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Abstract

Many mobile devices demand a large-capacity and high-performance storage system in order to store, retrieve, and pro-
cess large multimedia data quickly. In this paper, we present a high-performance NAND flash-based storage system based
on a multi-channel architecture. The proposed system consists of multiple independent channels, where each channel has
multiple NAND flash memory chips. On this hardware, we investigate three optimization techniques to exploit I/O par-
allelism: striping, interleaving, and pipelining. By combining all the optimization techniques carefully, our system has
shown 3.6 times higher overall performance compared to the conventional single-channel architecture.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Flash memory is widely used for code and data
storage of consumer electronics products due to its
versatile features such as non-volatility, solid-state
reliability, low power consumption, and shock resis-
tance [5]. The most popular flash memory types are
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NOR and NAND. Although NOR flash memory
offers random access capability and high read per-
formance, it suffers from extremely low write and
erase performance and it is more expensive per
MB than NAND flash memory. On the other hand,
NAND flash memory provides high cell densities
and low cost per MB with higher write and erase
performance than NOR flash memory. Therefore,
NOR flash memory is well suited for code storage
and execute-in-place (XIP) applications, while
NAND flash memory is suitable for data storage
[13].

Many mobile devices, including MP3 players,
PDAs (personal digital assistants), PMPs (portable
media players), high-resolution digital cameras and
.
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camcorders, and mobile phones, demand a large-
capacity and high-performance storage system in
order to store, retrieve, and process large multime-
dia data quickly. In those devices, NAND flash
memory is already becoming one of the most com-
mon storage medium. Moreover, solid-state flash
disks based on NAND flash memory technology,
such as M-System’s FFDs (Fast Flash Disks) [6]
and BiTMICRO’s E-Disks [7], are gradually replac-
ing mechanical hard disks under mission-critical
and/or rugged operating conditions in military and
aerospace industry. As NAND flash technology
development continues to double density growth
on an average of every 12 months [16], it is expected
that sub-notebook computers or tablet PCs
equipped with more than tens of Gbytes of NAND
flash memory-based storage system will be available
to ordinary users in the near future.

Although replacing hard disks with NAND flash
memory brings advantages in terms of size, weight,
reliability, and energy use, it is not easy to draw the
maximum performance from NAND flash memory
due to its unique operational characteristics. In
NAND flash memory, the write operation requires
a relatively long latency compared to the read oper-
ation. In addition, the previous data should be
erased first in order to write another data in the
same physical area. The worse problem is that the
erase operation cannot be performed on the partic-
ular data selectively, but on the larger unit contain-
ing the original data with much longer latency. The
MLC (Multi-Level Cell) technology, which is
recently introduced to multiply the capacity of a
NAND flash memory chip, further decreases the
operation speed [1]. Thus, developing a high-perfor-
mance NAND flash-based storage system remains a
technically challenging area.

In this paper, we propose a hardware and soft-
ware architecture of high-performance NAND
flash-based storage system. Specifically, we focus
on three optimization techniques that can exploit
I/O parallelism in various ways: striping, interleav-

ing, and pipelining. The hardware architecture of
the proposed system consists of multiple indepen-
dent channels, where each channel has multiple
NAND flash memory chips. On this hardware, we
quantitatively investigate the performance impact
of individual optimization technique, as well as the
overall performance when all the techniques are
combined together.

In the experiments, the striping technique, the
interleaving technique, and the pipelining technique
improve the throughput up to 164%, 72%, and
197%, respectively. By combining all the optimiza-
tion techniques carefully, our system has shown
3.6 times higher overall performance compared to
the conventional single-channel architecture.

The rest of the paper is organized as follows. Sec-
tion 2 describes the characteristics of NAND flash
memory. In Section 3, we present the hardware
architecture of the high-performance NAND flash-
based storage system that we designed and
implemented. In Section 4, we explain the software
architecture and three optimization techniques that
can maximize I/O parallelism. Section 5 shows
experimental results and Section 6 presents the
related work. Finally, our conclusions and future
work are drawn in Section 7.

2. Background

A NAND flash memory consists of a memory
array and an I/O buffer. Data are transferred
through the I/O buffer. The memory array is com-
posed of a fixed number of blocks and each block
is organized as 32 pages. A block is a basic unit of
erase operations, while a page is a basic unit of read
and write operations. Each page consists of
512 bytes of main area and 16 bytes of spare area.

There are three basic operations in NAND flash
memory: read, program (write), and erase. The read
operation fetches data from a target page, while the
program operation writes data to a target page. The
erase operation resets all values of a target block to
1. In flash memory, once a page is written, it should
be erased before the subsequent program operation
is performed on the same page. This characteristic is
sometimes called erase-before-write. The number of
program/erase cycles is limited to about 10,000–
1,000,000 times.

Read and program operations consist of three
phases: setup, busy, and data transfer. In order to
read a page, command and address are given to a
NAND flash memory chip through I/O pins in the
setup phase. After a fixed delay time of 10–25 ls,
the selected page is loaded into the I/O buffer in
the busy phase. Hereafter 8-bit or 16-bit data can
be sequentially fetched from the I/O buffer every
50 ls in the data transfer phase. The program oper-
ation is similar to read, except that the sequence of
the data transfer phase and the busy phase is
reversed. The programming delay time is 200–
700 ls. This fixed delay time of program operation
is about 10 times longer than that of read operation.
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The erase operation is simply composed of the setup
phase followed by the busy phase, since data trans-
fer is not needed. The fixed delay time of erase oper-
ation in the busy phase is 2–3 ms [14].

Recently, a new type of NAND flash memory,
called large block NAND, has been introduced in
order to provide high density and high performance
in bulk data transfer. The large block NAND flash
memory offers 2 Kbytes of main area and 64 bytes
of spare area with 64 pages per block. Note that a
new programming restriction is added in the large
block NAND flash memory; the page should be
programmed in sequential order from page 0 to
page 63 within a block. Random page address pro-
gramming in a block is strictly prohibited by the
specification [14].
3. Multi-channel architecture

In this section, we describe the hardware archi-
tecture of our prototype system, which is based on
a multi-channel architecture. The basic idea behind
the multi-channel architecture is to exploit I/O par-
allelism by utilizing multiple independent channels
and multiple NAND flash memory chips.
3.1. Overall architecture

In order to investigate the impact of the multi-
channel architecture on the overall performance,
we implemented a prototype of NAND flash-based
embedded storage system, which we named
DUMBO. The design of DUMBO focuses on sim-
plicity and flexibility so that we can investigate the
effect of various optimization techniques.

Fig. 1 depicts the overall architecture of the pro-
totype system where DUMBO is connected to the
host system through the host interface. DUMBO
Fig. 1. The overall architecture
consists of four independent channel managers that
control NAND flash memory chips separately.

The host system is an ARM9-based embedded
system which has 32 Mbytes SDRAM and 64 Mby-
tes NOR flash memory. The clock speed of CPU is
100 MHz. Operating system and read only data are
stored in the NOR flash memory. The host system
has an additional SDRAM interface for external
I/O devices. We use this additional SDRAM inter-
face to connect DUMBO to the host system. The
bus width of the SDRAM interface is 32 bits and
the maximum bandwidth is 25 Mbytes/s. To sup-
port interrupt-driven I/O, an interrupt line is con-
nected to the host CPU.
3.2. Channel manager

Each channel manager consists of a control logic,
a NAND interface, two independent buffers, and
eight NAND flash memory chips as illustrated in
Fig. 2. The control logic is responsible for transfer-
ring data between NAND flash chips and the corre-
sponding channel manager’s buffers. The NAND
interface controls NAND flash memory chips to
read and write data. The control logic receives read
and write commands from the host system through
the host interface, and manages NAND flash mem-
ory chips via the NAND interface to service the
commands. When the data transfer finishes, the
control logic notifies the host interface of the com-
pletion of the command. Then the host interface
sends an interrupt signal to the host system.

We used the large block type of NAND flash
memory chips for DUMBO. The capacity of each
NAND flash memory chip is 1 Gbits. Thus, each
channel manager provides 1 Gbytes and the total
storage size of DUMBO is 4 Gbytes. NAND flash
memory chips are connected to buffers via 16-bit
of the prototype system.



Fig. 2. The internal organization of a channel manager in DUMBO.
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I/O pins. Since the buffers are accessed both from
the host interface and from the NAND interface,
they are implemented with dual-port RAMs. The
size of each buffer is 2112 bytes that is the same as
the page size (including the 64-byte spare area) of
the large block NAND flash memory.

As each channel manager has two independent
buffers, we can send the next command to the same
channel manager using the other buffer without
waiting for the completion of the previous com-
mand. All the eight NAND flash memory chips in
the same channel manager share address/data I/O
lines. Therefore, we cannot transfer data between
two buffers and several NAND flash memory chips
concurrently. We can, however, overlap several
operations using separate control lines and two
independent buffers in the channel manager. The
details will be given in Section 4.

3.3. Read operation

A read operation consists of three phases: Read
Set (RS), Read from NAND (RN), and Read
Data (RD) as shown in Fig. 3. The arrows in the
boxes indicate the flow of control information and
data.

In order to read a page, read control information
is given to DUMBO via the host interface (RS).
Then the control logic of the channel manager con-
trols a NAND flash memory chip to read data.
Fig. 3. Timing diagram of rea
Read command and page address are given to the
NAND flash memory chip via the NAND interface
(setup phase). After the busy phase, the control
logic moves data to the buffer (data transfer phase).
When the data transfer from the NAND flash mem-
ory chip to DUMBO (RN) finishes, DUMBO sends
an interrupt signal to the host system to notify the
completion of the request. Finally, the host system
copies data from DUMBO (RD).

In Fig. 3, the boxes with diagonal lines (RS and
RD) use the host interface and the boxes with hori-
zontal lines (RN) use the NAND interface.
Although there is no data transfer in the busy phase,
the channel manager polls the NAND flash memory
chip in order to check the completion status using
the NAND interface. Polling during the busy phase
is more efficient than using an interrupt-driven I/O
because the delay time of the busy phase is very
short.

3.4. Write operation

A write operation consists of five phases: Write
Data (WD), Write Set (WS), Write to NAND
(WN), Write Confirm (WC), and NAND Program
(NP) as illustrated in Fig. 4. Note that the boxes
with diagonal lines (WD, WS, and WC) use the host
interface and the boxes with horizontal lines (WN)
use the NAND interface. The box with diagonal
crossing lines (NP) does not use any interfaces.
d operation in DUMBO.



Fig. 4. Timing diagram of write operation in DUMBO.
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In order to write a page, the host system moves
data to the buffer of the corresponding channel
manager in DUMBO (WD) and sends command
and address via the host interface (WS). Then the
channel manager sends write command and page
address (setup phase), and copies data (data transfer
phase) to the NAND flash memory chip via the
NAND interface (WN). When the data transfer
ends, the address/data I/O lines of the channel man-
ager become free. At this point, DUMBO sends an
interrupt signal in spite of the incompletion of a
request to maximize the utilization of the address/
data I/O lines. Finally, the host system sends write
confirm command (WC), and the corresponding
NAND flash chip goes to the busy phase (NP).

Unlike the case of read operation, the delay time
of the busy phase (NP) in write operation is longer
than any other phases such as WD and WN. Since
the host interface and the NAND interface become
free during the busy phase (NP), we can utilize this
interval to handle other requests concurrently.
4. Software architecture

In this section, we present the software architec-
ture for the proposed NAND flash-based storage
system. We also explain three optimization tech-
Fig. 5. The software architectur
niques, striping, interleaving, and pipelining, to
maximize the throughput of DUMBO.

4.1. Software architecture

The software architecture for the prototype
system consists of request queue management
subsystem, Flash Translation Layer (FTL), and
low-level device driver as presented in Fig. 5. The
function of the request queue management subsys-
tem is to rearrange I/O requests received from
the operating system and to assign them to the spe-
cific channel manager. The main role of FTL is to
emulate the functionality of block devices with flash
memory [10]. The low-level device driver controls
DUMBO according to various optimization tech-
niques.

As described in Section 2, NAND flash memory
has a restriction that the page should be erased
before being rewritten in the same location. The
erase operation takes much longer time in compar-
ison with read and program operations. Therefore,
an intermediate software layer called FTL is usually
employed to hide the latency of erase operation as
much as possible. FTL achieves this by redirecting
each write request to an empty location in flash
memory that has been erased in advance, and by
managing the mapping information internally.
e for the prototype system.
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There are two main functions of FTL: address
translation and garbage collection. The primary role
of the address translation is to manage sector map-
ping information. The logical sector number of a
request is translated into a physical address that rep-
resents a location of data in NAND flash memory
chips. According to the granularity with which the
mapping information is managed, FTL can be clas-
sified as page-mapped, block-mapped, or hybrid.
The hybrid scheme uses smaller memory footprint
than the page-mapped method and can program
pages sequentially within a block in contrast with
block-mapped method. Therefore, we implemented
a hybrid FTL similar to the log-structured FTL
[10] in order to reduce memory usage and to obey
the sequential write order requirement in the large
block NAND flash memory. Garbage collection is
to reclaim free pages by erasing appropriate blocks.
We use the same replacement block scheme that
used for block-mapped FTL [2]. The replacement
blocks are merged into a single block by the garbage
collector.

4.2. Exploiting I/O parallelism

There are two kinds of I/O parallelism we can
exploit. One is intra-request parallelism which
denotes the parallel execution of a single request
to reduce service time. The other is inter-request par-

allelism which indicates the parallel execution of
many different requests to improve throughput.

In order to exploit intra-request parallelism, we
can adopt a striping technique. The striping tech-
nique spreads out a request across multiple chan-
nels. Fig. 6a illustrates that the request 1 is
Fig. 6. Three optimization techniques to exploit I/O parallelism. (a)
technique.
divided into two sub-requests and those sub-
requests are handled by two channels in a parallel
way.

To exploit inter-request parallelism, we can think
of two techniques: interleaving and pipelining. In the
interleaving technique, several requests are handled
in parallel by using several channel managers. For
example, in Fig. 6b, two requests are processed
simultaneously with two channels. The pipelining
technique overlaps the processing of two requests
as presented in Fig. 6c. While the interleaving tech-
nique and the striping technique occupy more than
two channels, the pipelining technique occupies only
a single channel.

4.2.1. Striping
We define the striping level to be the number of

channel managers that are used to handle a single
request. Those channel managers form a channel
manager group. Each channel manager in the same
group gets its corresponding portion of data to han-
dle the request. The maximum striping level is four
in our system because DUMBO has only four chan-
nel managers.

Let us assume that the striping level is two. A
channel manager group is composed of two channel
managers and DUMBO has two channel manager
groups. A request is divided into two sub-requests
as illustrated in Fig. 7.

In case of read operation (Fig. 7a), commands
and addresses of two sub-requests are given to each
channel manager sequentially (RS) through the host
interface. Each channel manager reads data from
NAND flash memory to the buffer of the channel
manager concurrently (RN). After that, the data in
Striping technique; (b) interleaving technique; and (c) pipelining



Fig. 7. The striping technique with the striping level of two. (a) Read operation and (b) write operation.
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the buffers are copied to host memory sequentially
(RD) through the host interface. The case of write
operation (Fig. 7b) is similar to that of read opera-
tion except that the sequence of the data transfer
phase and the busy phase is reversed.

Note that the data transfer between the host
memory and DUMBO (RS, RD, WD, WS, and
WC) is serialized via the host interface without over-
lapping. This is because DUMBO relies on only one
host interface.
Fig. 8. The interleaving technique with the interleaving leve
4.2.2. Interleaving

The interleaving technique exploits inter-request
parallelism using multiple channel managers similar
to the striping technique. The difference between
interleaving and striping is the number of requests
handled simultaneously. The interleaving technique
handles several requests at once, while the striping
technique handles only one request with several
channel managers. We define the interleaving level

to be the number of requests that can be handled
l of two. (a) Read operation and (b) write operation.
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simultaneously. Again, the maximum interleaving
level is four in DUMBO.

Let us assume that the interleaving level is two.
In Fig. 8, request 1 and request 2 are handled con-
currently by the channel manager 1 and the channel
manger 2, respectively. The control order of read
and write operations with interleaving are similar
to that with striping except that each channel man-
ager handles its own request separately.

For write operation, FTL needs to redirect a
write request to one of the available channel manag-
ers. A simple distribution policy is a round-robin
policy, where the channel manager is decided based
on the logical sector number. For example, if the
interleaving level is two, write requests to even-num-
bered sectors are redirected to the channel manager
1, while the others are to the channel manager 2. In
case of read operation, however, we have no free-
dom to distribute incoming read requests because
data are already stored in a specific location. In
any case, the throughput of read or write operations
can be degraded when the requests are skewed
towards a specific channel manager.
4.2.3. Pipelining

The pipelining technique utilizes inter-request
parallelism between the host interface and the chan-
nel manager. Since the host interface and the chan-
nel manager operate concurrently, we can send the
next command to the same channel manager using
the other buffer without waiting for the completion
Fig. 9. The pipelining technique. (a) Read
of the previous command as shown in Fig. 9. The
NAND interface of the channel manager handles
the previous command and the host interface deals
with the next command simultaneously.

In case of read operation (Fig. 9a), when the data
transfer from NAND flash memory to the buffer 1
(RN 1) is finished, the channel manager sends an
interrupt signal to the host system. Since NAND
flash memory is free at this point, we can send
request 2 to the channel manager using the buffer
2 before the data in buffer 1 is copied to the host
memory (RD 1). Therefore, the channel manager
moves the data of request 2 from NAND flash
memory to the buffer 2 using the NAND interface
(RN 2) while the data in buffer 1 is transferred to
the host memory using the host interface (RD 1).

For write operation (Fig. 9b), the data transfer of
request 1 from the buffer 1 to NAND flash memory
(WN 1) overlaps with the data copy of request 2
from the host memory to the buffer 2 (WD 2). Since
the time of busy phase (NP 1) is longer than that of
data transfer time (WD 2), we need to wait until the
request 1 is completed in order to write the data of
request 2 to NAND flash memory (WN 2, NP 2).
4.2.4. Putting it all together

The three techniques, striping, interleaving, and
pipelining, can be combined together in our system
as follows. The requests received from the operating
system are assigned to a specific channel manager
group according to the interleaving technique. Then
operation and (b) write operation.



Fig. 10. The flow of requests when three optimization techniques are combined together. (It is assumed that both the striping level and the
interleaving level are two.)
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the request is divided into sub-requests using the
striping technique. Finally, the sub-requests are pro-
cessed according to the pipelining technique as pre-
sented in Fig. 10.

Since both striping and interleaving require sev-
eral channel managers, we need to allocate channel
managers to each technique effectively. When we
apply both striping and interleaving to DUMBO,
we have three possible configurations as shown in
Table 1. For example, if the striping level is two,
the interleaving level should be two because
DUMBO has only four channel managers. The
pipelining technique can be used together with strip-
ing and interleaving without any restriction because
the pipelining technique does not require additional
channel managers.

Another performance factor is the size of request.
Generally, the large request size is desirable to max-
Table 1
Available configurations in DUMBO

Striping level Interleaving level Symbol

4 1 S4:I1
2 2 S2:I2
1 4 S1:I4

Table 2
The experimental environment

Parameters Values

Host interface bandwidth 25 MB/s
16-bit data transfer time from NAND 50 nsa

Busy time of read operation 27.32 lsa

Busy time of program operation 196.37 lsa

a These are the values actually measured on DUMBO.
imize the throughput of storage system and to
amortize the overhead associated with data transfer,
although it causes more internal fragmentation. In
this paper, we consider the request size ranging from
512 bytes to 8 Kbytes.

5. Performance evaluation

This section presents our experimental results.
Table 2 describes our experimental environment.

5.1. Impact of optimization techniques

We first show the impact of individual optimiza-
tion technique on the performance as well as the
final performance when all the techniques are
applied.

5.1.1. Striping
Fig. 11 presents the throughput of read and write

operations under various request sizes as the strip-
ing level increases from one to four. Since the busy
time of read operation is shorter than that of write
operation (NP), the read throughput is about twice
the write throughput. When the request size is
8 Kbytes, using the striping level of four improves
the throughput by 73% for read and by 164% for
write, compared to the case without striping. The
read operation is more affected by the control over-
head, which results in the smaller throughput
improvement than the write operation.

The striping technique reduces only the data
transfer time between DUMBO and NAND flash
memory chips (RN and WN) in proportion to the
striping level. The data transfer time between the



Fig. 11. The throughput under various request sizes with striping. (When the striping level is two and the request size is 4 Kbytes, two
channel managers are used and a 4-Kbyte request is divided into two 2-Kbyte sub-requests.) (a) Read operation and (b) write operation.
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host memory and DUMBO (RS, RD, WD, WS, and
WC) is not improved because RS, RD, WD, WS,
and WC must use the host interface in a mutually
exclusive way. The control overhead, moreover,
grows commensurate to the striping level to control
more channel managers. Therefore, both the read
throughput and the write throughput do not
improve linearly as the striping level increases.

In Fig. 11, we can observe that increasing the
striping level does not yield satisfactory throughput
especially when the request size is small. This is
because the size of sub-request becomes smaller than
the page size of NAND flash memory, in which case
partial page read (or program) operation should be
performed. As we have to pay the fixed amount of
time for the setup phase and the busy phase regard-
less of the data size, partial page read (or program)
operation incurs relatively more overhead than the
read (or program) operation at full page size. From
these results, we can see that the striping technique is
effective only when the sub-request size is equal to or
greater than the page size of NAND flash memory.
Fig. 12. The throughput under various request sizes with interleaving. (
two 2-Kbyte request are processed concurrently in two channel manag
5.1.2. Interleaving

Fig. 12 depicts the throughput of read and write
operations under various request sizes as the inter-
leaving level rises from one to four. When we dis-
tribute incoming requests to four channel
managers, we can accomplish the throughput
improvement up to 84% for read and up to 197%
for write. Since commands (RS, WS, and WC) are
sent to each channel manager via the host interface
sequentially, the control overhead of channel man-
agers is proportional to the interleaving level.
Therefore, the larger interleaving level causes the
smaller improvement. In addition, the bandwidth
of the host interface becomes a bottleneck in the
interleaving technique, because DUMBO has only
one host interface.

In Fig. 12, the reason why the request size of
1 Kbytes shows consistently worse throughput than
the other cases is also related to the fact that partial
read or program operation incurs more overhead
(cf. Section 5.1.1). The larger request size does not
improve the throughput further as long as the
When the interleaving level is two and the request size is 2 Kbytes,
ers.) (a) Read operation and (b) write operation.



Fig. 13. The throughput improvement with pipelining. (a) Read operation and (b) write operation.
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request size becomes equal to or greater than the
page size of NAND flash memory.

5.1.3. Pipelining

Fig. 13 compares the throughput with and with-
out pipelining. The use of pipelining increases the
read throughput and the write throughput by 72%
and by 37%, respectively. As in the interleaving
technique, pipelining has no added benefit if the
request size is equal to or greater than 2 Kbytes.
For the smaller request size, the throughput is
decreased due to the overhead of partial read and
program operations.

With pipelining, the performance of NAND flash
memory chips becomes a bottleneck because the
bandwidth of the host interface is faster than that
of NAND flash memory chip. The time using the
host interface (RS, RD, WD, WS, and WC) over-
laps with the time using the NAND interface (RN,
WN, and NP). In case of read operation, since RD

is not much shorter than RN, the pipelining tech-
nique benefits by processing RN and RD concur-
rently. However, the write throughput is improved
Fig. 14. The throughput under all possible configurations show
slightly since the duration of WN and NP is much
longer than that of WD.
5.1.4. Putting it all together

Fig. 14 shows the throughput of read and write
operations under all possible configurations in
DUMBO (cf. Table 1).

Overall, we can see that the configuration S1:I4,
which maximizes the interleaving level, always per-
forms well regardless of the request size. Recall that
the striping technique splits a request into several
sub-requests according to the striping level. There-
fore, if the request size is small, the sub-request size
can be smaller than the page size of NAND flash
memory, in which case the throughput is degraded
due to the partial read and program operations.
As long as the sub-request size is equal to or greater
than the page size of NAND flash memory, S4:I1
and S2:I2 configurations also show the performance
comparable to S1:I4 configuration. This can be seen
in Fig. 14, where both S4:I1 configuration with
8-Kbyte request size and S2:I2 configuration with
n in Table 1. (a) Read operation and (b) write operation.



Fig. 15. The average service time under all possible configurations shown in Table 1. (a) Read operation and (b) write operation.
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4-Kbyte request size exhibit the same maximum
throughput.

Fig. 15 presents the average service time of read
and write operations under all possible configura-
tions in DUMBO. Contrary to the throughput,
striping is very effective in reducing the average ser-
vice time. This is obvious because the interleaving
technique does not reduce the service time of indi-
vidual requests.

From our measurement results, we selected the
S2:I2 configuration with 4-Kbyte request size as
the best choice for our storage system. The criteria
we used to select this configuration are as follows.
First, the size of sub-request with striping should
be larger than the page size of NAND flash memory
as stated in Section 5.1.1. Second, the request size
should not be larger than 4 Kbytes because the size
of default unit is 4 Kbytes in most file systems such
as FAT32, NTFS, FFS, and Ext2/3 [15]. Many
CPUs also use 4 Kbytes as the default memory page
size. Finally, the striping level should be as large as
possible to reduce the service time.
Fig. 16. The actual throughput delivered to the user-level ap
The maximum throughput of read and write
operations in DUMBO with the S2:I2 configuration
is 23.3 MB/s and 16.0 MB/s, respectively. This
result shows that the throughput of read and write
operations are improved almost 2.3 and 3.6 times,
respectively, over the conventional single-channel
architecture without any optimization. Since the
read operation reaches the full throughput of the
host interface, the improvement of read operation
is slightly smaller than that of write operation.

5.2. Overall performance

We implemented the software part of the multi-
channel architecture in the block device driver of
Linux operating system. Fig. 16 shows the resulting
throughput delivered to the user-level applications.
The raw level in the legend indicates the maximum
bandwidth of DUMBO shown in Fig. 14.

In case of read operation, the practical through-
put is limited to 80% of the raw throughput. This is
mainly because we use the programmed I/O in
plications. (a) Read operation and (b) write operation.
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transferring data between the host memory and
DUMBO. With the programmed I/O, the data
transfer often interferes with the other CPU activi-
ties, such as the execution of the application code,
operating system code, and the FTL code.

For write operation, Linux supports two write
modes: synchronous mode and asynchronous mode.
In the synchronous mode, each write() system call
waits until the request is completed. Hence, the
small block size cannot fully exploit the parallelism
offered by DUMBO. In the asynchronous mode,
however, the operating system buffers the write
requests temporarily in buffer caches and issues bulk
data transfer at later, which results in roughly the
same throughput independent of the block size.

Unlike the read operation, the write operation
shows the lower throughput as the block size
increases. This is because two channel manager
groups with the interleaving technique compete for
the CPU to handle their own requests. Since each
channel manager group waits for the end of the
busy phase of program operation using busy wait-
ing, only one channel manager group which cur-
rently acquires the CPU can handle the next
request for pipelining. The other channel manager
group delays the completion of the request until it
holds the CPU. As the block size increases, the com-
petition between two channel manager groups is
exacerbated, thus increasing the request processing
time. In addition to the competition for the CPU,
the garbage collection is another factor that
decreases the write performance. While write
requests are processed, the garbage collector occa-
sionally has to erase invalid blocks to make free
blocks.
5.3. Overhead analysis

Table 3 shows the number of gates used by each
component in DUMBO. We extracted each gate
count from Synopsys design compiler [8]. One chan-
nel manager consists of 3769 gates and one or two
Table 3
The number of gates used by each component in DUMBO

Host
interface

Channel manager

Control
logic

NAND
interface

The size of
buffer

1939a 3353a 416a 2112 bytes

a Each value is extracted from Synopsys design compiler.
2112-byte (2 Kbytes + 64 bytes) buffers. For strip-
ing and interleaving, each channel manager necessi-
tates merely one buffer, while the pipeline technique
demands two buffers per channel manager. Conse-
quently, DUMBO is made up of 17,015 gates and
eight 2112-byte buffers. With this small hardware
overhead, DUMBO shows 3.6 times higher overall
performance compared to the conventional single-
channel architecture (cf. Section 5.1.4). Note that
the gate number of control logic is significantly lar-
ger than that of the NAND interface in the channel
manager. This is because the control logic internally
has five 32-bit registers which are used to store the
address for each read or write operation, the com-
mand, and the ID and the status for a selected
NAND flash memory chip.

The code size of software including three optimi-
zation techniques is about 4 Kbytes, when the code
is compiled with gcc (GNU C Compiler) for ARM9.
Although there is a little control overhead according
to the number of channel managers (cf. Section 5.1),
the increase of code size is negligible. The software
requires only a small size of execution stack at run
time, because the software does not use global data
or temporary buffers.

6. Related work

To achieve high performance in flash memory-
based storage system, many research efforts have
been performed. Kawaguchi et al. [9] proposed a
translation layer for flash file systems and studied
cost-benefit policy for garbage collection. Chiang
et al. [4] investigated the DAC (Dynamic dAta Clus-
tering) scheme to cluster data during data update.
On the other hand, Wu et al. [17] proposed a large
non-volatile main memory storage system with
write buffering in battery-backed SDRAM to hide
write latency. Lee et al. [11] examined a NAND-
type flash memory package with a smart buffer
cache to raise the hit ratio. Recently, Park et al.
[12] proposed a replacement algorithm called
CFLRU (Clean First LRU) to minimize the number
of write requests from the operating system. All of
these previous work, however, focus on reducing
the number of write or erase operations to improve
the performance of flash memory-based storage sys-
tem. Our work is complementary to the previous
work since we are focusing on exploiting I/O paral-
lelism for the given number of I/O requests.

In an adaptive striping architecture, Chang and
Kuo [3] presented a multi-banked flash memory
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storage system to utilize multiple NAND flash
memory chips. Unlike DUMBO, however, their sys-
tem consists of only multiple NAND flash memory
chips without additional hardware controller. They
just focused on an adaptive striping-aware bank
assignment method which is a data placement algo-
rithm and garbage collection technique to reduce
erase operations rather than exploiting I/O parallel-
ism on parallelized architecture. When data are
updated, the method selects the specific NAND chip
where the data will be written in order to evenly dis-
tribute erase operations among multiple NAND
flash memory chips. The decision is generally made
based on the update frequency of the data without
considering hardware architecture. In fact, this is
an orthogonal issue to our multi-channel architec-
ture and we expect their method also has the similar
effect on DUMBO.

7. Conclusion

This paper presents the design and implementa-
tion of high-performance NAND flash-based stor-
age system that exploits I/O parallelism from
multiple channels and multiple NAND flash mem-
ory chips. We have applied three optimization tech-
niques to maximize I/O parallelism: striping,
pipelining, and interleaving. We find out that the
size of sub-request should be equal to or greater
than the page size of NAND flash memory for strip-
ing, and the request size is not related to the
throughput of read and write operations for inter-
leaving. By combining all the optimization tech-
niques carefully, our system has shown 3.6 times
higher overall performance compared to the con-
ventional single-channel architecture.

In the current implementation, only the 80%
of the throughput is delivered to the user-level
applications in Linux mainly due to the use of
programmed I/O. To reduce the competition for
the CPU in programmed I/O, we believe it would
be essential to have a DMA engine. We are cur-
rently working on the second prototype system
which supports more channel managers and the
DMA engine.

Another cause of performance degradation in
practice can be the load imbalance among chan-
nel managers in the interleaving technique. We
plan to explore an algorithm that can distribute
incoming requests to channel managers more
effectively by investigating the characteristics of real
workloads.
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