
of extra read and write overhead. This frees us from relying on
a memory-resident grain bitmap to discover invalid KV pair
mappings, allowing for much smaller grain sizes. The second
insight is that in a grain-based scheme, KV pairs will typically
consume many grains worth of data, even when the value size
isn’t particularly large. This means that significant portions
of the logical to physical mappings will go unused, and the
KVSSD’s internal mapping cache can forego their storage to
save space and reduce write amplification.

In this work we implement two FTLs on a software-defined
emulator called NVMeVirt [5]; Original, a standard hash-
based KVSSD FTL, and Plus, our improved version. The FTLs
run on top of a realistic flash performance model, originally
implemented and tested against a real NVMe block SSD. The
auxiliary to this work is the first realistic, extensible KVSSD
emulator that is available to the general public. The source
code for both FTLs and instructions to repeat the experiments
in this paper are available at https://www.github.com/snu-
csl/kvvirt.

Plus, while supporting a 64B grain size, outperforms Origi-
nal with a 512B grain size across all of our tests. For example,
on the YCSB A (write-heavy) test, Plus outperforms Original
by 2×, while reducing GC write amplification by 90%.

979-8-3503-8855-8/24/$31.00 ©2024 IEEE
NVMSA.2024

II. NVMEVIRT

NVMeVirt [5] is a software-defined NVMe SSD emulator,
meaning users write their own code for the SSD’s FTL and
provide the underlying flash timings. Different from other
emulators, NVMeVirt works by registering itself as a pseudo
PCIe device on the PCI bus, and thus presents itself as a real
NVMe device to the user (e.g. an nvme list command will list
the NVMeVirt device). User I/O may travel through the entire
storage stack before it reaches NVMeVirt, which is loaded as
a kernel module.

NVMeVirt works by executing FTL logic in real-time, while
producing flash read and write timings from said logic. The
timings generated from flash IO are used to determine when
a request completes. For example, a write from a user will
execute FTL mapping update logic in real-time, then generate
a flash page write timing. This write’s completion time will
depend on the user-configured flash speed.

Our reasons for choosing NVMeVirt in this work are
three-fold. First, we choose NVMeVirt over a real hardware
approach because acquiring real hardware requires high initial
effort and/or high cost. Second, we reject using a simulator
as simulators typically run much slower than real devices.
Finally, NVMeVirt’s architecture gives it a property that is very
useful for low latency (modern NVMe) device development
and testing; it enables a user to bypass the kernel stack entirely
using user-space I/O frameworks [6], which is an increasingly
popular topic in key-value storage [7]

III. DEMAND BASED KVSSD FTL

This section first introduces the FTL that our improved
scheme is based on, Original, then details the improvements
we make to help it handle small key-value pairs without space
amplification in Plus.

To the best of our knowledge, the original demand-based
KVSSD FTL scheme is the only open-source hash-based
KVSSD FTL available [8] and we use it and its grain based
scheme as the baseline in this work. Samsung’s real KVSSD
[9] also has a minimum value size (1KB), which implies that
it may also implement a grain based scheme.

A. Original Implementation

Original is based on the well-studied and understood DFTL
scheme for block SSDs [10], but adds functionality to support
variable sized KV pairs. We first walk through a store com-
mand.

Overview (1) A user calls the store command with a key
and value, targeting a KVSSD. Then, the KV pair is assigned
a physical grain on the disk; each physical page is divided
into a fixed number of grains, which represent the smallest
unit of write that the FTL will represent. For example, with
a grain size of 512 bytes, a key-value pair of 1024B in size
will occupy two grains. Likewise, a KV pair 100B in size will
occupy 1 grain, wasting 412B of space.

(2) The hash table contains hash index to grain mappings,
and is stored on flash, with some sections cached in the
KVSSD’s DRAM. The key is hashed, and the resulting value is

the hash index used to discover which section of the hash table
this key belongs to. For example, hash index H50 represents
section 0 of the hash table, which covers hash indexes 0 to
10231.

If this section of the hash table is absent from the KVSSD’s
DRAM, it is read from flash. This read from flash may cause
an eviction of a previously modified DRAM-resident hash
table section, triggering an extra flash write. Once the hash
table section is inside DRAM, the hash index for this key is
checked to find the old location of the KV pair on disk (i.e.
the old grain). The size of each hash table section is fixed, and
contains a fixed set of ordered hash index to grain mappings.
Therefore, finding a hash index to grain mapping is a simple
check of an offset within the page.

(4) Once the old grain is found, the physical page to which
this grain belongs is read into the KVSSD’s DRAM. The key at
the old grain is checked against the key for this store operation.
It is possible that keys do not match; two different keys have
hashed to the same hash index (a collision). In this case, the
store restarts from (2) with a new hash.

(5) If the keys match, the old grain is marked invalid (set to
0) in a completely DRAM-resident grain bitmap. Likewise, the
new grain on which the KV pair resides is marked valid (set
to 1) inside the same bitmap. The grain bitmap is the central
structure used to check the validity of KV pairs in Original.
The store is now finished.

Notes retrieve works much in the same way as store, except
there is no new grain assigned. When the correct old grain is
found, data at the grain is copied back to the user. The amount
of grains a KV pair consumes (the length) is determined by
scanning the grain bitmap from the first grain of this pair to
the first valid grain of the next pair.

The hash index of each grain in a page is stored inside the
page’s out-of-bounds (OOB) area, and is used during GC. GC
works by first checking the grain bitmap at each victim page.
If all of the grains of a page are invalid, reading the page is
skipped. If one or more grains are valid, the page is read into
DRAM and the hash indexes are retrieved from the OOB area.
Each valid grain is copied to a new page, and the hash index
for that grain is used to update the corresponding hash table
section.

The Core Problem Original relies solely on the grain
bitmap to determine the validity of KV pairs, and the size
of the grain bitmap is directly tied to the size of the grain.
Consider a 4TB KVSSD with 4GB DRAM (a typical amount)
and a 512B grain size. This results in a grain bitmap of 1GB,
which fits comfortably in DRAM. However, if we reduce the
grain size to 64B, the grain bitmap is now 8GB, twice the
available DRAM. We use 64B as a grain size representative
of a small value in this work based on value size findings in
previous KV workload analyses [11].

1A hash index to grain mapping is 8B. Thus 4KB / 8B for 1024 indexes
per page.

DRAM
Flash

Cached Hash
Table Sections

Section 500

Section 0

Section 320

Section 1

Section 120

Section 400

Flash-Resident Hash
Table Sections

70 71 72 73 74

75

80

Key-Value Pair
Grains

Line 5 -> Page 1

Line 0 -> Page 0

Line 2 - > Page 3

Invalid Mapping
Pages

Per Page
Invalid Count
PPA09 → 2
PPA10 → 4
PPA11 → 2
PPA12 → 7

H70 → GX
H90 → GX
H40 → GX

H50 → G75 Line 6

Line 8

Invalid Mapping
Buffers

Previously
Flushed
Buffers

K0, V
K1, V
K2, V
K3, V

Grains 0 - 7
K3 -> G806

kv_store(“K3”, “V”)(1)

Write Buffer
(PPA 100)

K3, V

HASH(“K3”)
-> H50

(2)

Old grain
-> G75 (PPA 9)

(3)
Read G75

-> Key Match!

Line 0

(4)

(5)(6)
Update

H50 -> G806

Fig. 1. An overwrite store command in Plus. H refers to a hash table index. G refers to a grain.

IV. PLUS

The goal of Plus is to enable efficient small-value handling
(i.e. small grains). Achieving this goal consists of two parts;
the removal of the grain bitmap and the introduction of invalid
mapping pages, and a change in the caching scheme to reduce
the size of the mapping cache when possible.

A. Plus Part One - Enabling Smaller Grains

Plus introduces the idea of invalid mapping pages, which
allow us to check grain validity without the grain bitmap.
We step through a store command in Figure 1 and explain
Plus along the way. We assume 8 grains per page, and that
each hash table section (a page) holds a maximum of 480
entries. Each hash table section in Plus holds less than those
of Original, explained later in Section IV-B.

(1) A user calls store with key K3 and value V. The KV
pair is given a spot in PPA 100. Three two-grain pairs were
already assigned space in this page, and thus K3 gets grain
806 (PPA 100 * 8 grains per page + 6).

(2) K3 is hashed to get hash index H50. H50 belongs to
hash table section 0, which is already cached in DRAM. We
check section 0 for hash index 50, and find that it has already
been written to grain G75.

(3) G75, which is PPA 9, is read from disk. We compare
the key at G75 to K3 and find a match, meaning G75 is the
current location of K3.

(4) H50 → G75 is recorded in an invalid mapping buffer
for superblock 0, of which G75 belongs.

An invalid mapping buffer is a per-superblock, page-sized,
in-memory buffer of invalid hash index to grain mappings for
that superblock. Invalid mapping buffers eventually become
invalid mapping pages on flash when they are full. Multiple
invalid mapping pages typically exist per-superblock, and a
simple per-superblock list of the physical locations of these
pages is maintained in DRAM. Invalid mapping pages are
scattered around the flash space; they don’t necessarily reside
on the same superblock as the KV data.

Invalid mapping pages are how Plus checks the validity of
grains during GC. At the beginning of GC, the in-memory
list of invalid mapping pages for the victim superblock is

scanned and each invalid mapping page is read into DRAM. A
transient hash table of (invalid) hash index to grain mappings
is built based on the contents of the pages. When GC reads
a page containing KV data, the hash index to grain mappings
inside that page are first discovered from the OOB area, as in
Original. Next, for each hash index to grain mapping in the
page, we check the previously constructed invalid mapping
hash table. If there is a match in the table, this KV pair was
previously invalidated, and the copy is skipped. If there is no
match, this KV pair was never invalidated (i.e. it is valid),
and we need to copy it. At the end of GC, the DRAM list
of invalid mapping pages for the victim superblock is cleared,
and the invalid mapping hash table deallocated.

(5) The old version of K3 was 2 grains in size (calculated
via the grains in the OOB area) and belonged to PPA 9. We
add 2 to a per-page invalid count for PPA 9 in DRAM. This
per-page invalid count is used during GC to check whether or
not we can skip reading a page; if the count of invalid grains
inside a page is the same as the maximum grains per page, the
read can be skipped. This structure is memory-resident, and
never goes to flash during normal operation.

(6) The store finishes by updating the cached hash table
section with the new H50 G806 mapping.

What we Get The introduction of invalid mapping pages
means that we don’t need to rely on the grain bitmap for
validity checking. Setting a smaller grain size now affects how
much invalid mapping data we write and read. Hence, we trade
DRAM space for extra flash reads (at the beginning of GC)
and writes (to flush invalid mapping pages). The extra amount
of flash reads and writes is small. If we assume a 4TB SSD
with 8 channels, 8 LUNs per channel, 16KB pages, and 256
pages per block [12], we arrive at 16K 256MB superblocks on
disk. Consider that in a 50% full 256MB superblock, we need
to perform roughly 32K reads and 32K writes to copy valid
data. If we assume a 64B grain size in Plus, that’s 4M grains
per superblock, or 2M invalid grains on a 50% full superblock.
Each invalid hash index to grain mapping is 8 bytes, and thus
we had to write 4K extra pages to record invalid mappings,
and read 4K extra pages to get invalid mapping data at the
beginning of GC; an overhead of roughly 12%. GC is done in

the background, and invalid mapping page flushes are also sent
to the background, which means foreground requests don’t
need to wait for either to complete.

Memory Accounting In Plus, the memory overhead
consists of a per-superblock invalid mapping buffer, a per-
page invalid count, and a per-superblock list of flushed invalid
mapping pages. If we consider a 4TB KVSSD with 256MB
superblocks as before, we have 16K superblocks total. With
4K pages, that results in 64MB of invalid mapping buffers
that need to reside in DRAM. The per-page invalid counter
is 1 byte per-page, which adds an additional 1GB of DRAM
overhead. In a 256MB superblock, we have a maximum of
8K invalid mapping pages. If we take the worst case scenario
of half of the superblocks having the maximum number of
invalid mapping pages on flash, we need to store 4K * 8K *
4B worth of data to index the invalid mapping pages2, which
is around 256MB.

Minus cached hash table sections, the total memory usage
of Plus with a 64B grain size is roughly 1320MB. In Original,
a 64B grain size results in an 8GB grain bitmap.

B. Plus Part Two - Reduced Mapping Table Size

In both Original and Plus, the maximum hash table size is
equal to the size of the disk divided by the grain size. The hash
table size is fixed in Original; every hash table page on flash
stores every hash index to grain mapping, including those of
yet-to-be assigned hash indexes (empty mappings).

The ability to use a smaller grain size in Plus thanks to the
invalid mapping page scheme thus comes at a cost; the size
of the hash table increases by a factor of 8 (512B grain vs
64B grain) even if most of the grains are unused. Consider
a scenario where we fill the KVSSD with 1024B KV pairs;
2 grains in Original and 16 grains in Plus. Plus’s hash table
will be significantly larger, even though we are indexing the
same amount of pairs.

The second part of Plus is a straightforward but important
change to the caching scheme. In Plus, only live hash index to
grain mappings are stored in DRAM and on flash. Logically,
sections of the hash table in Plus represent the same sections
as in Original; only the physical layout changes. During
eviction and hash table GC, Plus groups live hash indexes
from different hash table sections until it gets a flash page
worth of indexes, then writes out the page.

Plus will store hash index to grain mappings as they arrive,
and thus can’t directly find an entry using a simple offset
calculation as in Original because mappings are out of order.
To speed up the hash index to grain mapping search, hash
table sections in Plus are organized as a two level table. The
first level is a sorted range of hash indexes (separator keys)
that point to parts of the second level of the table. In each part
of the second level, an unsorted list of hash indexes to grain
mappings less than or equal to the separator key is contained.
The first level does not contain pointers to the lower levels,
saving space; parts of the lower level are at fixed locations in

2A physical page address is 4B.

the hash table section (page) and don’t change. Additionally,
only the first level is sorted to avoid the CPU overhead of
sorting each part of the second level on every insert.

The first level of the table reserves four grains when using a
64B grain, which introduces a 6% space overhead on the hash
table only. Compared to a linear search, the two level table
reduces Plus’s average number of comparisons needed to find
a hash index to grain mapping in a full hash table section from
256 to 10.

Hash table sections in plus expand by a grain at a time
as needed. When a hash table section is the size of a page
(the maximum size), it is possible to sort hash index to grain
mappings during the final expansion, and replace the two level
table scheme with the offset calculation scheme as in Original.

TABLE I
YCSB WORKLOADS.

Workload Composition

A 50% read 50% update
B 95% read 5% update
C 100% read
D 95% read 5% update (latest distribution)
F 50% read-modify-write 50% read

V. EVALUATION

A. Machine and NVMeVirt Setup

All of the evaluations are carried out on a machine with
256GB DRAM and two 20-core Intel Xeon Gold 5218R CPUs.
NVMeVirt is loaded with one request dispatcher thread, one IO
worker thread (which copies data to and from memory, repre-
senting flash), one background GC thread, and one background
eviction thread. This four-core setup is intended to mimic the
amount of cores in a real KVSSD tested in previous work
[13]. For accurate performance, we configure the CPUs that
NVMeVirt uses on our test machine to run at a lower clock
frequency than the default, described later in section V-C.

We configure NVMeVirt to represent a small, fast NVMe
disk; a 128GB disk with 8 channels, 8 LUNs per channel,
4KB pages, and 32 pages per block. This results in a scaled-
down version of our 4TB running example where we have 16K
superblocks total on disk. Additionally, we use the same flash,
PCIe, and firmware speeds as in the original conventional FTL
implementation in NVMeVirt. These parameters were arrived
at by testing against a modern NVMe SSD.

B. Workloads

We test Original with a 512B grain size against Plus with
a 64B grain size. For these tests, we use the YCSB [14]
workload suite. The YCSB workloads are shown in Table I.
We skip workload E, as hash-table FTLs are not well suited
for range queries. Before the YCSB workload tests, the disk
is preconditioned. We populate the disk with 100M KV pairs
(roughly 80% of the disk when mapping data is taken into
account), and then perform 100M random overwrites. This
ensures constant GC throughout the runs with writes, and

represents a realistic scenario wherein a disk has already been
in use. The YCSB workloads are run for 10M operations each,
with 8B keys and 1000B values.

C. CPU Adjustments

The CPUs on our test machine are significantly more
powerful than those in typical SSDs, which can lead to
to unrealistically fast benchmark results. To obtain accurate
performance numbers, we run the Original source code with
a POSIX memory backend (unrelated to NVMeVirt) on two
different configurations:

Baseline: An ARM device with weaker cores similar to
those in modern computational SSDs [15]. We set up an 8GB
in-memory disk with 4M KV pairs and run YCSB A, B, and
C for 10 million operations, 50 times each. Average runtimes
are collected as the baseline. The tests are single-threaded and
pinned to a single core.

Test Machine: We repeat the tests using the same code and
in-memory backend on our test machine, again pinned to a
single core. The CPU frequency of the core is adjusted until
the YCSB test runtime matches the ARM device’s runtime
within a second. NVMeVirt’s cores are set to this CPU
frequency for the evaluation.

A B C D F0

150

300
Zip�an

A B C D F0

150

300

IO
PS

(x
10

00
) Uniform

Original
Plus

Fig. 2. YCSB workload performance.

R W0

20

40

To
ta

lK
V

Pa
ir

IO
(G

B)

R W0

25

50

75

To
ta

lG
C

H
as

h
Ta

bl
e

IO
(G

B)

A B C D F0

100

200

300

IO
PS

(x
10

00
)

50B 1000BOriginal Plus

Fig. 3. Total amount of KV data read and written (left) due to user requests,
and total amount of hash table data read and written during GC (middle). Both
for YCSB A Uniform. Finally, performance of Plus with a smaller value size
and significantly more total KV pairs (right).

D. YCSB

The YCSB results are shown in Figure 2.
Plus generally outperforms Original. In write-heavy tests,

Plus outperforms Original by up to 1.25× with high locality
(zipfian), and up to 2.1× without locality (uniform). In the
read-heavy tests, Plus outperforms by up to 1.4× without
locality. Plus performs better because it reads in and writes
out less data at every stage of execution. When evicting from
the cache, Plus packs live mapping table entries from several
different mapping pages into a page, because it only writes
out live hash table indexes. In comparison, Original writes
out the entire hash table section, even if most mapping aren’t

used. During GC, Plus again is able to pack more mapping
table entries into a single page than Original, resulting in less
write amplification. Plus also reads much less data during GC
because hash table sections are smaller. Finally, due to Plus
having a smaller grain size, it benefits from a larger logical
area over which to generate hash indexes. This reduces hash
collisions when compared to Original, meaning Plus needs to
read less KV pair data overall.

The total KV pair IO due to user requests and total GC
mapping IO for YCSB A uniform are shown in the left and
middle of Figure 3. Plus reads roughly 25% less KV data (less
collisions), and writes and reads out 90% less hash table data.

Plus performs well as value size decreases. We test Plus
against itself to see how performance holds at the same device
occupancy with small values, and thus more total KV pairs.
We repeat the YCSB tests with 50B values and 32GB disk, at
the same device occupancy as the previous YCSB tests. This
results in the disk hosting roughly 330M KV pairs. The results
are shown on the right hand side of Figure 3. Performance falls
both because GC takes longer with more grains to check, and
the mapping cache is less useful when there are more KV pairs
on the disk. However, while Plus is managing 16X more KV
pairs in the 50B value size case, performance drops by only
50% in the worst case.

Invalid mapping page reads and writes are a negligible
fraction of overall IO. Invalid mapping pages are used in
Plus to determine which pairs we need to copy during GC.
In the YCSB A (write-heavy) uniform run, roughly 40MB of
invalid mapping page data was both written and read. In the
same run, roughly 100GB total of user and mapping data was
written to the disk (due to user requests, mapping data, and
GC).

Plus Reduces TCO for a System. Given that Original uses
a 512 byte grain size, space amplification compared to Plus
is a simple calculation. At a 40 byte value size, Original will
only be able to fill the 128GB disk with roughly 260M KV
pairs (accounting for space used by the map). In comparison,
Plus will be able to hold roughly 2.1B, or 8× more.

The combination of invalid mapping page scheme and im-
proved cache in Plus results in a lower total cost of ownership
(TCO) for a system; it can store more KV pairs (reducing
the amount of disks needed), it performs better (decreasing
the amount of disks needed to hit throughput targets), and it
writes less data (increasing device lifetime), all on the same
hardware.

Plus marginally underperforms in YCSB C Zipf. In the
YCSB C read-only workload with high locality, Plus is 3%
slower than Original. In both schemes, the cache hit ratio is
similar; the working set is small enough that both Plus and
Original can cache all of its mappings. Plus pays a slight
overhead for finding hash index to grain mappings in its two-
level table scheme that Original does not, and this is the source
of the overhead. Considering the large range of benefits Plus’s
caching scheme brings outside of this specific test, we deem
the trade-off worthwhile.

TABLE II
CURRENT KVSSD SIMULATOR AND EMULATOR OFFERINGS. Sim REFERS

TO SIMULATOR, Emu REFERS TO EMULATOR.

Name Type SW Accurate Extensible
PinK [13] Sim OSS [8] No Yes
KVEMU [16] Emu Private No No
Samsung KVSSD Emu OSS [17] Partial No
NVMeVirt [5] Emu OSS [18] Partial No
This Work Emu OSS [19] Yes Yes

VI. RELATED WORK

KVSSD FTL Improvements PinK [13] is an LSM-
tree based KVSSD FTL that improves on the basic LSM-
tree design. Different to the hash-table based KVSSD FTLs
in this work, LSM-tree based KVSSD FTLs provide native
range queries, which are commonly used in KV store deploy-
ments. RHIK [20] is a dynamically resizable hash-table based
KVSSD indexing scheme. Mapping table entries in Plus are
resizable by nature; they get bigger as they hold more entries.
RHIK is thus unnecessary when following the Plus design.

KVSSD Simulators and Emulators In table II we survey
the availability of KVSSD simulators and emulators. We
note that there exist several real KVSSDs, but these are
either expensive or impossible to acquire [13], [21], [22]. De-
spite Samsung’s KVSSD Emulator and NVMeVirt’s existing
KVSSD FTL being open source and modifiable, we do not
classify them as extensible because they both work by using
timings from in-house testing of Samsung’s KVSSD, and don’t
present actual FTL logic. For the same reason, we class both
emulators as partially accurate with regards to performance;
they can emulate one type of KVSSD only.

From the survey we conclude that there doesn’t yet exist an
accurate, extensible KVSSD emulator. This work is thus the
first generally useful KVSSD emulator available.

VII. CONCLUSION

Hash-table based KVSSD FTLs are unable to efficiently
handle smaller KV pairs in their current form. This work
introduces a new hash-table KVSSD FTL that enables small
value storage with higher performance and longer device
lifetime.

ACKNOWLEDGMENTS

This work was supported by an Institute of Information
& communications Technology Planning & Evaluation (IITP)
grant funded by the Korean government (MSIT) (No. RS-
2021-II211363), an Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by
the Korean government (MSIT) (No. RS-2024-00349594), an
Institute of Information & communications Technology Plan-
ning & Evaluation (IITP) under the Artificial Intelligence Con-
vergence Innovation Human Resources Development (IITP-
2024-RS-2023-00255968) grant funded by the Korea govern-
ment(MSIT), and Samsung Electronics.

REFERENCES

[1] Snia key value storage api specification. [Online]. Available: https:
//www.snia.org/keyvalue

[2] C. Duffy, J. Shim, S.-H. Kim, and J.-S. Kim, “Dotori: A key-value ssd
based kv store,” Proceedings of the VLDB Endowment, vol. 16, no. 6,
pp. 1560–1572, 2023.

[3] M. Qin, Q. Zheng, J. Lee, B. Settlemyer, F. Wen, N. Reddy, and P. Gratz,
“Kvrangedb: Range queries for a hash-based key–value device,” ACM
Transactions on Storage, vol. 19, no. 3, pp. 1–21, 2023.

[4] J. Koo, J. Im, J. Song, J. Park, E. Lee, B. S. Kim, and S. Lee,
“Modernizing file system through in-storage indexing,” in 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
21), 2021, pp. 75–92.

[5] S.-H. Kim, J. Shim, E. Lee, S. Jeong, I. Kang, and J.-S. Kim, “Nvmevirt:
A versatile software-defined virtual nvme device,” in 21st USENIX
Conference on File and Storage Technologies (FAST 23), 2023, pp. 379–
394.

[6] Z. Yang, J. R. Harris, B. Walker, D. Verkamp, C. Liu, C. Chang, G. Cao,
J. Stern, V. Verma, and L. E. Paul, “Spdk: A development kit to build
high performance storage applications,” in 2017 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom).
IEEE, 2017, pp. 154–161.

[7] G. Haas and V. Leis, “What modern nvme storage can do, and how to
exploit it: High-performance i/o for high-performance storage engines,”
Proceedings of the VLDB Endowment, vol. 16, no. 9, pp. 2090–2102,
2023.

[8] Pink source code. [Online]. Available: https://github.com/dgist-datalab/
PinK

[9] Y. Kang, R. Pitchumani, P. Mishra, Y.-s. Kee, F. Londono, S. Oh, J. Lee,
and D. D. Lee, “Towards building a high-performance, scale-in key-
value storage system,” in Proceedings of the 12th ACM International
Conference on Systems and Storage, 2019, pp. 144–154.

[10] A. Gupta, Y. Kim, and B. Urgaonkar, “Dftl: a flash translation layer
employing demand-based selective caching of page-level address map-
pings,” Acm Sigplan Notices, vol. 44, no. 3, pp. 229–240, 2009.

[11] Z. Cao, S. Dong, S. Vemuri, and D. H. Du, “Characterizing, modeling,
and benchmarking rocksdb key-value workloads at facebook,” in 18th
USENIX Conference on File and Storage Technologies (FAST 20), 2020,
pp. 209–223.

[12] X. Zhang, S. Pei, J. Choi, and B. S. Kim, “Excessive ssd-internal
parallelism considered harmful,” in Proceedings of the 15th ACM
Workshop on Hot Topics in Storage and File Systems, 2023, pp. 65–
72.

[13] J. Im, J. Bae, C. Chung, S. Lee et al., “Pink: High-speed in-storage
key-value store with bounded tails,” in 2020 USENIX Annual Technical
Conference (USENIX ATC 20), 2020, pp. 173–187.

[14] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing, 2010, pp. 143–154.

[15] Nvidia bluefield networking platform. [Online]. Available: https:
//www.nvidia.com/en-us/networking/products/data-processing-unit/

[16] S.-H. Kim, J. Kim, K. Jeong, and J.-S. Kim, “Transaction support using
compound commands in key-value ssds,” in 11th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage 19), 2019.

[17] Openmpdk kvssd emulator. [Online]. Available:
https://github.com/OpenMPDK/KVSSD/tree/master/PDK/core/src/
device abstract layer/emulator

[18] Nvmevirt source code. [Online]. Available: https://github.com/snu-csl/
nvmevirt

[19] Source code for this work. [Online]. Available: https://github.com/
snu-csl/kvvirt

[20] M. P. Saha, B. S. Kim, H. S. Gunawi, and J. Bhimani, “Rhik: Re-
configurable hash-based indexing for kvssd,” in Proceedings of the 32nd
International Symposium on High-Performance Parallel and Distributed
Computing, 2023, pp. 319–320.

[21] Y. Jin, H.-W. Tseng, Y. Papakonstantinou, and S. Swanson, “Kaml:
A flexible, high-performance key-value ssd,” in 2017 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2017, pp. 373–384.

[22] D. Min and Y. Kim, “Isolating namespace and performance in key-
value ssds for multi-tenant environments,” in Proceedings of the 13th
ACM Workshop on Hot Topics in Storage and File Systems, 2021, pp.
8–13.

