
Efficient Read Disturb Management Schemes in
Resource-constrained Flash Memory Controller

Ikjoon Son and Jin-Soo Kim
Dept. Computer Science and Engineering

Seoul National University
{ikjoon.son, jinsoo.kim}@snu.ac.kr

Abstract—Whenever a read operation is performed in a flash
memory storage device, the surrounding cells in the same
block are affected and their reliability gradually decreases. This
phenomenon is known as read disturb problem. A remedy to
this read disturb is to count the number of read operations for
each block and perform read reclaim, the process of moving the
existing data to a new block when the count reaches a predefined
threshold. However, as the number of blocks in the flash memory
device increases, maintaining the per-block read count requires
a great amount of memory space in the controller. Therefore,
system designers are forced to maintain read counts for a group
of blocks (i.e. superblock) which results in the loss of accuracy.

This paper proposes novel read disturb management schemes
that can reduce the number of read reclaims significantly even if
the read count is maintained for each superblock. In the proposed
Pointer-based scheme, we keep track of the last block read so as
to avoid excessive increase in the read count when the data is read
sequentially. We also propose the Bitmap-based scheme that can
successfully approximate the actual read count in the presence of
random reads, with a negligible space overhead. Our experiments
with real-world traces show that the Pointer-based scheme and
the Bitmap-based scheme reduce the number of read reclaims
by 65.5% and 90.5% on average, respectively, compared to the
conventional scheme.

Index Terms—Read disturb, Read reclaim, NAND flash mem-
ory, SSDs (Solid State Drives)

I. INTRODUCTION

For a long time, computer systems have relied on magnetic
HDDs (Hard Disk Drives) as long-term non-volatile storage
devices. During the past couple of decades, however, the
market is being replaced rapidly with SSDs (Solid State
Drives) based on NAND flash memory technology.

NAND flash memory has increased the performance of
storage devices dramatically, but also introduced new prob-
lems. In addition to the basic flash management functional-
ities such as address mapping and garbage collection, flash
memory controllers have been constantly striving to meet
ever-increasing high reliability requirements as non-volatile
devices. For example, in modern flash memory controllers, it
is considered essential to use strong ECCs (Error Correction
Codes) such as BCH [1] and LDPC [2] to recover from various
errors in NAND flash memory.

In particular, read disturb is one of the significant factors
that affects the reliability of NAND flash memory. It is the
well-known characteristic of NAND flash memory that the
repeated read operations to the same block widen the state
distributions of nearby cells [3], [4]. This read disturb problem

not only increases the error rate in the surrounding pages,
but also makes it difficult to detect in real-time. Also, it
is challenging to predict which block is more affected than
others.

A classic approach to cope with the read disturb stress is to
track the number of read operations for each block and moves
all the valid data within the block to another block when a
certain threshold is reached. This is called a read reclaim
operation. However, today’s flash-based storage devices are
composed of multiple dies and each die in turn has hundreds
or thousands of blocks. Therefore, maintaining the per-block
read count requires a great amount of memory space in the
controller. Specifically, the controller needs to manage all
firmware code and data in SRAM whose size is usually about
1MiB in mobile storage devices or DRAM-less SSDs. Even for
the SSDs that are equipped with a DRAM, most of the DRAM
capacity is devoted to the address mapping table, leaving only
a several tens of Kilobytes of memory space for storing per-
block read count.

One way to solve this problem is to maintain the read counts
in a more coarse-grained way by managing a single read
count for multiple blocks. Usually, flash-based storage devices
utilize the superblock technique, where multiple blocks across
different dies and planes are grouped as one large logical block
to exploit parallelism during read/write operations and garbage
collection [5]. Therefore, it is conventional to maintain a single
read count for each superblock.

Unfortunately, the conventional approach with the per-
superblock read count has a number of problems. Let us as-
sume that T denotes the per-block threshold value that initiates
a read reclaim operation. If we increase the threshold to n×T
where n is the number of blocks in each superblock, there is
no way to prevent the read disturb problem from taking place
when only a single block is repeatedly accessed. Inevitably,
if we apply the same threshold T for each superblock, it will
overestimate the actual read count when the blocks within a
superblock are sequentially accessed, causing premature read
reclaim operations.

Excessive read reclaim operation causes performance degra-
dation due to massive data copy operations. In particular, in
situations where read operations are intensive to reach the limit
of read disturbance, the program operation for reclaim causes
QoS (Quality of Service) degradation due to long tail latency.
Excessive reclaim also increases the number of block erasures,



Fig. 1: Cell distribution over time (Red areas represent
erroneous cells)

which reduces the lifetime of the entire device. Unnecessary
block erasure also reduces the lifetime of the entire device. As
the data density of NAND increases, the limit on the number
of erase operations is steadily decreasing. Therefore, it is more
important to minimize the number of block erasures.

This paper presents novel read disturb management schemes
that can solve the aforementioned problems. Our goal is to
make the per-superblock read count closely track the worst
per-block read count within a superblock as much as possible
with negligible additional memory overhead. To this end,
we devise sophisticated strategies that manipulate the per-
superblock read count by identifying the patterns of read
operations performed in each superblock.

First, we propose the Pointer-based scheme where we keep
track of the last block read to avoid excessive increase in
the per-superblock read count when the data is read sequen-
tially. We also propose the Bitmap-based scheme that can
show better performance in the presence of random reads.
Throughout comprehensive trace-driven simulations with six
real-world traces, we show that the Pointer-based scheme and
the Bitmap-based scheme reduce the number of read reclaims
by 65.5% and 90.5% on average, respectively, compared to the
conventional scheme. The additional memory space required
for the Bitmap-based scheme is only about 7KiB for a 1TiB
flash storage device.

II. BACKGROUND & RELATED WORK

NAND flash memory stores data in a group of cells having
a threshold voltage (Vth) set to a specific level. Setting up
the Vth of cells is called a program operation while reading
data according to the Vth of cells is called a read operation.
The unit of the read and program operation is a page that
usually consists of hundreds of thousands of cells. To store
new data in the programmed page, the erase operation must
be preceded for a block containing the page. Typically, each

Fig. 2: Applied voltages when reading WL1

block contains hundreds of pages. By using multiple levels of
Vth’s, each cell can store more than one bit of information.
NAND flash memory is classified from SLC (Single Level
Cell) to QLC (Quadruple Level Cell) based on the number of
bits each cell represents.

The Vth of the programmed cell changes over time due to
various factors. Typical examples include program disturb that
occurs while programming a page, read disturb while reading
a page, and retention errors caused by charge leakage over
time [6]. Although each factor has slightly different character-
istics, they generally widen the cell distribution, which makes
it challenging to identify the state of each cell, as illustrated
in Fig. 1.

When a read operation is performed on a page, the read
disturb occurs in the remaining pages of the block. This is
because, in order to read the data of a specific wordline,
a high voltage, Vpass, should be applied to the rest of the
wordline as shown in Fig. 2. Because it is difficult to precisely
measure the amount of disturb applied to nearby cells in real-
time, most flash controllers indirectly use the number of read
operations per block as a metric. When the read count reaches
the threshold preset by the NAND manufacturer, the controller
performs a read reclaim operation that moves the data into
another block.

There are several studies that aim to reduce the overhead
caused by the read reclaim operation. Read leveling [7]
suppresses the intensive increase in the read count of a specific
block by scattering read-hot data into multiple blocks. This
approach can reduce the number of read reclaim operations
due to read-hot data. However, read-hot data is also considered
as write-cold data by the controller since it is not updated
frequently. Distributing such write-cold data into multiple
blocks can increase the garbage collection cost.

In order to reduce the effect of read disturb, RedFTL [8],
[9] proposes to lower the read voltage through a fine-grained
programming for such blocks that are expected to receive
high read stress. Also, RedFTL tries to distribute data to
LSB/CSB/MSB pages according to its hotness. However,
RedFTL necessitates a 1-byte counter for each LBA (Logical
Block Address), which would require a significant cost to be
adopted in modern flash-based storage devices.



Fig. 3: Changes in read counts during sequential read operations

Cai et al. propose an adaptive scheme that determines
whether a read reclaim is actually needed by performing the
test reads at regular intervals after the read count reaches
the threshold [10]. However, it is challenging to determine
the right timing and the location of test read operations
because there are pages that are more vulnerable due to
the manufacturing process or whether the surrounding pages
are programmed [11], and the error rate increases exponen-
tially [12]. In addition, this scheme also requires the read
count management, so it can be used in combination with
the schemes proposed in this paper.

III. DESIGN

A. Baseline schemes

In this paper, we consider two baseline schemes based
on the granularity the read count is managed. In the Ideal
scheme, an individual block keeps track of the number of
read operations performed in the block. On the other hand, the
controller maintains a single read count for each superblock
in the Conventional scheme. For both schemes, we assume
that the threshold for initiating the read reclaim operation is
conservatively set to the same value.

Note that the Ideal scheme minimizes the number of read
reclaims due to the fine-grained per-block read count, but it
is impractical because of the enormous memory requirement.
Compared to the Ideal scheme, the Conventional scheme
can reduce the memory overhead by a factor of n where
n is the number of blocks within a superblock. However,
the Conventional scheme suffers from the fact that the per-
superblock read count alone cannot properly reflect the actual
states of individual blocks.

Assume that BH indicates the block that receives the highest
number of read operations within a certain superblock. In this
case, we define the read count of the block BH as the effective
read count or R̄ of the superblock. On the contrary, we define
the per-superblock read count as the estimated read count or
Rest. For the Ideal scheme, Rest is always equivalent to R̄.
However, depending on the read patterns, Rest can be much
higher than R̄ in the Conventional scheme.

B. Pointer-based scheme

The Pointer-based scheme is inspired by the observation
that Rest becomes significantly higher than R̄ when the blocks
within a superblock are sequentially read in the Conventional

scheme. Fig. 3 shows an example of this scenario. Usually
the data to be read is striped across multiple blocks in order
to increase the parallelism during write and read operations.
Therefore, while a sequential read operation is performed,
the controller repeats the following phases: (a) read the data
from block i and moves to next block i + 1, and (b) if the
current block is the last block, moves to the first block in the
superblock. In this example, the read count of an individual
block is incremented only when one of pages in the block
is read. However, the Conventional scheme simply increases
Rest on every read operation to the superblock. After reading
11 pages sequentially in Fig. 3, R̄ becomes only 3 while
Rest becomes 11 in the Conventional scheme. Reading back
a bunch of data from storage sequentially in the order it was
written is a very common behavior, so the overestimation
similar to this example may occur under normal circumstances.

The proposed scheme introduces a pointer p for each
superblock in order to detect this type of read pattern. The
pointer p is used to refer to the block where the latest read
operation is performed. When a new read operation arrives,
the previous block Blast pointed to by p is compared with
the block Bnew that will serve the new read operation. If the
block number of Bnew is larger than that of Blast, we do
not increment Rest anticipating that the new read operation is
likely to access the same stripe as the previous one. In other
case where Bnew’s block number is smaller than or equal to
Blast’s, we increment Rest. If Bnew is BH , p always points
to a block that is greater than or equal to the BH . So when the
next read occurs in BH and R̄ is incremented, it is guaranteed
that Rest will also be incremented and no underestimation will
occur. Note that it is important to increment Rest when the
new request is directed to the same block where the last read
has performed.

Now we estimate the memory overhead for the Pointer-
based scheme. In this scheme, all we need besides Rest

is a pointer. A single-byte pointer can manage up to 256
blocks. It is considered not a good practice to increase the
superblock size beyond 256 blocks because the use of large
superblocks brings inefficiency in terms of buffer management,
garbage collection, and address mapping. Also, the larger the
superblock size gets, the greater the discrepancy bewteen Rest

and R̄. Therefore, the one-byte pointer is sufficient to cover
most of the superblock configurations used in real devices.
Additionally, the packing of Rest and pointer into a single



(a) Pointer-based scheme (b) Bitmap-based scheme

Fig. 4: Flow charts of the proposed schemes

32-bit word can be considered. Since the read count is one
of the most frequently updated counters, even though 3 bytes
are sufficient to manage it until the threshold is reached, it is
sometimes preferred to store the read count in a 4-byte array
to avoid word-unaligned memory accesses. In this case, the
Pointer-based scheme using single-byte pointers has virtually
no additional memory overhead compared to the Conventional
scheme.

C. Bitmap-based scheme

The Pointer-based scheme is effective in reducing the gap
between Rest and R̄ for sequential or strided read access
pattern. However, although it performs better than the Con-
ventional scheme, it still significantly overestimates R̄ when
the blocks are randomly accessed. In order to further reduce
the gap between Rest and R̄ in the presence of random read
access pattern, we propose a novel Bitmap-based scheme.

The idea of the Bitmap-based scheme is to replace the
pointer in the Pointer-based scheme with the bitmap infor-
mation for all the blocks in a superblock. Each bit bi in the
bitmap corresponds to the block Bi and represents the current
state of the block Bi. If bi is 0, it means that there was no
read access recently in the corresponding block Bi. Whenever

there is a new read access to the block Bi whose bitmap bi
is 0, we set bi to 1 to denote that there was a read access to
the block Bi. On the other hand, if the corresponding bitmap
bi is already 1, it indicates that the block Bi is receiving two
read accesses in a short period time. In this case, we increment
Rest by one and clear the bitmap for the rest of the blocks.

The rationale behind the Bitmap-based scheme is to record
the read access history in the bitmap until one of the blocks
receives two read accesses. If the block Bi is accessed twice,
it is the time to increment Rest. At the same time, we clear
the history for other blocks because the previous history is
already reflected to Rest by the block Bi. Fig. 4 compares
the overall flow charts of the Pointer-based scheme and the
Bitmap-based scheme.

For the sequential read pattern, the Bitmap-based scheme
works just like the Pointer-based scheme, resulting in the same
value of Rest. In case of the random read pattern, the Bitmap-
based scheme can prevent excessive increase in Rest by
absorbing other read accesses until the same block is accessed
twice. Note that when the same block is continuously accessed,
Rest should be incremented continuously as is done in the
Pointer-based scheme. The Bitmap-based scheme achieves this
by leaving the bit for the last read block as 1 at the moment
Rest is incremented, instead of clearing the entire bitmap.
In addition, when a superblock is erased due to garbage
collection, we initialize Rest to 0, but we set all the bits of the
corresponding bitmap to 1 so that any subsequent read access
can increment Rest immediately.

If the size of the superblock is less than or equal to 8
blocks, we can accommodate the bitmap information into the
leftmost byte of the read count, in the same way as the Pointer-
based scheme. If the superblock size exceeds 8 blocks, we
need to allocate another s × (n − 8) bits in the metadata
area where s and n denote the number of superblocks and the
number of blocks within a superblock, respectively. Overall,
the additional memory overhead for implementing the Bitmap-
based scheme is merely about 7KiB for a 1TiB flash storage
device. The detailed memory overhead is analyzed in more
detail in Section IV-B.

Fig. 5: Changes in read counts during random read operations



TABLE I: Default simulation parameters

NAND Configuration
Planes 4

Physical blocks per plane 875

Logical wordlines 400 (512Gb NAND),
800 (1Tb NAND)

Cell type TLC
Page size 16KiB

Threshold for read reclaim 100,000
SSD Configuration

Over-provisioning (OP) 7%
Mapping unit 4KiB (page mapping)

Garbage collection Greedy

Fig. 5 compares how the read count is managed in the
Conventional scheme, Pointer-based scheme, and Bitmap-
based scheme, when the controller reads 8 pages as shown in
the left. In this scenario, R̄ = 3 as the block 3 has performed
three read operations. The Conventional scheme estimates the
read count as 8 because it simply increments the counter for
every read operation. We can see that Rest of the Bitmap-
based scheme is closest to R̄.

IV. EVALUATION

A. Experimental Setup

We have built an in-house trace-driven SSD simulator for
evaluating the proposed schemes. By default, we assume a
512GiB flash-based storage device consisting of eight 512Gb
TLC NAND dies with 4 planes. All the blocks across 8 dies
and 4 planes form a superblock. Therefore, one superblock is
composed of 32 flash blocks. The input traces are replayed
using a page-mapped FTL with the greedy garbage collection
policy. The threshold value for initiating the read reclaim
operation is set to 100K. Before each test, the entire LBA
range was filled sequentially for preconditioning. The impor-
tant simulation parameters are summarized in Table I.

B. Synthetic Workloads

First, we use three synthetic workloads: fully sequential
reads, fully random reads, and single page reads. Each work-
load performs 3TiB of reads on a 1GiB area of the device. In
single page reads, the same 4KiB data is repeatedly read 756M
times. The total number of read reclaim operations performed
for each workload is depicted in Fig. 6.

In fully sequential reads, the read reclaim count of the
Conventional scheme is higher than that of other schemes by
32x. This is because each superblock consists of 32 blocks. On
the other hand, we can see that the Pointer-based scheme and
Bitmap-based scheme show the same number of read reclaim
count as the Ideal scheme, even if they reduce the memory
overhead by a factor of 16∼32.

In fully random reads, the Ideal scheme increments Rest

by one for every 32 reads on average. Therefore, as in fully
sequential reads, the read reclaim count of the Conventional
scheme is higher than that of the Ideal scheme by 32 times.
Compared to the Conventional scheme, the Pointer-based
scheme reduces the reclaim count by almost half due to its

Fig. 6: Results of synthetic workloads

strategy that Rest is not incremented when the next read
access is going to the higher-numbered block. The Bitmap-
based scheme improves the reclaim count by 85.2% compared
to the Conventional scheme. Although the reclaim count of
the Bitmap-based scheme is still larger than that of the Ideal
scheme by 4.7 times, the Bitmap-based scheme only requires
7KiB of memory while the Ideal scheme requires 112KiB to
store read counts (cf. Section IV-D).

C. Real-world Workloads

We also evaluate the proposed schemes using real-world
workload traces. The traces used in this paper are summarized
in Table II. SYSTOR17 is the enterprise storage trace on
commercial office VDI environment used in [13]. EXCHANGE,
TPC-C, and TPC-E are the Microsoft Enterprise traces available
from SNIA IOTTA repository [14]. FINANCIAL is the OLTP
application trace running at two large financial institutions
and WEBSEARCH is the block I/O trace of a popular search
engine, both of which are available from UMass Storage Trace
Repository [15].

For the workloads whose traces are obtained from multiple
disks or LUNs, we have used the trace of a single storage
unit that has the largest amount of read requests. Since it is
required to simulate 1TiB or 8TiB SSDs to run the traces,
we assume that 1TiB SSD is composed of 16 512Gb dies
with 4 planes while 8TiB SSD is 64 1Tb dies with 4 planes.
Therefore, the superblock size is 64 blocks for 1TiB SSD and
256 blocks for 8TiB SSD. We have also repeated each trace
10∼300 times as shown in Table II, because the amount of
reads is not sufficient to compare the number of read reclaims
among different scheme. Fig. 7 compares the normalized read
reclaim counts of the traces.

TABLE II: Traces used in this paper (The last column
represents the proportion of requests larger than 16KiB)

Workload Description SSD Size Repeat R >16K
SYSTOR17 Office VDI 8 TiB 10 81.1%
EXCHANGE MS Exchange server 1 TiB 100 18.6%

TPC-C OLTP benchmark 1 TiB 100 4.1%
TPC-E OLTP benchmark 1 TiB 100 0.0%

FINANCIAL OLTP application 1 TiB 300 12.9%
WEBSEARCH Search engine 1 TiB 300 53.6%



Fig. 7: Results of real-world workloads

First, we can observe that the difference between the Ideal
scheme and the Conventional scheme is largely affected by the
superblock size except for TPC-C. In TPC-C, a large amount of
data is periodically overwritten and many blocks are garbage
collected before they reach the reclaim threshold in the Ideal
scheme, which relatively increase the reclaim counts of other
schemes.

The Pointer-based scheme considerably improves the re-
claim counts in all traces compared to the Conventional
scheme. This is because of the sequentiality that exists in each
trace. We can observe that the size of about 81.1% of read
requests are larger than 16KiB in SYSTOR17. So the larger the
read size, the slower Rest will be incremented in the Pointer-
based scheme compared to the Conventional scheme.

The sequentiality in the traces is also helpful for the Bitmap-
based scheme. Additionally, the Bitmap-based scheme is more
effective in mitigating the increase of Rest in workloads that
are predominantly composed of small random reads such as
TPC-C and TPC-E. They primarily comprise 95.9% and 100.0%
of small-sized reads, respectively, which leads to a notable
enhancement in reclaim count with the Bitmap-based scheme
outperforming the Pointer-based scheme by 30.8x and 4.8x,
respectively.

D. Memory Efficiency

The amount of memory needed to maintain the read count
is summarized in Table III for the assumed configurations
of 512GiB, 1TiB, and 8TiB SSDs. For the 8TiB SSD, the
Ideal scheme requires the memory close to 1MiB, which
is difficult to accommodate even on an SSD with DRAM.
The Conventional scheme can be implemented with a much
smaller table, but the reclaim count increases too fast. As a
compromise, the Pointer-based scheme requires only less than
1KiB of additional memory than the Conventional scheme,
but shows up to 3.9x improvement in the reclaim count. The
Bitmap-based scheme further reduces the reclaim count by
adding only 28.0KiB for maintaining the bitmap information
in the 8TiB SSD.

V. CONCLUSION

In flash-based storage devices, it is essential to manage
read disturb to ensure data reliability. This paper proposes the
Pointer-based scheme and the Bitmap-based scheme that can

TABLE III: Memory overhead
SSD Capacity 512 GiB 1 TiB 8 TiB

NAND Die Size 512 Gb 512 Gb 1 Tb
Physical blocks per superblock 32 64 256

Ideal scheme 112.0 KiB 224.0 KiB 896.0 KiB
Conventional scheme 3.5 KiB 3.5 KiB 3.5 KiB
Pointer-based scheme 4.4 KiB 4.4 KiB 4.4 KiB
Bitmap-based scheme 7.0 KiB 10.5 KiB 31.5 KiB

effectively prevent read disturb with low memory usage. The
efficiency of both schemes varies depending on the workload
characteristics. The Pointer-based scheme is useful when the
workload has a large amount of sequential reads, while the
Bitmap-based scheme further reduces read reclaims when the
workload has random reads, with adding only a negligible
amount of memory.

ACKNOWLEDGMENT

We would like to thank our anonymous reviewers for
their invaluable feedback. This work was supported by the
National Research Foundation of Korea (NRF) grant (No.
2019R1A2C2089773), and Institute of Information & commu-
nications Technology Planning & Evaluation (IITP) grant (No.
IITP-2021-0-01363) funded by the Korea government (MSIT).

REFERENCES

[1] R. C. Bose and D. K. Ray-Chaudhuri, “On a class of error correcting
binary group codes,” Information and control, vol. 3, no. 1, pp. 68–79,
1960.

[2] R. Gallager, “Low-density parity-check codes,” IRE Transactions on
information theory, vol. 8, no. 1, pp. 21–28, 1962.

[3] M. Kato et al., “Read-disturb degradation mechanism due to electron
trapping in the tunnel oxide for low-voltage flash memories,” in Proceed-
ings of 1994 IEEE International Electron Devices Meeting, pp. 45–48,
IEEE, 1994.

[4] N. Papandreou, H. Pozidis, T. Parnell, N. Ioannou, R. Pletka, S. Tomic,
P. Breen, G. Tressler, A. Fry, and T. Fisher, “Characterization and
analysis of bit errors in 3d tlc nand flash memory,” in 2019 IEEE
International Reliability Physics Symposium (IRPS), pp. 1–6, IEEE,
2019.

[5] M. Asnaashari, A. Chen, S. Nemazie, and D. P. McNamara, “Memory
super block allocation,” June 10 2014. US Patent 8,751,731.

[6] Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, and O. Mutlu, “Data retention in
mlc nand flash memory: Characterization, optimization, and recovery,”
in 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA), pp. 551–563, IEEE, 2015.

[7] C.-Y. Liu, Y.-M. Chang, and Y.-H. Chang, “Read leveling for flash
storage systems,” in Proceedings of the 8th ACM International Systems
and Storage Conference, pp. 1–10, 2015.

[8] K. Ha, J. Jeong, and J. Kim, “A read-disturb management technique for
high-density nand flash memory,” in Proceedings of the 4th Asia-Pacific
Workshop on Systems, pp. 1–6, 2013.

[9] K. Ha, J. Jeong, and J. Kim, “An integrated approach for managing
read disturbs in high-density nand flash memory,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 35,
no. 7, pp. 1079–1091, 2015.

[10] Y. Cai, F. Zhang, J. Lee, and H. Li, “Adaptive read disturb reclaim
policy,” Oct. 23 2018. US Patent 10,108,472.

[11] N. Papandreou et al., “Effect of read disturb on incomplete blocks in mlc
nand flash arrays,” in 2016 IEEE 8th International Memory Workshop
(IMW), pp. 1–4, IEEE, 2016.

[12] L. M. Grupp et al., “Characterizing flash memory: anomalies, observa-
tions, and applications,” in Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 24–33, 2009.

[13] C. Lee et al., “Understanding storage traffic characteristics on enter-
prise virtual desktop infrastructure,” in Proceedings of the 10th ACM
International Systems and Storage Conference, pp. 1–11, 2017.

[14] SNIA IOTTA repository, http://iotta.snia.org.
[15] UMass trace repository, http://traces.cs.umass.edu.


