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Abstract—Flash memory devices commonly rely on traditional
address mapping schemes such as page mapping, block mapping
or a hybrid of the two. Page mapping is more flexible than
block mapping or hybrid mapping without being restricted by
block boundaries. However, its mapping table tends to grow large
quickly as the capacity of flash memory devices does. To overcome
this limitation, we propose a novel mapping scheme that is
fundamentally different from the existing mapping strategies.
We call this new scheme Virtual Extent Trie (VET), as it manages
mapping information by treating each I/O request as an extent
and by using extents as basic mapping units rather than pages or
blocks. By storing extents instead of individual addresses, VET
consumes much less memory to store mapping information and
still remains as flexible as page mapping. We observed in our
experiments that VET reduced memory consumption by up to an
order of magnitude in comparison with the traditional mapping
schemes for several real world workloads. The VET scheme also
scaled well with increasing address spaces by synthetic workloads.
With a binary search mechanism, VET limits the mapping time
to O(log log∣𝑈 ∣), where 𝑈 denotes the set of all possible logical
addresses. Though the asymptotic mapping cost of VET is higher
than the O(1) time of a page mapping scheme, the amount of
increased overhead was almost negligible or low enough to be
hidden by an accompanying I/O operation.

I. INTRODUCTION

Flash memory solid state drives (SSDs) have been increas-
ingly used as an alternative to conventional hard disk drives.
The lack of moving parts in the flash memory devices frees
them from long latency and excessive power consumption, and
allows for lightweight design and strong resistance to shock.

Since flash memory does not allow any data to be updated
in place, most flash memory devices come with a software
layer called Flash Translation Layer (FTL) that is responsi-
ble for logically emulating conventional disk abstraction [1].
Generally, FTL guides a write request arriving from a host
into an empty area in flash memory, and manages mapping
information from a logical address recognized by the host to a
physical address in a flash memory device. For FTL to perform
this logical-to-physical (L2P) address translation, a mapping
table needs to be maintained inside a flash memory device.

Contemporary flash memory devices commonly rely on
an address mapping scheme that uses a page (often 4KB)
or a block (usually 256KB) as a unit of mapping. In page
mapping [2], the granularity is a page, and flexibility is the
foremost advantage since the logical address of a page can be
mapped to any physical location on a flash memory device. As

the capacity of flash memory devices grows, however, page
mapping requires them to provide large RAM capacity for
maintaining the large mapping table. In the case of a 4TB
flash memory SSD, for example, the size of its mapping table
can be as large as 4GB.

In block mapping [3], the granularity is a block, and the
size of a mapping table is much smaller because of the larger
granularity of mapping. In the above example, the table size
would be only as small as 64MB. However, block mapping
has a critical shortcoming. The physical location of a logical
page is fixed to a certain page offset within a block. Updating
even a single page may require an entire block containing the
page to be copied to an empty block. This makes a pure block
mapping scheme impractical for most realistic workloads.

Hybrid mapping schemes (eg, FMAX [4], FAST [5],
Superblock-FTL [6], LAST [7]) have been proposed to take
advantage of the strengths of both page and block mapping
strategies. These hybrid schemes use extra flash memory
blocks as an over-provisioned space where recently updated
pages are stored without being restricted by their block bound-
aries, so that the addresses of these pages are managed more
flexibly by page mapping. This hybrid strategy helps reduce
the size of a mapping table, but this is only feasible at the
cost of over-provisioned flash memory (typically about 30%
of usable capacity) and increased mapping latency.

In this paper, we propose a novel mapping scheme that is
fundamentally different from the existing mapping strategies.
We call this new scheme Virtual Extent Trie (VET), as it
manages the mapping information such that a given I/O
request is treated as an extent and the extent is used as the
basic mapping unit. By storing extents instead of individual
addresses in requests, VET consumes much less memory space
to store the mapping information and still remains as flexible
as page mapping. Also, the VET scheme works regardless
of underlying flash architecture by either single or multi-
channels [8], since any type of physical address information
returned after flash writes can be simply stored with the
extents. The preliminary results show that VET can reduce
memory usage by up to an order of magnitude compared with
conventional mapping schemes for real world workloads.

With a binary search mechanism, VET limits the search
time for an extent to 𝑂(log log∣𝑈 ∣), where 𝑈 denotes the set
of all possible logical addresses. Though the asymptotic cost of
mapping by VET is higher than the O(1) time of an address
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translation by page mapping, we expect that the amount of
increased overhead would be almost negligible or low enough
to be hidden by an accompanying I/O operation.

The rest of this paper is organized as follows. Section II
outlines the design of the VET scheme. Section III proposes
the algorithms of the VET scheme. Subsequently, Section IV
presents the performance evaluation results using real world
and synthetic workloads. Section V provides related work.
Lastly, Section VI concludes this paper.

II. DESIGN PRINCIPLE

A. Extent-Based Mapping

In most traditional address mapping schemes, a page or a
block is used as the unit of mapping. For a given read or
write request from the host, FTL is responsible for translating
all logical pages (or blocks) that the I/O request wishes to
read or write to physical pages (or blocks) via its mapping
table. Hence, FTLs must know which logical page (or block)
is mapped to which physical page (or block) at all times by
maintaining the mapping information in the mapping table.

The VET scheme we propose in this paper takes advantage
of the fact that an I/O request from the host consists of a
logical start address and the number of sectors to read or
write. Therefore, each I/O request can be considered an extent
defined in the logical address space and can be stored in the
mapping table as a whole unit without being broken to multiple
pages or blocks.

When a new write request arrives, it creates new mapping
information or updates existing one. Specifically, if the request
writes into a logical area which is not occupied by valid
data, a new extent representing the write will be created
and inserted into the mapping table. The physical address
information associated with the request will also be stored
with the extent. If the request overwrites any valid data, one
or more extents representing existing data will have to be
updated. Those extents can be located by finding all extents
that overlap the incoming one of the write request. A read
request, in contrast, is treated as an inquiry extent. In order to
translate the logical addresses of the read request to physical
ones, VET will look for all existing extents that overlap the
extent of the read request and return physical addresses from
the found ones.

Unlike a page or block mapping scheme whose granularity
of mapping is fixed to either pages or blocks, VET stores
mapping information at the varying degree of granularity,
which is determined solely by each individual write request.
As will be presented below in detail, the mapping information
of a write request is represented by one or more canonical
extents. Since the size of a canonical extent can only be
bounded by the size of an entire logical address space, VET
can maintain mapping information in a more concise manner
and reduce the size of a mapping table considerably.

B. Virtual Trie

VET is a trie of binary strings but only in the logical sense
(as will be discussed shortly). Hence, it is a virtual trie. Each

binary string is composed of zeros, ones and special bits called
don’t care bits (denoted by ‘*’ characters). The don’t care bits
can appear only at the end of a string. All strings have the same
length but may have a different number of ‘*’ bits. A binary
string with a few trailing ‘*’ bits in fact represents an extent
whose length is a power of two. For example, an 8-bit binary
string 0010**** can be used to represent an extent whose
logical start address is 00100000 and whose length is 16.
Since not every extent has a power-of-two length, an extent
may have to be partitioned to one or more canonical extents
before being added to VET. Formally, canonical extents are
defined as follows.

Definition 1. An extent ⟨𝑠, 𝑙⟩ is said to be canonical if the
length 𝑙 is a power of two and the start address 𝑠 is a multiple
of 𝑙.

A canonical extent ⟨𝑠, 𝑙⟩ can always be represented by a
single binary string, which can be obtained by replacing the
least significant zeros in the binary representation of 𝑠 with
log2 𝑙 ‘*’ bits. For example, a canonical extent ⟨8, 4⟩ can be
represented by an 8-bit binary string (for simplicity) as below:

⟨000010**⟩.
In a virtual trie, a canonical extent serves as a key to identify
each node.

Note that physical start address 𝑝 associated with a canoni-
cal extent is excluded in Definition 1. Since 𝑝 does not involve
extent mapping in the paper, for convenience of our discussion
it is just omitted.

a: < >
: internal node
: leaf node

b: <0 > c: <1 >

: leaf node
e1 : stored extent

d: <10 > h: <11 >

o: <111 >f: <100 > i: <110 >

g: <1000 >
e3

j: <1100 > m: <1101 >g

k: <11001 > n: <11010 >
e1

j

k: 11001 n: 11010

e2

Fig. 1. Virtual Trie by Given Extents 𝑒1, 𝑒2 and 𝑒3

Figure 1 shows a virtual trie to store the input extents in
the canonical form as follows:

𝑒1 = {⟨0*******⟩, ⟨1000****⟩}
𝑒2 = {⟨11001***⟩, ⟨11010***⟩}
𝑒3 = {⟨111*****⟩}.

The VET scheme finds a set of canonical extents for them,
using node keys in top-down fashion, as shown in Figure 1.
For instance, given 𝑒1, the node a’s key (⟨********⟩) is
compared with 𝑒1 in the virtual trie. Because the key is not
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equivalent to 𝑒1, VET determines which child of node a can
subsume 𝑒1 in its entirety. In this case, neither of the children,
nodes b and c, can completely contain 𝑒1; thus, 𝑒1 is broken
into smaller extents that retain candidate canonical ones. In
this way, all the canonical extents of 𝑒1 can be located, and
𝑒1 is eventually kept by nodes b and g. Once the other input
extents 𝑒2 and 𝑒3 are stored, the virtual trie will look like
Figure 1.

In a virtual trie, there exist two types of nodes: leaf and
internal ones. They share the common key (or canonical
extent) structure, but only a leaf node can have a given extent.
The aforementioned leaf nodes b and g store 𝑒1, leaf nodes
k and n have 𝑒2, and leaf node o keeps 𝑒3 in Figure 1.
An internal node, on the contrary, just serves as a helper
that assists reaching leaf nodes. How the internal node gets
exploited will be explained in Section III-B.

A node in the virtual trie does not have any physical pointer
to its child. Instead, a node is associated with its child nodes
only logically and can identify them by unfolding the most
significant don’t care bit of the node to either ‘0’ or ‘1’. For
instance, nodes b and c in Figure 1 can be determined as the
left and right children of node a, as they share the same don’t
care bits except for the first one in their canonical extents.

C. Hash Table

VET is a virtual trie, but it physically stores canonical
extents into a hash table. The hash table is a traditional data
structure to return the associated value with a hashed key via
a hash function. In a virtual trie, a given extent is kept in
the form of canonical ones that serve as node keys, thereby
matching well with the hash table structure. Moreover, a hash
table lookup does not rely on how many entries are in the
table, as opposed to a physical trie structure. The average
hash table lookup, therefore, is typically done within O(1),
assuming that significant overflows or collisions do not take
place. These characteristics lead our decision to implementing
a virtual trie by a hash table.

III. ALGORITHMS FOR VIRTUAL TRIE

An I/O request arriving from the host is either a read or
a write operation that will be performed on a chunk of flash
memory. Each operation comes with the logical start address
and the size of a chunk. For a read operation, the task of VET
is to translate the logical addresses to physical ones for the
flash memory pages in the chunk. If the request is a write,
VET is provided with the physical addresses where the data
are actually written. VET is then responsible for updating the
address mapping information. This section presents the key
algorithms that VET uses to search for or update the address
mapping information.

As described in Section II, VET maintains the mapping
information in the form of canonical extents and stores the
extents in a virtual trie. Again, we implement the virtual
trie using a hash table. Therefore, all the operations such as
insertions, deletions and searches are explained in the context

of a trie, but they are actually performed by hash insertions,
deletions and lookups.

A. Update for Write Requests

A write request arriving from the host always causes data
to be written to clean pages in flash memory and the address
mapping information to be updated accordingly. If the data
are written to a location whose logical address is not occupied
by valid data, then a new piece of mapping information will
be created and added. If the data are written to a location
whose logical address overlaps - completely or partially - those
of existing valid data, then the mapping information of the
existing data being overwritten will be removed entirely or
partially replaced by that of incoming data. Since we store the
address mapping information in the form of canonical extents
in the VET scheme, handling a write request will involve
adding new extents to and removing old extents partially or
entirely from a virtual trie. This section elaborates how these
update operations are carried out in the VET scheme.

1) Inserting an Extent: Each write request is treated as
a given extent containing the start address and the size of
data to be written. The first step toward processing a write
request is to locate any existing extents overlapping the given
one. This can be done by the search algorithm described in
Section III-B. The next task of the VET scheme is to reinsert
the existing extents updated by the overlap (if any), deleting
outdated extents, and finally to add the given extent.

a) LIS (Linear Insertion Scheme): In general, a given
extent is not necessarily canonical as the request can be placed
anywhere in the address space. Thus, it needs to be converted
into one or more canonical extents. In the course of locating
its canonical extents, the VET scheme not only creates all of
its ancestor nodes but adds the canonical extent itself to the
virtual trie. We call this scheme LIS (Linear Insertion Scheme).

To understand how LIS works, let us revisit Figure 1
provided in Section II-B. For 𝑒3 = ⟨111*****⟩, for instance,
the VET scheme using LIS (linearly) inserts internal nodes a,
c, and h followed by leaf node o pointing to 𝑒3. If any of the
nodes already exists in the virtual trie, it is simply discarded.
If leaf node o formerly had its old existing extent, it would be
replaced by 𝑒3.

2) Deleting an Extent: If an extent generated by a write
request overlaps extents existing in the virtual trie, then the
mapping information stored in the existing extent will be inval-
idated either completely or partially. If it need be invalidated
completely, its corresponding extent will be removed from the
virtual trie. If it need be invalidated partially, the corresponding
extent will be divided so that only the invalidated portion can
be removed from the virtual trie.

Figure 2 exemplifies the partial invalidation. Suppose that
a given extent 𝑒4 = ⟨1100100*⟩ arrives at the trie. Because
𝑒4 overlaps 𝑒2 existing in the trie, 𝑒2 is decomposed into the
following extents:

𝑒4: {⟨1100100*⟩}
𝑒5: {⟨1100101*⟩, ⟨110011**⟩, ⟨11010***⟩}.
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Algorithm 1: LIS
input : key (at the current level), 𝑒 - A given extent
output : NONE

1 node← Perform a lookup with key ;
2 if key is a canonical extent of 𝑒 then
3 if node == NULL then Create a leaf node with 𝑒.
4 else
5 if node == internal then Delete the subtrie rooted

from node.
6 Have node keep 𝑒, removing the node’s old extent if

any.
7 end
8 else
9 if node == NULL then Create an internal node.

10 else if node == leaf then node switches to internal.
11 Recursively find the rest of the canonical extents of 𝑒 using

the left or right child of key.
12 end

1100 1101j: <1100 > m: <1101 >

k: 11001 n: <11010 >

p: <110010 >e2 t: <110011 >

q: <1100100 > r: <1100101 >q: <1100100 >

e4

r: <1100101 >

e5

Fig. 2. Example of Partial Invalidation

By the partial invalidation, the incoming extent 𝑒4 over-
writes one of the canonical extents of 𝑒2, and thus, the VET
scheme creates internal node p and leaf node q for 𝑒4. In
addition, now that the new extent 𝑒5 comprises the other
three canonical extents, VET generates leaf nodes r and t, and
simply keeps leaf node n, linking it to 𝑒5. Lastly, 𝑒2 is evicted
with leaf node k, which used to retain one of the canonical
extents (⟨11001***⟩) of 𝑒2.

Note that an incoming extent may require invalidating one
or more existing ones at the same time. As illustrated in Fig-
ure 3, the existing extents 𝑒2 = {⟨11001***⟩, ⟨11010***⟩}
and 𝑒3 = ⟨111*****⟩ get invalidated given an incoming
extent 𝑒6 = ⟨11******⟩. This operation can be done in the
way of locating and deleting all internal and leaf nodes used
to store 𝑒2 and 𝑒3. It can also be optimized by eliminating
an entire subtrie rooted from the previously common, internal
node h for 𝑒2 and 𝑒3, followed by adding 𝑒6 to the node h
now becoming a leaf one (as seen at lines 5-6 in Algorithm 1).

B. Search for Read Requests

When a read request arrives from the host, its logical address
has to be translated to a physical one. This is done by searching
the virtual trie for an extent containing the logical address.
Since again the trie storing the mapping information is virtual
and implemented by a hash table, the lookup operation can

becomes a leaf node

e6h: <11 >

o: <111 >i: <110 >

e3
j: <1100 > m: <1101 >

k: <11001 > n: <11010 >

e2

Fig. 3. Subtrie Deletion

be carried out without traversing the virtual trie. Instead, it
will be done more efficiently by performing a binary search
against the nodes on a path (or level) of the virtual trie that
contains the target node.

For example, if the logical address contained in a given read
request is 204 (or 11001100 in binary representation), then
the search begins at the mid point of the root-to-bottom path
by taking only the first half of the binary string as a search
key. In other words, the second half of the binary string is
replaced by ‘*’ (don’t care) bits, and the first search key is
formed as follows.

⟨1100****⟩
If a lookup with the search key above succeeds and the

match is found in a leaf node, then the search procedure will
terminate. From the fact that the logical address 11001100
is contained in a canonical extent ⟨1100****⟩, the logical-
to-physical address translation of 11001100 can be obtained
immediately from the leaf node.

If the lookup succeeds but the match is found in an internal
node, then the search procedure will continue on the lower half
of the path. This is because the target node may still be found
in the subtrie rooted by the internal node where the match is
found. To continue the search procedure in the lower half of
the path, a new search key is formed by restoring the first half
of the bits masked off by ‘*’ bits in the previous step. In this
case of the example, the next search key will be

⟨110011**⟩
A lookup may fail if there is no subtrie that contains the

target node. However, that does not necessarily mean that there
exists no canonical extent that contains the logical address. It
could just mean that the binary search has gone down too far.
If an extent is found at a level higher (than the non-existent
subtrie), then the logical-to-physical address translation can
still be obtained using the information stored by the extent.
Therefore, the search must continue by narrowing down the
scope upwards on the path (or by adding more trailing ‘*’ bits
in the search key). Continuing the running example, the next
search key will be
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⟨11001***⟩
In a nutshell, the direction of the next search is determined

by the existence of an internal node storing the current search
key. Figure 4 depicts the search process along the path of the
virtual trie.

the lookup on key at level hmid
h = 2

“up” path 
in case of the lookup fail

hup 2

hmid = 4 
p f

“down” path  

key

in case of the lookup success
hdown = 6

Fig. 4. Binary Search on VET Levels

Note that the scenario given in the example above is
somewhat oversimplified. If a read request is large, then its
extent may not be covered entirely by a single canonical extent
found in a leaf node. In this case, the search must continue
by forming a new search key for the unresolved portion of the
logical address (excluding the extent partially covered by the
canonical extent).

Algorithm 2: Extent Search
input : 𝑒 - A given extent
output : 𝐸 - A list of existing extents overlapping 𝑒

1 Push the very first search key into stack.
2 while stack is not empty do
3 node← Perform a lookup with a popped key.
4 if node ∕= NULL then /* Lookup success */
5 if node == leaf then /* Leaf node */
6 Put the existing extent kept by node into 𝐸,

updating the new start address using the found
extent.

7 Start over the search with a new key if possible.
8 else /* Internal node */
9 Continue the search on the lower half of the path

with a new key if possible.
10 end
11 else /* Lookup failure */
12 Continue the search on the upper half of the path with

a new key if possible.
13 end
14 end

Algorithm 2 elaborates the search procedure described
above. Note that the stack for storing search keys is exploited.
Again, the direction of the search is determined by the result
of a lookup with a popped key.

C. Optimization by Binary Insertion Scheme

A careful observation by the aforementioned binary search
could lead to the improvements on the insertion procedure of
LIS in terms of memory usage and processing time. Namely,

we can see that some ancestors for a canonical extent are not
used for the binary search on the target node. For instance,
leaf node k in Figure 1 has its following ancestors:

internal node a ********
internal node c 1*******
internal node h 11******
internal node i 110*****
internal node j 1100****

Node j is the first (and only) one to become visited in the
process of the binary search against the target leaf node k. In
other words, internal nodes a, c, h and i will not be used in the
rest of the search. Hence, it is unwise to insert those internal
nodes except node j for locating leaf node k. By adding only an
indispensable internal node(s), we are able to not only spend
less time on but also save much memory for the insertion
of an extent. This optimization scheme is called BIS (Binary
Insertion Scheme).

b: <0 >

h: <11 >

o: <111 >

g: <1000 >
e3

j: <1100 > m: <1101 >g

k: <11001 > n: <11010 >
e1

j

k: 11001 n: 11010

e2

Fig. 5. Virtual Trie via BIS by Given Extents 𝑒1, 𝑒2 and 𝑒3

Figure 5 represents the virtual trie made by BIS. Most of
the internal nodes are not seen, as opposed to Figure 1. It is
because the BIS approach derives internal nodes only lying
along with the binary search path for locating each canonical
extent, and adds them to the virtual trie.

Algorithm 3: BIS
input : key (at the current level), 𝑒 - A given extent
output : NONE

1 if key is a canonical extent of 𝑒 then
2 Locate and delete an outdated extent if any.
3 Insert internal and leaf nodes, considering the binary search

path on key.
4 Delete the subtrie rooted from the leaf node having key.
5 else Do line 9-11 in Algorithm 1.

Algorithm 3 shortly describes the process of BIS. Most
of the parts are similar to those of Algorithm 1. The BIS
algorithm, however, is slightly different, since it should locate
and remove a leaf node with an invalid extent that may lie
above a newly inserted internal node, as illustrated at line 2.
For instance, in Figure 2 node k with 𝑒2 must be evicted before
the insertion of internal node p. This extra operation is not
needed by LIS because node k will have been deleted already
by the time the internal node p gets inserted.
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Type Name Desc. Addr. Space # of Writes # of Reads
Avg. Write Size Avg. Read Size

Real

finance OLTP application[9] 644GB 8.2M 2.5M
3.7KB 2.5KB

homes MS Exchange Servers[10], [11] 542GB 16M 0.4M
4KB 12.0KB

wdev MS Exchange Servers[10], [11] 51GB 1.1M 0.23M (12.6KB)
8.2KB 12.6KB

wsf Web surfing activity on PC 32GB 0.3M 93K
22.5KB 19.8KB

Synthetic
Spew Spew[12] workload generator 16GB∼1TB 50K 0

83.8KB∼376.8KB N/A

TABLE I
REAL/SYNTHETIC WORKLOADS USED FOR THE PERFORMANCE EVALUATION

Type finance homes wdev wsf

Memory Usage (MB)
BIS 15.07 23.25 1.15 4.69
LIS 16.89 28.50 1.63 6.03

Write Read Write Read Write Read Write Read

Avg. Elapsed Time (us)
BIS 16.84 2.17 4.43 0.99 10.29 0.95 9.64 1.44
LIS 24.63 2.47 8.25 1.07 9.44 1.00 12.97 1.53

TABLE II
MEMORY FOOTPRINT AND AVERAGE ELAPSED TIMES

(a) finance (b) homes (c) wdev (d) wsf

Fig. 6. Histograms on Write Request Address

(a) finance (b) homes (c) wdev (d) wsf

Fig. 7. Histograms on Write Request Size

IV. EXPERIMENTS

In this section, we describe our environmental settings, and
present our simulation results.

A. Environment Settings

We implemented all of the proposed algorithms in C lan-
guage, and conducted all experiments on a low-end 32-bit
machine with a Pentium 4 CPU 3.00GHz processor and 2GB
memory, running the Linux system with a 2.6.32-32-generic
kernel version.

The description of the workloads used for the performance
evaluation is given in Table I. The real world traces -
finance, homes, wdev - were obtained from public I/O

trace repositories [9], [11], and wsf was the real workload
extracted from the web activity. The Spew trace gained by a
workload generator [12] comprises only write requests. As in
Section IV-B3, this trace was specially used for the analysis of
memory overhead with an increasing address space. We also
provide the histograms about write request address and size in
the real workloads, as illustrated in Figures 6 and 7.

B. Performance Evaluation

This section presents our performance evaluation results.
1) Overall Analysis: We analyze the overall performance

of the VET scheme on the real world traces, with respect to
memory usage and canonical extents.
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Fig. 8. Canonical Extent Statistics on a Given I/O Request

a) Memory Consumption: As seen in Table II, the
amount of memory needed to treat each trace was rela-
tively very small, considering the address space of the trace.
(Certainly, there was some mapping overhead.) Specifically,
the VET scheme only used at most about 17MB memory
for processing the finance trace, which had the largest
address space, irrespective of whichever insertion methods
(LIS or BIS) was employed. Apparently, homes consumed
the greatest deal of memory among them. It was because
the homes workload revealed the most widespread range of
request addresses, as illustrated in Figure 6, and it had far
more write requests than any other workload, as indicated in
Table I. This implies that a large deal of mapping information
needed to be created across the entire address space, and
correspondingly, much memory was needed for homes. In
contrast, the write requests of wdev were likely to show a
relatively narrow address range compared with the other traces.
In addition, the same request addresses tended to be accessed
repeatedly, thereby incurring no extra mapping information
written. For this reason, the wdev trace needed less memory
than the others. (The VET scheme is definitely advantageous
to this type of workload.) The finance workload appeared to
have as narrow an address range as that of wdev. However,
many of the addresses not clearly seen in Figure 6(a) were
far more widely scattered within and even outside the visible
address range. Of course, the number of the requests was
by far greater than that of wdev as well. The wsf trace
seemingly had a broader address range than the finance
one, but actually, it used only a few addresses in the entire
range, and consequently, the memory consumed by the VET
scheme was much less than that of finance.

b) Canonical Extents: Figure 8 illustrates the average
canonical extents in regard to an I/O request. For each
workload, the first and second bars mark average canonical
extents that were generated by and overlapped a given extent,
respectively. The third one indicates average canonical extents
responded to an inquiry extent.

As shown, the finance and homes workloads required
the largest and fewest average numbers of canonical extents
involving an I/O request, correspondingly. In the other traces,
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Fig. 9. Memory Overhead Comparison

much fewer average canonical extents per read request were
answered for wdev than for wsf. In the case of writes,
meanwhile, the wdev trace revealed slightly more average
extents overlapping but about half of ones generated per write
request than the wsf trace.

The observations above are fairly consistent with the aver-
age elapsed time results shown in Table II. The fewer canonical
extents involved, the faster the average elapsed times on a
given I/O request.

Note that all the traces on average generated at most three
canonical extents for an input extent, as shown in Figure 8.
This demonstrates that the theoretic bound (2log∣𝑈 ∣) on the
average number of canonical extents is overly pessimistic in
practice. The proof will be provided in the extended version
of the paper.

2) VET vs. Page/Hybrid Mapping Tables: As shown in
Figure 9, the VET scheme used much less memory than a
page mapping table (PMT) [2] or a hybrid mapping table
(HMT) [4], [5], [6], [7]. Specifically, when treating the work-
loads, it consumed only about 2.3%, 4.3%, 2.3%, and 27%
of the total memory required by the PMT in order. Even
compared with the HMT, the VET scheme used only about
5.3%, 9.8%, 5.2% and 64% of the HMT’s total memory in
order. This is attributed to the fact that the memory required
by VET is not dependent on address space size but mainly
determined by workload characteristics. The characteristics
can be defined in accordance with how small or big write
requests are, and how scattered or narrow their addresses are.

For instance, the average write request size of finance or
homes was not so small that at best two internal nodes were
created. Furthermore, both of the workloads had huge address
spaces more than 0.5TB, but their writes touched only a few
portions of each of the spaces, which did not create much
mapping information in VET. Thus, a large amount of the
memory could be saved.

The wdev trace had a small address space, but again many
of the writes, whose size was also optimized to VET, tended to
use the same addresses accessed before, thereby inducing no
additional memory consumption. In the case of wsf, it had the
smallest address space, and even fewer portions of the space
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were left intact unlike the other traces. Hence, the memory
reduction on wsf was not so great as that of the others.

3) Scalability Test: For this experiment, we populated the
Spew workloads by leveraging the Spew [12] tool; that is,
given an address space increasing from 16GB to 1TB, 50K
requests, whose size was a multiple of 8KB and determined
between 8KB and 1MB, formed each of the workloads.
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Figure 10 exhibits the memory consumed by all the
schemes. Because of a huge difference observed, the usage is
plotted in log scale. As the space got larger, the conventional
schemes suffered from enormous memory overhead, compared
with the VET scheme that rather remained flat. In particular,
the 1TB address space widened the gap between the PMT and
VET by up to two orders of magnitude.

V. RELATED WORK

Waldvogel et al. [13] propose an algorithm of obtaining the
best matching IP prefix through a binary search on a routing
table organized by prefix lengths. In fact, the prefix and the
routing table correspond to the concepts of a canonical extent
and a virtual trie mentioned in the paper. His work presented in
network domain, therefore, sounds similar to the VET scheme.

However, the main differences between VET and Waldvo-
gel’s work can be summarized as follows. First, extents stored
in a virtual trie must remain non-overlapping (disjoint) at all
times, so that the most recent mapping information should be
kept by getting the out-of-date one invalidated. In his work, on
the contrary, prefixes having the common one can co-exist in
the routing table. Secondly, his work needs to use backtracking
to find the best, correct matching prefix unless the longest one
is found. In the VET scheme, the backtracking does not take
place, as the search for a given logical address is terminated
immediately if any extent containing the address cannot be
located. Thirdly, an arbitrary prefix itself retains canonical
property, while a given extent does not have to be canonical.
Lastly, the routing table in his work is assumed to be static;
namely, it does not change much over time. Meanwhile, VET
is capable of handling the dynamic update of extents.

Page mapping [2] exhibits the least mapping overhead, O(1).
The VET scheme also defends the search time just within

O(log log∣𝑈 ∣), but it still falls behind page mapping [2] with
respect to the mapping time.

DFTL [14] was proposed to attack the random write prob-
lem in flash memory devices by leveraging temporal locality.
However, it still sticks to page mapping, so it cannot escape
from the burden of the memory overhead along with an
increasing address space.

Pure block mapping [3] typically earns the most space
reduction. It, however, cannot enjoy flexible utilization of
physical flash pages, because of the problem of the logical
page number offset that must be fixed within a block. As a
result, garbage collection overhead is extremely high, and it
is not purely used in practice.

Hybrid mapping [4], [5], [6], [7] to overcome such draw-
backs has been also proposed. Still, it is not so flexible as
page mapping. It even fails to gain more memory reduction
than VET, as shown in our experiments.

VI. CONCLUSION

In this paper, we proposed VET, a novel extent map-
ping scheme for flash memory devices. Compared with the
traditional mapping schemes, VET gained substantial space
reduction by even up to an order of magnitude on real traces,
and it also scaled very well with increasing spaces by synthetic
workloads. Such considerable memory reduction was achieved
with negligible mapping overhead.
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