
Journal of Systems Architecture 60 (2014) 357–371
Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc
Memory efficient and scalable address mapping for flash storage devices
1383-7621/$ - see front matter � 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.sysarc.2014.01.002

⇑ Corresponding author. Tel.: +1 520 370 1865.
E-mail addresses: yksuh@cs.arizona.edu (Y.-K. Suh), bkmoon@snu.ac.kr

(B. Moon), alon@cs.arizona.edu (A. Efrat), jinsookim@skku.edu (J.-S. Kim), swlee@
skku.edu (S.-W. Lee).
Young-Kyoon Suh a,⇑, Bongki Moon b, Alon Efrat a, Jin-Soo Kim c, Sang-Won Lee c

a Department of Computer Science, University of Arizona, Tucson, AZ 85721, USA
b Department of Computer Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
c School of Information and Communication Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon-Si, Gyeonggi-Do, Republic of Korea
a r t i c l e i n f o

Article history:
Received 14 July 2013
Received in revised form 4 December 2013
Accepted 13 January 2014
Available online 22 January 2014

Keywords:
Flash memory
I/O request
Extent mapping
Canonical extent
a b s t r a c t

Flash memory devices commonly rely upon traditional address mapping schemes such as page mapping,
block mapping or a hybrid of the two. Page mapping is more flexible than block or hybrid mapping
without being restricted by block boundaries. However, its mapping table tends to grow large quickly
as the capacity of flash memory devices does. To overcome this limitation, we propose novel mapping
schemes that are fundamentally different from the existing mapping strategies. We call these new
schemes Virtual Extent Trie (VET) and Extent Mapping Tree (EMT), as they manage mapping information
by treating each I/O request as an extent and by using extents as basic mapping units rather than pages
or blocks. By storing extents instead of individual addresses, our extent mapping schemes consume much
less memory to store mapping information and still remain as flexible as page mapping. We observed in
our experiments that our schemes reduced memory consumption by up to an order of magnitude in com-
parison with the traditional mapping schemes for several real world workloads. Our extent mapping
schemes also scaled well with increasing address spaces by synthetic workloads. Even though the asymp-
totic mapping cost of VET and EMT is higher than the O(1) time of a page mapping scheme, the amount of
increased overhead was almost negligible or low enough to be hidden by an accompanying I/O operation.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Flash memory solid state drives (SSDs) have been increasingly
used as an alternative to conventional hard disk drives. The lack
of moving parts in the flash memory devices frees them from long
latency and excessive power consumption, and allows for light-
weight design and strong resistance to shock.

Since flash memory does not allow any data to be updated in
place, most flash memory devices come with a software layer
called Flash Translation Layer (FTL) that is responsible for logically
emulating conventional disk abstraction [1].

Fig. 1 represents FTL and NAND flash memory architecture. As
shown in Fig. 1, FTL in general guides a write request arriving from
a host into an empty area in flash memory, and manages mapping
information from a logical address recognized by the host to a phys-
ical address in a flash memory device. For FTL to perform this log-
ical-to-physical (L2P) address translation, a mapping table needs to
be maintained inside a flash memory device.

Contemporary flash memory devices commonly rely on an
address mapping scheme that uses a page (often 4 KB) or a block
(usually 256 KB) as a unit of mapping. In page mapping [2], the
granularity is a page, and flexibility is the foremost advantage since
the logical address of a page can be mapped to any physical loca-
tion on a flash memory device. As the capacity of flash memory de-
vices grows, however, page mapping requires them to provide
large RAM capacity for maintaining the large mapping table. In
the case of a 4 TB flash memory SSD, for example, the size of its
mapping table can be as large as 4 GB.

In block mapping [3], the granularity is a block, and the size of a
mapping table is much smaller because of the larger granularity of
mapping. In the above example, the table size would be only as
small as 64 MB. However, block mapping has a critical shortcom-
ing. The physical location of a logical page is fixed to a certain page
offset within a block. Updating even a single page may require an
entire block containing the page to be copied to an empty block.
This makes a pure block mapping scheme impractical for most
realistic workloads.

Hybrid mapping schemes (e.g., FMAX [4], FAST [5], Superblock-
FTL [6], LAST [7]) have been proposed to take advantage of the
strengths of both page and block mapping strategies. These hybrid
schemes use extra flash memory blocks as an over-provisioned
space where recently updated pages are stored without being re-
stricted by their block boundaries, so that the addresses of these
pages are managed more flexibly by page mapping. This hybrid
strategy helps reduce the size of a mapping table, but this is only

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2014.01.002&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2014.01.002
mailto:yksuh@cs.arizona.edu
mailto:bkmoon@snu.ac.kr
mailto:alon@cs.arizona.edu
mailto:jinsookim@skku.edu
mailto:swlee@skku.edu
mailto:swlee@skku.edu
http://dx.doi.org/10.1016/j.sysarc.2014.01.002
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

Applica�ons / File Systems

Flash Transla�on Layer (FTL)

Block

Page

Block

Page

Block

Page

Flash
Device Flash Controller

Logical
Sector Write

Logical
Sector Read

Page
Read

Page
Write

Mapping
Tables

(VET/EMT)

RA
M

Logical-to-Physical
Address Transla�on

Fig. 1. FTL and NAND flash memory diagram.

358 Y.-K. Suh et al. / Journal of Systems Architecture 60 (2014) 357–371
feasible at the cost of over-provisioned flash memory (typically
about 30% of usable capacity) and increased mapping latency.

In this article, we propose two novel mapping schemes that are
fundamentally different from the existing mapping strategies. We
call these new schemes Virtual Extent Trie (VET) and Extent Mapping
Tree (EMT) (an enhanced version of VET), respectively, as they man-
age the mapping information such that a given I/O request is treated
as an extent and the extent is used as the basic mapping unit [8]. By
storing extents instead of individual addresses in requests, our ex-
tent mapping schemes consume much less memory space to store
the mapping information and still remain as flexible as page map-
ping. Also, the proposed mapping schemes work regardless of under-
lying flash architecture by either single or multi-channels [9], since
any type of physical address information returned after flash writes
can be simply stored with the extents. As demonstrated in Fig. 1, the
traditional mapping tables can be non-intrusively replaced by our
extent mapping schemes. The preliminary results show that our ex-
tent mapping schemes can reduce memory usage by up to an order of
magnitude compared with conventional mapping schemes for real
world workloads. They also scaled well with increasing address
spaces by synthetic workloads.

Though the asymptotic costs of mapping by VET and EMT are
slightly higher than the Oð1Þ time of an address translation by page
mapping, we expect that the amount of increased overhead would
be almost negligible or low enough to be hidden by an accompany-
ing I/O operation.

The article is organized in the following. Section 2 outlines the
design of our extent mapping schemes. Section 3 proposes the
algorithms for the VET and EMT schemes, and subsequently, Sec-
tion 5 analyzes the complexities of the algorithms. Section 6 pre-
sents the performance evaluation results of VET and EMT using
real and synthetic workloads. Section 7 provides related work.
Lastly, Section 8 concludes this article.

2. Design principle

In this section, we discuss our design principle behind the VET
and EMT schemes. We start by listing ideas that are shared by both
schemes.

2.1. Extent-based mapping

In most traditional address mapping schemes, a page or a block
is used as the unit of mapping. For a given read or write request
from the host, FTL is responsible for translating all logical pages
(or blocks) that the I/O request wishes to read or write to physical
pages (or blocks) via its mapping table. Hence, FTLs must know
which logical page (or block) is mapped to which physical page
(or block) at all times by maintaining the mapping information
in the mapping table.

The VET and EMT schemes we propose in this article takes
advantage of the fact that an I/O request from the host consists
of a logical start address and the number of sectors to read or write.
Therefore, each I/O request can be considered an extent [8] defined
in the logical address space and can be stored in the mapping table
as a whole unit without being broken to multiple pages or blocks.

When a new write request arrives, it creates new mapping
information or updates existing one. Specifically, if the request
writes into a logical area which is not occupied by valid data, a
new extent representing the write request will be created and in-
serted into the mapping table. The physical address information
associated with the request will also be stored with the extent. If
the request overwrites any valid data, one or more extents repre-
senting existing data will have to be updated. Those extents can
be located by finding all extents that overlap the incoming one of
the write request. A read request, in contrast, is treated as an in-
quiry extent. In order to translate the logical addresses of the read
request to physical ones, our extent mapping schemes will look for
all existing extents that overlap the extent of the read request and
return physical addresses from the found ones.

Unlike a page or block mapping scheme whose granularity of
mapping is fixed to either pages or blocks, the VET and EMT
schemes store mapping information at the varying degree of gran-
ularity, which is determined solely by each individual write re-
quest. In other words, while page or block mapping handles only
fixed-sized (one-to-one) mapping entries, our schemes manage
variable-sized (many-to-one) mapping entries. Nevertheless, we
observe the raw flash memory management (i.e., page or block
allocation, garbage collection, wear-leveling regarding the limited
number of erase counts, etc.) used in page mapping.

In subsequent sections, we describe what underlying structure
is considered to design both schemes.

2.2. Virtual trie for VET

VET is a trie of binary strings but only in the logical sense (as will
be discussed shortly). Hence, it is a virtual trie. Each binary string is
composed of zeros, ones and special bits called don’t care bits (de-
noted by ‘�’ characters). The don’t care bits can appear only at the
end of a string. All strings have the same length but may have a dif-
ferent number of ‘�’ bits. A binary string with a few trailing ‘�’ bits in
fact represents an extent whose length is a power of two. For exam-
ple, an 8-bit binary string 0010**** can be used to represent an ex-
tent whose logical start address is 00100000 and whose length is
16. Since not every extent has a power-of-two length, an extent
may have to be partitioned to one or more canonical extents before
being added to VET. In other words, the mapping information of a
write request is represented by one or more canonical extents. For-
mally, canonical extents are defined as follows.

Definition 1. An extent hs; li is said to be canonical if the length l is
a power of two and the start address s is a multiple of l.

A canonical extent hs; li can always be represented by a single
binary string, which can be obtained by replacing the least signif-
icant zeros in the binary representation of s with log2l ‘�’ bits. For
example, a canonical extent h8;4i can be represented by an 8-bit
binary string (for simplicity) as below:
h000010 � �i:
In a virtual trie, a canonical extent serves as a key to identify
each node.

Y.-K. Suh et al. / Journal of Systems Architecture 60 (2014) 357–371 359
Note that physical start address p associated with a canonical
extent is excluded in Definition 1. Since p does not involve extent
mapping in the article, for convenience of our discussion it is just
omitted.

Fig. 2 shows a virtual trie to store the input extents in the
canonical form as follows:
b:

g: <g

e1
e1 ¼ fh0 � � � � � � � �i; h1000 � � � �ig
e2 ¼ fh11001 � ��i; h11010 � ��ig
e3 ¼ fh111 � � � ��ig:
The VET scheme finds a set of canonical extents for the input ex-
tents, using node keys in top-down fashion, as shown in Fig. 2. For
instance, given e1, the node a’s key (h� � � � � � ��i) is compared
with e1 in the virtual trie. Because the key is not equivalent to
e1, VET determines which child of node a can subsume e1 in its en-
tirety. In this case, neither of its children – nodes b and c – can
completely contain e1; thus, e1 is split into smaller extents that re-
tain candidate canonical ones. In this way, all the canonical extents
of e1 can be found, and eventually e1 is kept by nodes b and g. Once
the other input extents e2 and e3 are stored, the virtual trie will
look like Fig. 2.

In a virtual trie, there exist two types of nodes: leaf and internal
ones. They share the common key (or canonical extent) structure,
but only a leaf node can have a given extent. The aforementioned
leaf nodes b and g are linked to e1, leaf nodes k and n to e2, and leaf
node o to e3, as shown in Fig. 2. An internal node, on the contrary,
just serves as a helper that assists reaching leaf nodes. How the
internal node gets exploited will be explained in Section 3.2.

A node in the virtual trie does not have any physical pointer to
its child. Instead, a node is associated with its child nodes only log-
ically and can identify them by unfolding the most significant don’t
care bit of the node to either ‘0’ or ‘1’. For instance, nodes b and c in
Fig. 2 can be determined as the left and right children of node a, as
they share the same don’t care bits except for the first one in their
canonical extents.

2.2.1. Hash table
VET is a virtual trie, but it physically stores canonical extents

into a hash table. The hash table is a traditional data structure to
return the associated value with a hashed key via a hash function.
In a virtual trie, a given extent is kept in the form of canonical ones
that serve as node keys, thereby matching well with the hash table
structure. Moreover, a hash table lookup does not rely on how
many entries are in the table, as opposed to a physical trie struc-
ture. The average hash table lookup, therefore, is typically done
within O(1), assuming that significant overflows or collisions do
not take place. These characteristics lead our decision to
implementing a virtual trie by a hash table.
a: < >
: internal node
: leaf node

 <0 > c: <1 >

: leaf node

: stored extent

d: <10 > h: <11 >

o: <111 >f: <100 > i: <110 >

1000 >
e3

j: <1100 > m: <1101 >

k: <11001 > n: <11010 >

j

k: 11001 n: 11010

e2

Fig. 2. Virtual trie by given extents e1, e2 and e3.
2.3. EMT

EMT is designed to enhance the performance of VET by more
efficiently handling a write request. EMT can be implemented by
any data structure that supports find, insert, delete, and successor
or predecessor. EMT manages extents using the basic operations.
In EMT, the key of a node is the logical start address of a write re-
quest representing an input extent. The data of that node com-
prises the length of the request and the corresponding physical
start address, which is not explicitly represented in this article
(as discussed in the VET scheme). We will discuss the algorithm
of EMT in greater detail in Section 4.
3. Algorithms for virtual trie

An I/O request arriving from the host is either a read or a write
operation that will be performed on a chunk of flash memory. Each
operation comes with the logical start address and the size of a
chunk. For a read operation, the task of VET is to translate the log-
ical addresses to physical ones for the flash memory pages in the
chunk. If the request is a write, VET is provided with the physical
addresses where the data are actually written. VET is then respon-
sible for updating the address mapping information. This section
presents the key algorithms that VET uses to search for or update
the address mapping information.

As described in Section 2, VET maintains the mapping informa-
tion in the form of canonical extents and stores the extents in a vir-
tual trie. Again, we implement the virtual trie using a hash table.
Therefore, all the operations such as insertions, deletions and
searches are explained in the context of a trie, but they are actually
performed by hash insertions, deletions and lookups.

3.1. Update for write requests

A write request arriving from the host always causes data to be
written to clean pages in flash memory and the address mapping
information to be updated accordingly. If the data are written to
a location whose logical address is not occupied by valid data, then
a new piece of mapping information will be created and added. If
the data are written to a location whose logical address overlaps
– completely or partially – those of existing valid data, then the
mapping information of the existing data being overwritten will
be removed entirely or partially replaced by that of incoming data.
Since we store the address mapping information in the form of
canonical extents in the VET scheme, handling a write request will
involve adding new extents to and removing old extents partially
or entirely from a virtual trie. This section elaborates how these
update operations are carried out in the VET scheme.

3.1.1. Inserting an extent
Each write request is treated as a given extent containing the

start address and the size of data to be written. The first step to-
ward processing a write request is to locate any existing extents
overlapping the given one. This can be done by the search algo-
rithm described in Section 3.2. The next task of the VET scheme
is to reinsert the existing extents updated by the overlap (if any),
deleting outdated extents, and finally to add the given extent.

In general, a given extent is not necessarily canonical as the re-
quest can be placed anywhere in the address space. Thus, it needs
to be converted into one or more canonical extents. In the course of
locating its canonical extents, VET not only creates all of its ances-
tor nodes but adds the canonical extent itself to the virtual trie. We
call this scheme LIS (Linear Insertion Scheme).

To understand how LIS works, let us revisit Fig. 2 provided in
Section 2. For e3 = h111 � � � ��i, for instance, the VET scheme using

j 1100 1101j: <1100 > m: <1101 >

n: <11010 >k: <11001 > n: <11010 >

e2
p: <110010 > t: <110011 >

e2
= {<11001 >

<11010 >}

{<1100101 >,
= <110011 >,

<11010 >}

q: <1100100 >

e4 = {<1100100 >}e4

r: <1100101 >

e5

Fig. 3. Example of partial invalidation.

becomes a leaf node

e6
h: <11 >

o: <111 >i: <110 >

e3
j: <1100 > m: <1101 >

k: <11001 > n: <11010 >

e2

Fig. 4. Subtrie deletion.

360 Y.-K. Suh et al. / Journal of Systems Architecture 60 (2014) 357–371
LIS (linearly) inserts internal nodes a, c, and h followed by leaf node
o pointing to e3. If any of the nodes already exists in the virtual trie,
it is simply discarded. If leaf node o formerly had its old existing
extent, it would be replaced by e3.

Algorithm 1. LIS

Algorithm 1 represents LIS. In Line 1, VET performs a lookup for
locating a node having a key. If the key is a canonical extent of a
given extent e (in Line 2), we create a new leaf node with the
key for e only if the lookup fails (in Line 3). If the lookup succeeds,
then the VET scheme links the node found by the lookup to e (in
Line 6). If the node is an internal, the VET scheme should remove
the subtrie rooted from the node before the linking (in Line 5).
(The deletion will be described in the next section.) Thereafter,
LIS is terminated, as a leaf node is found.

If the key is not a canonical extent of e (in Line 9), then VET cre-
ates a new internal node if the lookup fails (in Line 10), and if the
lookup succeeds locating a leaf node, VET switches the node to an
internal one (in Line 11). (Certainly, if the found node is internal,
then nothing is done.) After that, VET recursively searches for the
rest of canonical extents of e by passing the left or right child of
the current key and splitting e if e is partially subsumed by either
of the children (in Line 12).

We can optimize LIS by taking advantage of how the extent
search to be described in Section 3.2 is performed. We will discuss
the optimization in Section 3.3.

3.1.2. Deleting an extent
If a given extent by a write request overlaps extents existing in

the virtual trie, then the mapping information stored in the exist-
ing extent will be invalidated either completely or partially. If it
need be invalidated completely, its corresponding extent will be
removed from the virtual trie. If it need be invalidated partially,
the corresponding extent will be divided so that only the invali-
dated portion can be removed from the virtual trie.

Fig. 3 exemplifies the partial invalidation. Suppose that a given
extent e4 = h1100100�i arrives at the trie. Because e4 overlaps e2
existing in the trie, e2 is decomposed into the following extents:
1 This
discussed
e4 : fh1100100�ig
e5 : fh1100101�i; h110011 � �i; h11010 � ��ig:
By the partial invalidation, the incoming extent e4 overwrites
one of the canonical extents of e2. Thus, the VET scheme creates
internal node p and leaf node q for e4. It also switches (leaf) node
k 1 (which used to keep one of the canonical extents (h11001 � ��i)
node would be removed if we apply our optimization technique to be
shortly in Section 3.3, as it would not be used for locating either e4 or e5.
of e2) to an internal one since it is no longer a leaf node for e2 being
invalidated. In addition, now that the new extent e5 comprises the
other three canonical extents, VET generates leaf nodes r and t, sim-
ply keeps leaf node n, linking it to e5, and finally evicts e2.

Note that an incoming extent may require invalidating one or
more existing ones at the same time. As illustrated in Fig. 4, the
existing extents e2 = {h11001 � ��i; h11010 � ��i} and e3 =
h111 � � � ��i get invalidated given an incoming extent e6 =
h11 � � � � � �i. This operation can be done in the way of locating
and deleting all internal and leaf nodes used to store e2 and e3.
It can also be optimized by eliminating an entire subtrie rooted
from the previously common, internal node h for e2 and e3, fol-
lowed by adding e6 to the node h now becoming a leaf one (as seen
at lines 5–6 in Algorithm 1).
3.2. Search for read requests

When a read request arrives from the host, its logical address
has to be translated to a physical one. This is done by searching
the virtual trie for an extent containing the logical address. Since
again the trie storing the mapping information is virtual and imple-
mented by a hash table, the lookup operation can be carried out
without traversing the virtual trie. Instead, it will be done more
efficiently by performing a binary search against the nodes on a
path (or level) of the virtual trie that contains the target node.

For example, if the logical address contained in a given read re-
quest is 204 (or 11001100 in binary representation), then the
search begins at the mid point of the root-to-bottom path by taking
only the first half of the binary string as a search key. In other
words, the second half of the binary string is replaced by ‘�’ (don’t
care) bits, and the first search key is formed as follows.
h1100 � � � �i
If a lookup with the search key above succeeds and the match is
found in a leaf node, then the search procedure will terminate.
From the fact that the logical address 11001100 is contained in a
canonical extent h1100 � � � �i, the logical-to-physical address
translation of 11001100 can be obtained immediately from the in-
put extent of the leaf node.

the lookup on key at level hmid
h = 2

“up” path
in case of the lookup fail

hup 2

hmid = 4
p f

“down” path

key

in case of the lookup success
hdown = 6

Y.-K. Suh et al. / Journal of Systems Architecture 60 (2014) 357–371 361
If the lookup succeeds but the match is found in an internal
node, then the search procedure will continue on the lower half
of the path. This is because the target node may still be found in
the subtrie rooted by the internal node where the match is found.
To continue the search procedure in the lower half of the path, a
new search key is formed by restoring the first half of the bits
masked off by ‘�’ bits in the previous step. In this case of the exam-
ple, the next search key will be
h110011 � �i:
Fig. 5. Binary search on VET levels.

b: <0 >

h: <11 >

o: <111 >

e3
A lookup may fail if there is no subtrie that contains the target
node. However, that does not necessarily mean that there exists no
canonical extent that contains the logical address. It could just
mean that the binary search has gone down too far. If an extent
is found at a level higher (than the non-existent subtrie), then
the logical-to-physical address translation can still be obtained
using the information stored by the extent. Therefore, the search
must continue by narrowing down the scope upwards on the path
(or by adding more trailing ‘�’ bits in the search key). Continuing
the running example, the next search key will be
h11001 � ��i:

g: <1000 > j: <1100 > m: <1101 >g

k: <11001 > n: <11010 >
e1

j

k: 11001 n: 11010

e2

Fig. 6. Virtual trie via BIS by given extents e1, e2 and e3.
In a nutshell, the direction of the next search is determined by
the existence of an internal node storing the current search key.
Fig. 5 depicts the search process along the path of the virtual trie.

Note that the scenario given in the example above is somewhat
oversimplified. If a read request is large, then its extent may not be
covered entirely by a single canonical extent found in a leaf node.
In this case, the search must continue by forming a new search key
for the unresolved portion of the logical address (excluding the ex-
tent partially covered by the canonical extent).

Algorithm 2 elaborates the search procedure described above.
Note that a stack of storing search keys is leveraged, and again
the direction of the search is determined by the result of a lookup
with a popped key.

Algorithm 2. Extent search.
3.3. Optimization by binary insertion scheme

A careful observation by the aforementioned binary search
could lead to the improvements on the insertion procedure of LIS
in terms of memory usage and processing time. Namely, we can
see that some ancestors for a canonical extent are not used for
the binary search on the target node. For instance, leaf node k in
Fig. 2 has its following ancestors:
internal nodea � � � � � � � � �
internal nodec 1 � � � � � ��
internal nodeh 11 � � � � � �
internal nodei 110 � � � ��
internal nodej 1100 � � � �
Node j is the first (and only) one to become visited in the pro-
cess of the binary search against the target leaf node k. In other
words, internal nodes a, c, h and i will not be used in the rest of
the search. Hence, it is unwise to insert those internal nodes except
node j for locating leaf node k. By adding only a vital internal node
(s), we are able to not only spend less time on but also save much
memory for the insertion of an extent. This optimization scheme is
called BIS (Binary Insertion Scheme).

Fig. 6 represents the virtual trie made by BIS. Most of the inter-
nal nodes are not seen, as opposed to Fig. 2. It is because the BIS
approach derives internal nodes only lying along with the binary
search path for locating each canonical extent, and adds them to
the virtual trie.

Algorithm 3. BIS

Algorithm 3 shortly describes the process of BIS. Most of the
parts are similar to those of Algorithm 1. The BIS algorithm,
however, is slightly different, since it should locate and remove a

362 Y.-K. Suh et al. / Journal of Systems Architecture 60 (2014) 357–371
leaf node with an invalid extent that may lie above a newly
inserted internal node, as illustrated at line 2. For instance, in
Fig. 3 node k with e2 must be evicted before the insertion of inter-
nal node p. This extra operation is not needed by LIS because node
k will have been deleted already by the time the internal node p
gets inserted.
4. Algorithms for EMT

In VET, it is not cheap to accommodate a new extent into a vir-
tual trie. The VET scheme should locate any extents overlapping
with and create nodes for the new extent while eliminating nodes
containing the invalid extent and adding back the valid extents if
any. In particular, small writes incur inserting more nodes into
and spending more time on existing extent search and node dele-
tion in the virtual trie.

In this section, we discuss EMT, which is an enhanced version of
the VET scheme. The EMT scheme mainly improves the write pro-
cessing time and memory usage, compared with VET. We can
implement EMT using any abstract data structure having search, in-
sert, delete, and successor or predecessor operations.

The two key technical differences between EMT and VET are in
the following. First, each node in EMT should determine whether
the start address of a given I/O request is contained in the stored
extent that can be restored from the node’s key and data. Recall
that the logical start address of an I/O request is used as node
key, and the length of the request and its physical start address
used as node data. If a node has the start address, then the node
is eliminated from EMT in the case of a write request (due to over-
lapping) while it is included in the answer set in the case of a read
request. The second distinction is to take advantage of successor
and predecessor operations of the abstract data structure. The oper-
ations are used to locate the next node when the existing extent
stored by a current node partially subsumes the given extent. In
the following sections, we will specifically describe how a given
write or read is served in EMT.
4.1. Update for write requests

The update by a given write request can be similarly treated as
is done by the VET scheme. Namely, EMT (1) first locates and de-
letes all overlapping extents with the write, and (2) subsequently
inserts the new extent and any non-overlapping (non-invalidated)
ones at a time if any. After detecting an extent partially or entirely
superseded by the given write, the EMT scheme leverages the pre-
decessor or successor operation of a tree, to continue to retrieve
any remaining extents. (On the contrary, recall that VET resumes
the search by re-generating a lookup key through the update of
the next start address.)

Fig. 7 represents an example of how a new extent insertion
is handled in the EMT scheme. Fig. 7(a) shows a logical view
of EMT, assuming that e1, e2, and e3 seen in Fig. 2.2 are already
stored, and a new extent e7 ¼ h80;160i arrives. The EMT
scheme first locates e1 based on the start address of e7. As e1
partially overlies, the valid extent of e1 (e10) is left (re-inserted),
and the invalid is replaced by e7. Then, EMT finds e2 entirely
covered by e7, thereby evicting e2. Lastly, the EMT scheme par-
tially invalidates e3, as done on e1, leaving the valid (e30).
Fig. 7(b) represents the physical nodes of EMT before and after
e7 is treated. Note that each node represents an extent as op-
posed to VET consisting of internal and leaf nodes, at which
stores the extent.
Algorithm 4. Processing a write request in EMT

Algorithm 4 specifically describes the extent insertion in the
EMT scheme. Note that the insertion may accompany extent dele-
tion and update. First, EMT searches for the predecessor extent of a
given start address (sn) (line 2). The reason to add a slight margin
(e.g., 0.001) to sn is to catch the case that sn happens to be the same
as the start address of an existing extent. If the start address (st) of
et is less than sn or the end address of en is less than that of et (lines
4 or 7) (partial invalidation), then EMT adds only the valid portion
of et while replace the overlapping of et by en (lines 5 or 8). After
that, EMT updates et to its successor for the next iteration (line
11), and deletes et0 (et before the update) to complete the invalida-
tion (line 12). If the last address of en is covered by et (line 13), then
EMT terminates the insertion of en by adding every extent in I (line
15).
4.2. Search for read requests

As discussed in VET, a read request is translated as a query ex-
tent in extent mapping. Serving the query extent in EMT can be
similarly done as locating overlapping extents with a given write,
but it is slightly different than that of the write in that page fault
may occur once EMT knows no node containing any address of
the read.

Algorithm 5. Extent search in EMT.

Algorithm 5 describes the extent search on a given extent (eq)
by a read arriving at EMT. First, EMT looks for a node (et) that
contains the start address (sq = p) of eq. If et exists, we add it to E,
which keeps a list of extents overlapping eq (line 5). If et does not

e2 =<196, 16>e1 =<0, 144>

e7 =<80, 160>

before e7 insertion

after e7 insertion deleted (invalidated) e>08,0<= =<240, 16>

e3 =<224, 32>

(a) Logical EMT before and after e7 insertion

e1

e2

e3

196 16

data
(extent length)

key
(start address)

0 144 224 32 0 80

80 160

240 16
e1' e3'

e7after e7 insertion

(b) Physical EMT before and after e7 insertion

Fig. 7. A new extent insertion in EMT.

Y.-K. Suh et al. / Journal of Systems Architecture 60 (2014) 357–371 363
cover the last address of eq (line 6), then p is updated to the next
address after et , and the succesor of et is retrieved with O(1) time
for the next comparison (lines 7–8). Otherwise, the extent search
for eq is terminated by returning E. If et is absent or p is not
contained in et (line 10), EMT sees eq as page fault of reading
not-yet-written flash pages (as no stored extents contain the given
address) and terminates the search with no discovered extent
(line 12).
5. Analysis

We study the complexity of the proposed algorithms.

5.1. VET

In this section, we provide asymptotic worst case space and
time analysis of the VET scheme.

5.2. Generated nodes
Lemma 5.1. During the LIS algorithm, the number of new nodes
generated for each new extent is Oðlog jUjÞ. This number drops to
Oðlog log jUjÞ if BIS is used.
Proof. Suppose that we insert the shortest extent in the
O(log jUj)-address space under LIS. To insert this extent, we need
(log jUj � 1) internal nodes and one leaf node that stores that
extent. Therefore, the number of new nodes for storing that
extent is Oðlog jUjÞ in LIS. Under BIS, in the worst case VET gener-
ates O(log log jUj) internal nodes and one leaf node pointing to
the extent. Hence, the number of new nodes generated by BIS
is Oðlog log jUjÞ. h
5.2.1. Update for write requests
As discuss in Section 3.1, the update for write requests incurs

(1) existing extent search followed by (2) extent insertion by LIS
or BIS accompanying extent deletion.

Lemma 5.2. The running time complexity for the update by a given
extent e is O((k + 1)log jUj)., where k is the number of the existing
canonical extents overlapping e.
Proof. The proof follows similar arguments for segment trees [10].
Assume that k existing canonical extents overlap the given extent
e. First, it takes O(k � log log jUj) time to locate all the canonical
extents, since each can be found within O(log log jUj) time (as will
be proved in Lemma 5.3). Next, VET can determine and insert each
canonical extent of e in O(log jUj) time. Lastly, the VET scheme by
LIS (by BIS) needs to eliminate O(log jUj) (resp. O(log log jUj)) ances-
tor nodes associated with each overlapping canonical extent.

In short, the total running time complexity for the update is
equal to O((k + 1)log jUj) h

In practice, our experiments showed that k was less than 1.45
on average (as will be demonstrated in Fig. 12).

5.2.2. Search for read requests

Lemma 5.3. VET answers a query extent in time Oðk � log log jUjÞ,
where k is the number of the existing canonical extents that overlap
the query extent.
Proof. Recall that VET carries out the binary search on the path for
locating the canonical extent containing a start address of e.
Because the length of the path is O(log jUj), the search on the
address can be done within O(log log jUj) time. Suppose that a vir-
tual trie has a total of k existing canonical extents overlapping e.
Then, the search is performed k times. Therefore, the total time
complexity for the search is O(k � log log jUj). h

In our experiments, k was on average no greater than 1.19 (as
will be shown in Fig. 12).

5.2.3. Canonical extents

Lemma 5.4. At most 2log jUj canonical extents can be inserted for
every extent.
Proof. Note that while inserting a new extent e, we create a canon-
ical extent ec iff
ec # e

ed � e; where ed is a child of ec:
Hence, at most two nodes are created at each level of a virtual
trie. h

364 Y.-K. Suh et al. / Journal of Systems Architecture 60 (2014) 357–371
The bound of 2log jUj was over-pessimistic, and our experi-
ments indicate it is on average no bigger than 2.79 (as shown in
Fig. 12).

5.3. Asymptotic performance analysis of EMT

Consider a new extent e overlapping a set of previous extents.
(See e7 in Fig. 7(b)). First consider the ones containing the end-
points of e. These are one or two extents containing these end-
points, and these extent (s) are modified, and possibly one new
extent is created. The other (zero or more) extents that e overlaps
(e.g., e2 in Fig. 7(b)) are fully contained within e, and hence are de-
leted after e is inserted. Since an extent could be created only once,
we obtain

Lemma 5.5. Consider any sequence of insertion of m extents into an
empty data structure. Then during this process at most OðmÞ extents
are being deleted, and OðmÞ are being modified.

To support these operations in asymptotically efficiency, one
could use the y-fast trie [11]. Similar to the famous van Emde Boas
trees [12], these trees assume that keys are taken from a universe
of integers of cardinality U, and support Find(x), Successor (x) and
insert/delete, each in time Oðlog log UÞ. However, they improve
the van Emde Boas trees by requiring only linear space (in the
number of created extents). Putting it together with Lemma 5.5,
we obtain that

Lemma 5.6. If the y-fast trie is used, then the time for performing any
sequence m insertion of extents is Oðm log log UÞ, so the amortized
time for each insertion is Oðlog log UÞ. This is also the time for a query
(extent).

Due to availability of code, and somehow the involved structure
of y-fast trie, we have opted to use a standard balanced binary
search tree instead in our implementation. The asymptotic time
in this case is slightly higher than specified in Lemma 5.6. Since
the time for each operation is Oðlog mÞ, we obtain from Lemma 5.5.

Lemma 5.7. If a balanced binary search tree is used, then the time for
performing any sequence m insertion of extents is Oðm log mÞ, and
thus, the amortized time for each insertion is Oðlog mÞ. This is also the
(worst case) time for a query.
6. Experiments

In this section, we describe the environment settings for our
experiments. Next, we evaluate and analyze the performance of
our extent mapping schemes – VET and EMT – using real-world
and synthetic workloads, compared with the traditional mapping
schemes.
Table 1
Real/synthetic workloads used for the performance evaluation.

Type Name Description

Real finance OLTP application [13]

homes MS exchange servers [14,15]

wdev MS exchange servers [14,15]

wsf Web surfing activity on PC

Synthetic Spew Spew [16] workload generator
6.1. Environment settings

We implemented all the algorithms in C language. The most
ideal, accurate configuration for the evaluation of the algorithms
would be to use a real ARM processor in flash memory devices.
Unfortunately, it was not possible to obtain the processor. To make
our evaluation more realistic, we used a low-end 32-bit machine
with a Pentium 4 CPU 3.00 GHz processor and 2 GB memory, run-
ning the Linux system with a 2.6.32–32-generic kernel version.

Table 1 describes the workloads used for our experiments. The
real world traces – finance, homes, wdev – were obtained from
public I/O trace repositories [13,15], and wsf was the real work-
load extracted from the web activity. The Spew trace gained by a
workload generator [16] comprises only write requests. As dis-
cussed in Section 6.3.2, this trace was specially designed for the
memory overhead analysis with an increasing address space.

In addition, we provide the histograms about request address
and size in the real workloads, as illustrated in Figs. 8 and 9. The
statistics about the requests gives us an important basis in analyz-
ing the performance of our extent mapping schemes along with the
workloads.
6.2. Extent mapping performance evaluation

This section provides the performance evaluation results of our
extent mapping schemes.
6.2.1. VET
We give an analysis of the overall performance of VET on the

real world traces, with respect to memory usage, elapsed times,
and canonical extents, and compare the performance of the inser-
tion schemes (LIS and BIS) used in VET.

Memory consumption. Table 2 provides the memory footprint of
VET over the real world traces. The amount of memory needed to
treat the traces was relatively very little when considering their
address spaces (although there was some mapping overhead ob-
served in Table 3). Specifically, the VET scheme only used at most
about 17 MB memory for processing the finance trace, which had
the largest address space, irrespective of whichever insertion
methods (LIS and BIS) was employed. Apparently, homes con-
sumed the greatest amount of memory among the traces. It was
because the homes workload revealed the most widespread, un-
used range of request addresses, as illustrated in Fig. 8, and it
had far more write requests than any other workload, as indicated
in Table 1. This implies that a large amount of mapping informa-
tion needed to be created across the entire address space, and cor-
respondingly, much memory was needed for homes. In contrast,
the write requests of wdev were likely to show a relatively narrow
address range compared with the other traces. In addition, the
same request addresses in the trace tended to be accessed repeat-
Address space # of Writes # of Reads
Average write size Average read size

644 GB 8.2 M 2.5 M
3.7 KB 2.5 KB

542 GB 16 M 0.4 M
4 KB 12.0 KB

51 GB 1.1 M 0.23 M
8.2 KB 12.6 KB

32 GB 0.3 M 93 K
22.5 KB 19.8 KB

16 GB�1 TB 50 K 0
83.8 KB�376.8 KB N/A

Fig. 8. Histograms on write request address.

Y.-K. Suh et al. / Journal of Systems Architecture 60 (2014) 357–371 365
edly, thereby incurring no extra mapping information written. For
this reason, the wdev trace needed less memory than the others.
(The VET scheme is definitely advantageous to this type of work-
load.) The finance workload appeared to have as narrow an ad-
dress range as that of wdev. However, many of the addresses not
clearly seen in Fig. 8(a) were far more widely scattered within
and even outside the visible address range. Of course, the number
of the requests was by far greater than that of wdev as well. The
wsf trace seemingly had a broader address range than the fi-

nance one, but actually, it used only a few addresses in the entire
range, and consequently, the memory consumed by the VET
scheme was much less than that of finance.

Elapsed time. Table 3 provides the average elapsed time on a re-
quest of the real world traces. Typically, the average elapsed time
on a write request was greater than that of a read one. That was
because the write request incurred additional VET operations such
as extent insertion or deletion besides common existing extent
search. The mapping time on the write request (�25 ls), however,
can be hidden or low enough by following flash writes. Hence, the
mapping cost is regarded sufficiently negligible.

Fig. 10 exhibits the full distribution of the elapsed times on
write requests of the traces. Most write requests were processed
within a couple of microseconds, other than some taking very
few taking hundreds of milliseconds. Note that most of the points
are gathered right above the X-axis. A remarkable variation of the
times were not observed across the workloads.

Fig. 11 shows all the elapsed times on read requests of the
traces. There seemed some requests taking a few hundreds micro-
seconds, but VET minimized the mapping time within an average
of at most around 2.5 ls. We believe that the mapping cost rarely
hurts the flash read performance (even if VET is applied on the real
ARM processor). Also, the times did not vary substantially as seen
in Fig. 11. The results testify that our binary search technique work
very effectively.

One thing to notice is that the elapsed times on I/O requests dif-
fered by workloads. (Of course, the total memory for each trace
varies too.) The finance trace revealed the highest average
elapsed time among the traces. The primary reason was involved
with canonical extents associated with I/O requests. We will dis-
cuss more details about this in the following.

Canonical extents. We study the correlation between canonical
extents and the performance of the VET scheme. Fig. 12 illustrates
the average canonical extents in regard to an I/O request. For each
workload, the first and second bars mark average canonical extents
that were generated by and overlapped a given extent (by a write),
respectively. The third one indicates the average canonical extents
returned to an inquiry extent (by a read).

On the whole, finance had the most average canonical extents
involving an I/O request. Meanwhile, the homes trace had the few-
est average canonical extents produced by each request. Concern-
ing the other traces, the write requests of wdev encountered
slightly more overlapping canonical extents but generated only
about 50% fewer canonical extents than those of wsf on average.
The read requests of wdev were responded with much fewer aver-
age canonical extents than those of wsf as well.

The observations above fairly coincided with the average
elapsed time results shown in Table 2. Given an I/O request, the
fewer canonical extents were involved, the faster response times
(as well as the less memory) were observed.

Note that on average at most about three canonical extents
were generated per request of the traces, as indicated by the first
bars in Fig. 12. This demonstrates that the bound of Lemma 5.4
is overly pessimistic, thereby not being a serious concern in prac-
tice with respect to memory overhead.

To summarize, canonical extents involving a workload can be
important factors in the performance of VET.

Comparison between LIS and BIS. The optimization by BIS in the
VET scheme was successful, as already exhibited in Tables 2 and 3.
Across the real traces, virtual tries built by BIS typically outper-
formed those by LIS in terms of memory usage and processing
times. Again, when applying BIS, we can insert the fewer number
of internal nodes, thereby consuming less memory. In particular,
the VET scheme using BIS overwhelmed the one using LIS by about
a factor of two when processing write requests. Moreover, adding

Fig. 9. Histograms on write request size.

Table 2
Memory footprint.

Type finance homes wdev wsf

Memory usage (MB) BIS 15.07 23.25 1.15 4.69
LIS 16.89 28.50 1.63 6.03

Table 3
Average elapsed times.

Type finance homes wdev wsf

Write Read Write Read Write Read Write Read

Avg. elapsed time (us) BIS 16.84 2.17 4.43 0.99 10.29 0.95 9.64 1.44
LIS 24.63 2.47 8.25 1.07 9.44 1.00 12.97 1.53

366 Y.-K. Suh et al. / Journal of Systems Architecture 60 (2014) 357–371
fewer nodes may be beneficial to locating any extent (s) faster in a
hash table (e.g., myhash [17] to be discussed later in the following
section) such that more than two (internal or leaf) nodes having an
identical hash key may co-locate by chaining in the same bucket.
Consequently, it took less average elapsed times to serve a read re-
quest across the workloads.

To summarize, we prefer BIS to LIS for the VET scheme. Conse-
quently, we will show the results only by BIS in the rest of
experiments.

Hash table choice. The VET scheme provides the flexibility of
employing any hash table implementation. Although VET is not
limited to a specific hash table, it is interesting to see which hash-
ing scheme fits well to the VET scheme, yielding the smallest per-
formance overhead. Thus, in this section, we study how different
VET performance can be seen in accordance with hash table
implementations.

Among quite a few hash tables in literature, for the VET scheme
we considered the following three candidates: cuckoo-hash [18],
uthash [19] and myhash [17]. Due to space constraint, we omit
the description of each of the hash tables. (For more details, see
Refs. [18,19,17].)

Table 4 presents the performance comparison results among
each hash table implementation. It was myhash that presented
the most efficient performance for VET. Specifically, when treating
write requests, myhash not only used 16% and 58% less memory
but revealed 18% and 43% faster elapsed times than cuckoo-hash

and uthash, respectively. In addition, myhash achieved average
speedups of up to about 18% and 30% when serving read requests,
compared with cuckoo-hash and uthash, respectively. That was
mainly because the myhash’s hashing function worked well for
node keys used for the VET scheme, and its chaining technique
for handling bucket overflow also consumed less memory than
the others. All the experimental results presented before this sub-
section, therefore, are based on myhash. The worst one was
uthash. It required a 24 KB-handle per node for making it hash-
able and carrying a variety of accessory features actually unneces-
sary for VET. Therefore, it was not relatively fast and lightweight.
The cuckoo-hash implementation showed fairly as comparable

Fig. 10. Elapsed time distributions – write request.

Fig. 11. Elapsed time distributions – read request.

Y.-K. Suh et al. / Journal of Systems Architecture 60 (2014) 357–371 367
performance as myhash, but it needed more memory due to a few
extra bytes added per node for linear probing to cope with the
overflow.

In conclusion, the performance of the VET scheme may some-
what vary among hash table implementations, and therefore, a
careful choice needs to be made.

Cache-aware implementation. The VET scheme that has been
explained so far assumes that an input extent is pointed to by a leaf
node in a virtual trie. It is called the Pointer-Dependent VET (PD-
VET) scheme. In the PD-VET scheme, the use of an external pointer
at a leaf node to such a given extent could be a concern in perfor-
mance for the following reasons. First, when VET creates a leaf
node, extra memory allocation should be required for storing an in-
put extent attached to the leaf. Second, whenever a stored extent is
accessed at a leaf node, PD-VET suffers from pointer-chasing, which
may aggravate cache-hit ratio. To avoid the overhead by the pointer
use, as an alternative we can consider the Pointer-Free VET
(PF-VET) scheme.

Keeping the same key (or canonical extent) structure, PF-VET
allows only leaf nodes to directly embrace an input extent (with
no pointer). In other words, internal and leaf nodes can be distin-
guished by the value of extent length field. Specifically, when the
lookup using a given key succeeds, the returned node is identified
as a leaf if its length value is positive. Otherwise, it is regarded as an

 0

 0.5

 1

 1.5

 2

 2.5

 3

A
ve

ra
ge

 C
an

on
ic

al
 E

xt
en

ts

finance homes wdev wsf

Generated By a Write Req.
Overlapping a Write Req.
Returned To a Read Req.

Fig. 12. Canonical extent statistics on a given I/O request.

368 Y.-K. Suh et al. / Journal of Systems Architecture 60 (2014) 357–371
internal node. By doing away with the pointer-dependency simply
using the length field, the PF-VET scheme is expected to alleviate
not only memory allocation overhead but also reduce cache-misses,
thus eventually enhancing the overall performance of a virtual trie.

For our experiments, we reorganized the aforementioned real
workloads in a way that all write requests in the real traces came
before read ones to obtain the exclusive cache misses along with
request type in both of the VET implementation design choices.
To capture the misses, we leveraged the Performance Application
Programming Interface (PAPI) library [20]. Due to the PAPI installa-
tion issue, only this experiment was inevitably conducted on a 64-
bit machine equipped with dual cores with 4 MB cache. We think
that the machine change does not impact the fair evaluation be-
tween the two implementations.

The experiment results show that our cache-aware design is
quite promising. As shown in Fig. 13, overall the PF-VET slightly re-
duced the average cache misses in L1 or L2, compared with the PD-
VET, thus leading to a slight speedup up to around 10% on the aver-
age elapsed times on write or read requests. In particular, the hits
in L2 cache were increased even up to 15% on finance, as shown
in Fig. 13(b). Note that L2 cache misses typically cost 20 times than
L1 cache ones [21]. This can explain why PF-VET outperforms PD-
VET in terms of the average elapsed times on write requests even
though L1 cache misses in PF-VET on some traces were slightly
higher than those in PD-VET. Our results not only raise the impor-
tance of avoiding pointers in implementation, but also addresses a
correlation between cache misses and elapsed times.
6.2.2. Mapping time comparison between VET and EMT
In this section, we compare the extent mapping time overhead

exposed in VET and EMT. Fig. 14 shows average elapsed time taken
to serve a write or a read in both schemes. The times related to VET
are borrowed from Table 3 for the comparison with the corre-
sponding ones to EMT. As you can see, EMT obtained significant
gains up to an order of magnitude in terms of the average write
Table 4
Performance comparison over different hash tables.

Trace Perf. Hash tables

cuckoo-h. uthash myhash

finance Mem. 18.06 MB 36.03 MB 15.07 MB
Write 17.66us 19.05us 16.84us
Read 1.78us 2.24us 2.17us

homes Mem. 27.75 MB 54.73 MB 23.25 MB
Write 4.93us 5.20us 4.43us
Read 1.18us 1.43us 0.99us

wdev Mem. 1.37 MB 2.74 MB 1.15 MB
Write 12.59us 18.07us 10.29us
Read 1.11us 1.36us 0.95us

wsf Mem. 5.59 MB 10.99 MB 4.69 MB
Write 10.85us 13.48us 9.64us
Read 1.51us 2.00us 1.44us
processing times, compared to VET. This implies that EMT can be
a better choice than VET over general workloads. It is because that
the former can finish overlapping extent searches or deletion at a
time in an amortized way, thanks to a node pointer exploited by
successor or predecessor operations. Note that extent deletion in
VET could be aggravated on the workloads in which input extent
lengths vary a lot, thereby considerably affecting the overall write
elapsed time. On the contrary, the VET scheme slightly outper-
forms the EMT scheme when treating reads. This is because the ex-
tent search in VET does not does not depend on how many input
extents are stored in a virtual trie, as opposed to the EMT scheme.

6.3. Performance comparison with traditional mapping schemes

In this section, we compare memory consumption by tradi-
tional and extent mapping schemes over real and synthetic
workloads.

6.3.1. Memory consumption over real traces
As shown in Fig. 15, the VET/EMT schemes used much less

memory than a page mapping table (PMT) [2] or a hybrid mapping
table (HMT) [4–7]. Specifically, when treating the workloads, VET/
EMT consumed only about 2.3/0.7%, 4.3/3.7%, 2.3/0.9%, and 27.9/
9.5% of the total memory required by the PMT in order. Even com-
pared with the HMT, the VET/EMT schemes used only about 5.3/
1.6%, 9.8/8.5%, 5.2/2.1% and 63.8/19.5% of the HMTs total memory
in order. This is attributed to the fact that the memory consump-
tion by our extent mapping is not dependent on address space size
but mainly determined by workload characteristics. The characteris-
tics can be defined in accordance with how small or big write re-
quests are, and how scattered or narrow the request addresses are.

For instance, in spite of the huge address spaces more than
0.5 TB, the writes of the finance or homes traces touched only a
few portions of each of the spaces. Hence, our extent mapping
schemes did not need much mapping information for the requests,
thereby being able to save a huge amount of memory.

The wdev trace had a small address space (51 GB), but again
many of the writes tended to use the same addresses accessed be-
fore, thus inducing no additional memory consumption. In the case
of wsf, it had the smallest address space (32 GB), and even fewer
portions of the space were left intact unlike the other traces.
Hence, the memory reduction percentage on wsf was not so great
as that of the others. Nevertheless, no trace requires more memory
in our schemes than in the conventional ones.

Lastly, EMT typically uses less memory than VET by up to about
a factor of three. That is because VET trades with read mapping
time additional memory for creating internal nodes (for guiding
to leaf nodes). EMT also has internal nodes, which are different
from those of VET in that every node in EMT can contain input
extent.

All in all, our extent mapping schemes outperform the tradi-
tional mapping schemes in terms of memory consumption. The
memory reduction by extent mapping schemes can be particularly
maximized by the workload, such that one typically accesses only a
few portions of a huge address space and has moderate request
size.

6.3.2. Scalability comparison over increasing address space
We study how well our extent mapping schemes scale as the

address space of flash memory grows. For this experiment, we pop-
ulated the aforementioned Spew workloads with growing address
spaces by leveraging the Spew [16] tool; that is, given an address
space ranging from 16 GB to 1 TB, 50 K requests, whose size was
a multiple of 8 KB and determined between 8 KB and 1 MB, formed
each of the synthetic workloads.

 0

 50

 100

 150

 200
A

ve
ra

ge
 C

ac
he

 M
is

se
s

finance homes wdev wsf

L1 Cache Miss by PD-VET
L1 Cache Miss by PF-VET
L2 Cache Miss by PD-VET
L2 Cache Miss by PF-VET

(a) Avg. Cache Misses - Write

 0

 5

 10

 15

 20

 25

 30

A
ve

ra
ge

 C
ac

he
 M

is
se

s

finance homes wdev wsf

L1 Cache Miss by PD-VET
L1 Cache Miss by PF-VET
L2 Cache Miss by PD-VET
L2 Cache Miss by PF-VET

(b) Avg. Cache Misses - Read

 0

 2

 4

 6

 8

 10

A
ve

ra
ge

 E
la

ps
ed

 T
im

e
(u

s)

finance homes wdev wsf

Write Req. by PD-VET
Write Req. by PF-VET
Read Req. by PD-VET
Read Req. by PF-VET

(c) Avg. Elapsed Times

Fig. 13. Performance comparison between PD-VET and PF-VET.

 0

 5

 10

 15

 20

A
ve

ra
ge

 E
la

ps
ed

 T
im

e
(u

s)

finance homes wdev wsf

VET - Write
EMT - Write
VET - Read

EMT - Read

Fig. 14. Mapping time comparison.

 0

 100

 200

 300

 400

 500

 600

 700

m
em

or
y

us
ag

e
(M

B
)

finance homes wdev wsf

PMT
HMT
VET
EMT

Fig. 15. Memory overhead comparison.

Y.-K. Suh et al. / Journal of Systems Architecture 60 (2014) 357–371 369
Fig. 16 exhibits the memory consumed by all the schemes.
Because of a huge difference observed, the usage is plotted in log
scale. As the space got larger, the conventional schemes suffered
from enormous memory overhead, compared with our VET/EMT
schemes that rather remained flat. In particular, the 1 TB address
space widened the difference between the PMT and our extent
schemes by even up to two orders of magnitude. (Again, EMT
achieves better space reduction by approximately a factor of 7,
compared to VET).

In short, the greater the capacity of the devices, the more
memory the traditional techniques need proportionally, but the
memory used by our extent mapping schemes is not dependent
on the increasing space.
7. Related work

Waldvogel et al. [22] propose an algorithm of obtaining the best
matching IP prefix using a binary search on a routing table orga-
nized by prefix lengths. In fact, the prefix and the routing table cor-
respond to the concepts of a canonical extent and a virtual trie
discussed in the article. Thus, his work presented in network do-
main sounds similar to VET.
However, the main differences between VET and Waldvogel’s
work can be summarized in the following. First, extents stored in
a virtual trie must remain non-overlapping (disjoint) at all times.
This is obvious, since in flash memory devices the most recent
mapping information must be kept, invalidating the out-of-date
one in an overlapping region if any. In his work, on the other hand,
prefixes having the common prefix are allowed to co-exist in the
routing table. Secondly, his work needs to use backtracking to find
the best, correct matching prefix unless the longest one is found.
The backtracking is not needed in the VET scheme, as the search
for a given start address gets terminated immediately unless any
extent containing the address is found. (Again, a new search can
be triggered if any more addresses are to be examined, but
this does not mean the backtracking.) Thirdly, an arbitrary prefix
itself retains canonical property, while a given extent does not have
to be canonical. Recall that in the VET scheme any non-canonical
extent can be given, and it gets broken into several canonical
extents at the time of insertion. Lastly, the routing table in his
work is assumed to be static; namely, it does not change much over
time. However, extents in a virtual trie can be updated
dynamically.

A tree data structure may also be taken into account for the ex-
tent mapping like EMT. Segment tree [10] is well-known as a tree
data structure for storing line segments (or intervals). However, it
is fundamentally a static structure where the intervals already
stored cannot be modified; thus, it is not appropriate to implement
the extent mapping table where existing extents can be updated
dynamically if a given one overlaps them.

Interval tree [23] is also an ordered tree data structure designed
to store intervals. It can be built by leveraging a binary search tree.
Hence, it might be considered for the extent-based mapping.

However, EMT is fundamentally different from the interval tree
[23] in two-folds. First, EMT disallows any extent to overlap each
other at the state of storage. Meanwhile, overlapping intervals
(analogously similar to extent) can co-exist in the interval tree.
Next, the interval tree stores intervals at leaf nodes, whereas any
input extent can be stored at any node in EMT.

While page mapping [2] exposes the least mapping overhead
(O(1)), the VET/EMT schemes can minimize the overhead just with-
in O(log log jUj) and O(n log n). As far as memory reduction is con-
cerned, our extent mapping schemes outperform page mapping
[2] by up to an order of magnitude in our experiments using real
workloads, as demonstrated in the evaluation. Furthermore, extent
mapping scheme is very favorable to the following case. Suppose
that a 2 GB movie clip file gets sequentially written over a whole
128 GB SSD using page mapping [2]. Somehow, its page mapping
table should be large (or 128 MB) enough to cover the whole ad-
dress space, independent of the actual use of the addresses. In con-
trast, a virtual trie can simply keep the mapping information for
the file using only tens of bytes.

 0.1

 1

 10

 100

 1000

 200 400 600 800 1000

m
em

or
y

us
ag

e
(l

og
 s

ca
le

)

flash memory device capacity (GB)

PMT
HMT
VET
EMT

Fig. 16. Memory usage over growing address space.

370 Y.-K. Suh et al. / Journal of Systems Architecture 60 (2014) 357–371
The tree-based structure [24] sounds similar to our EMT
scheme. However, given k 1-page writes, their scheme ends up
storing a total of 2k nodes in their tree structure as the actual map-
ping data are stored only at leaf node level, which is very space-
inefficient. On the contrary, our EMT scheme needs only k nodes,
as any node in EMT can store extent mapping data.

Demand-based page-level or block-level address mapping algo-
rithms [24–27] are also proposed to reduce memory footprint by
loading mapping entries into RAM on demand. However, the per-
formance of the demand-based approaches is mainly dependent
on temporal locality of workloads. In contrast, our extent mapping
schemes are not dependent on such temporal locality in work-
loads. Also, using the demand-based approach is an orthogonal is-
sue in our schemes. That is because the proposed VET/EMT can
benefit from the demand-based approach as well when DRAM is
not enough to store all the mapping information. This works by
caching only the needed extent entries in memory while keeping
the original mapping information on flash.

Pure block mapping [3] typically needs the least amount of
memory. However, it cannot enjoy flexible utilization of physical
flash pages, as the logical page number offset must be fixed within
a block. Hence, garbage collection overhead is extremely high.
Block mapping [3], thus, is not purely used in practice.

Hybrid mapping [4–7] to overcome such drawbacks has been
also proposed. Still, it is not so flexible as page mapping. It even
fails to gain more memory reduction than our extent mapping
schemes, as shown in the experiments. Also, if free log pages are
not left any more, the hybrid scheme needs to select a victim log
block. Accordingly, the scheme needs to merge into relevant data
blocks valid data from those pages in the victim block. Thus, this
merge operation is very expensive. Again, extent mapping inherits
flexibility of the page mapping scheme with less memory but min-
or mapping overhead. Our schemes support an memory-efficient,
scalable address mapping for the extent mapping.
8. Conclusions

Flash memory devices have been remarkably advancing in the
past few years. However, as their address space grows, the conven-
tional mapping schemes, – page or hybrid ones – suffer from
substantial memory overhead. To overcome this limitation, we
presented novel extent mapping schemes – VET and EMT – for
flash memory devices.
Our schemes treat all I/O requests as extents and dynamically
manages them. In spite of the negligible mapping overhead, we ob-
served in our experiments that the VET and EMT schemes could
gain substantial memory reduction by up to an order of magnitude
in comparison with the traditional mapping schemes. In addition,
both schemes revealed excellent scalability over growing address
spaces. These promising results demonstrate that our extent map-
ping schemes will accelerate the emergence of flash memory de-
vices with much less memory but little performance degradation.

Acknowledgment

This work is supported by the National Science Foundation (NSF
Grant No. IIS-0848503).

References

[1] Intel Corporation, Understanding the Flash Translation Layer (FTL)
Specification, App. Note AP-684, 1998.

[2] A. Birrell et al., A design for high-performance flash disks, ACM SIGOPS Oper.
Syst. Rev. 41 (2007) 88–93.

[3] A. Ban, Flash File System, 1995. US Patent 5404485.
[4] A. Ban, Flash File System Optimized for Page-Mode Flash Technologies, 1999.

US Patent 5937425.
[5] S.-W. Lee et al., A log buffer-based flash translation layer using fully-

associative sector translation, ACM Trans. Embed. Comput. Syst. 6 (2007) 1–27.
[6] D. Jung et al., Superblock FTL: a superblock-based flash translation layer with a

hybrid address translation scheme, ACM Trans. Embed. Comput. Syst. 9 (2010)
1–41.

[7] S. Lee et al., LAST: Locality-Aware Sector Translation for NAND flash memory-
based storage systems, ACM SIGOPS Oper. Syst. Rev. 42 (2008) 36–42.

[8] Y. Lee et al., l-FTL: a memory-efficient flash translation layer supporting
multiple mapping granularities, in: Proceedings of the 8th ACM & IEEE
International Conference on Embedded Software (EMSOFT’08), ACM, pp. 21–
30.

[9] N. Agrawal et al., Design tradeoffs for SSD performance, in: Proceeding of the
USENIX ATC 2008, USENIX, pp. 57–70.

[10] J.L. Bentley, Solutions to Klees rectangle problems, Technical Report, Carnegie-
Mellon University, Pittsburgh, PA, USA, 1977.

[11] D.E. Willard, Log-logarithmic worst-case range queries are possible in space
hðNÞ, Inform. Process. Lett. 17 (1983) 81–84.

[12] P. van Emde Boas et al., Design and implementation of an efficient priority
queue, Theory Comput. Syst. 10 (1976) 99–127.

[13] UMass Trace Repository, OLTP Application I/O Trace, 2011. http://
traces.cs.umass.edu.

[14] D. Narayanan et al., Write off-loading: practical power management for
enterprise storage, in: Proceeding of the 6th USENIX Conference on FAST,
USENIX, pp. 253–267.

[15] Storage Networking Industry Association, Block I/O Trace Repository, 2012.
http://iotta.snia.org/tracetypes/3.

[16] A. Patterson, Spew: An I/O Performance Measurement and Load Generation
Tool, 2010. http://spew.berlios.de/.

[17] C. Clark, A Hash Table in C, 2010. http://www.cl.cam.ac.uk/cwc22/hashtable/.
[18] R. Pagh et al., Cuckoo hashing, Eur. Symp. Algor. (ESA) 9 (2001) 1–41.
[19] T. Hanson, UTHASH: A Hash Table for C Structures, 2012. http://

uthash.sourceforge.net/.
[20] University of Tennessee, Performance Application Programming Interface,

2012. http://icl.cs.utk.edu/papi/.
[21] Valgrind User Manual, Cachegrind: A Cache and Branch-Prediction Profiler,

2012. http://valgrind.org/docs/manual/cg-manual.html.
[22] M. Waldvogel et al., Scalable high speed IP routing lookups, ACM SIGCOMM

Comput. Commun. Rev. 27 (1997) 25–36.
[23] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms,

second ed., MIT Press and McGraw-Hill, Cambridge, MA, USA, 2001.
[24] L.-P. Chang et al., An efficient management scheme for large-scale flash-

memory storage systems, in: Proceedings of the 2004 ACM Symposium on
Applied Computing (SAC 2004), ACM, pp. 862–868.

[25] A. Gupta et al., DFTL: a flash translation layer employing demand-based
selective caching of page-level address mappings, in: Proceeding of the 14th
International Conference on ASPLOS, ACM, pp. 229–240.

[26] Zhiwei Qin et al., A two-level caching mechanism for demand-based page-
level address mapping in NAND flash memory storage systems, in:
Proceedings of the 17th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS 2011), IEEE, pp. 157–166.

[27] Zhiwei Qin et al., Demand-based block-level address mapping in large-scale
NAND flash storage systems, in: Proceedings of the 8th IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS 2010), IEEE/ACM/IFIP, pp. 173–182.

http://refhub.elsevier.com/S1383-7621(14)00018-6/h0100
http://refhub.elsevier.com/S1383-7621(14)00018-6/h0100
http://refhub.elsevier.com/S1383-7621(14)00018-6/h0105
http://refhub.elsevier.com/S1383-7621(14)00018-6/h0105
http://refhub.elsevier.com/S1383-7621(14)00018-6/h0110
http://refhub.elsevier.com/S1383-7621(14)00018-6/h0110
http://refhub.elsevier.com/S1383-7621(14)00018-6/h0110
http://refhub.elsevier.com/S1383-7621(14)00018-6/h0115
http://refhub.elsevier.com/S1383-7621(14)00018-6/h0115
http://refhub.elsevier.com/S1383-7621(14)00018-6/h0120
http://refhub.elsevier.com/S1383-7621(14)00018-6/h0120
http://refhub.elsevier.com/S1383-7621(14)00018-6/h0125
http://refhub.elsevier.com/S1383-7621(14)00018-6/h0130
http://refhub.elsevier.com/S1383-7621(14)00018-6/h0130
http://refhub.elsevier.com/S1383-7621(14)00018-6/h0135
http://refhub.elsevier.com/S1383-7621(14)00018-6/h0135
http://refhub.elsevier.com/S1383-7621(14)00018-6/h0135

Y.-K. Suh et al. / Journal of Systems Architecture 60 (2014) 357–371 371
Young-Kyoon Suh received the B.S. degree in computer
science from Kyungpook National University, Korea in
2003, and the M.S. degree in computer science from
KAIST, Korea in 2005. He is currently pursuing the Ph.D.
degree in computer science at the University of Arizona,
USA. His research interest is in flash-based database
technology, science of databases, micro-specialization,
and concrete complexity.
Bongki Moon received the M.S. and B.S. degrees in
computer engineering from Seoul National University,
Korea, in 1985 and 1983, and the Ph.D. degree in com-
puter science from University of Maryland, College Park
in 1996. He is a professor of Computer Science & Engi-
neering at Seoul National University. Prior to that, he
had been a professor of Computer Science at the Uni-
versity of Arizona from 1997 till early 2013. He was also
on the research staff for Samsung Electronics and
Samsung Advanced Institute of Technology, Korea, from
1985 to 1990. He received an NSF CAREER Award in
1999 for his work on distributed cooperative web server

design. His research interests include flash memory database systems, XML
indexing and query processing, and information streaming and dissemination.
Alon Efrat received the B.Sc. degree in applied mathe-
matics and M.Sc. degree in computer science from the
Technion, Haifa, Israel, and the Ph.D. degree in computer
science from the Tel-Aviv University, Tel-Aviv, Israel, in
1998. He is currently an Associate Professor with the
University of Arizona, Tucson, AZ. He is a member of the
Editorial Board of the International Journal of Compu-
tational Geometry & Applications and the Transactions
on Algorithms Engineering. He was a Postdoctoral
Research Assistant with the Stanford University and
with IBM Almaden Research Center. Dr. Efrat is the
recipient of the CAREER Award (2004) by National Sci-

ence Foundation due to his work on ‘‘Pattern Matching, Realistic Input Models and
Sensor Placement. Useful Algorithms in Computational Geometry.’’
Jin-Soo Kim received his B.S., M.S., and Ph.D. degrees in

Computer Engineering from Seoul National University,
Republic of Korea, in 1991, 1993, and 1999, respectively.
He is currently an associate professor at Sungkyunkwan
University. Before joining Sungkyunkwan University, he
was an associate professor at Korea Advanced Institute
of Science and Technology (KAIST) from 2002 to 2008.
He was also with the Electronics and Telecommunica-
tions Research Institute (ETRI) from 1999 to 2002 as a
senior member of the research staff, and with the IBM
T.J. Watson Research Center as an academic visitor from
1998 to 1999. His research interests include embedded

systems, storage systems, and operating systems.
Sang-Won Lee received the Ph.D. degree from the
Computer Science Department of Seoul National Uni-
versity in 1999. He is an associate professor with the
School of Information and Communication Engineering
at Sungkyunkwan University, Suwon, Korea. Before that,
he was a research professor at Ewha Women University
and a technical staff at Oracle, Korea. His research
interest include flashbased database technology.

	Memory efficient and scalable address mapping for flash storage devices
	1 Introduction
	2 Design principle
	2.1 Extent-based mapping
	2.2 Virtual trie for VET
	2.2.1 Hash table

	2.3 EMT

	3 Algorithms for virtual trie
	3.1 Update for write requests
	3.1.1 Inserting an extent
	3.1.2 Deleting an extent

	3.2 Search for read requests
	3.3 Optimization by binary insertion scheme

	4 Algorithms for EMT
	4.1 Update for write requests
	4.2 Search for read requests

	5 Analysis
	5.1 VET
	5.2 Generated nodes
	5.2.1 Update for write requests
	5.2.2 Search for read requests
	5.2.3 Canonical extents

	5.3 Asymptotic performance analysis of EMT

	6 Experiments
	6.1 Environment settings
	6.2 Extent mapping performance evaluation
	6.2.1 VET
	6.2.2 Mapping time comparison between VET and EMT

	6.3 Performance comparison with traditional mapping schemes
	6.3.1 Memory consumption over real traces
	6.3.2 Scalability comparison over increasing address space

	7 Related work
	8 Conclusions
	Acknowledgment
	References

