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a b s t r a c t

For distributed applications requiring collaboration, responsive and transparent interactivity is highly de-
sired. Though such interactivity can be achieved with optimistic replication, maintaining replica consis-
tency is difficult. To support efficient implementations of collaborative applications, this paper extends a
few representative abstract data types (ADTs), such as arrays, hash tables, and growable arrays (or linked
lists), into replicated abstract data types (RADTs). In RADTs, a shared ADT is replicated and modified with
optimistic operations. Operation commutativity and precedence transitivity are two principles enabling
RADTs to maintain consistency despite different execution orders. Especially, replicated growable arrays
(RGAs) support insertion/deletion/update operations. Over previous approaches to the optimistic inser-
tion and deletion, RGAs show significant improvement in performance, scalability, and reliability.

© 2010 Elsevier Inc. All rights reserved.
1. Introduction

Optimistic replication is an essential technique for interactive
collaborative applications [8,30]. To illustrate replication issues in
collaboration, consider the following scenario in an editorial office
publishing a daily newspaper.

A number of pressmen are editing a newspaper using computerized
collaboration tools. Each of them is browsing and editing pages
consisting of news items, such as text, pictures, and tables. When
a writer collaborates on editing the same article with others, his
local interaction is never blocked, but interactions of the others are
shown to him as soon as possible. After all interactions cease, all
the copies of the newspaper become consistent.

Human users, the subjects of these applications, prefer high
responsiveness and transparent interactivity to strict consis-
tency [8,30,13]. Responsiveness means how quickly the effect of
an operation is delivered to users, and interactivity is how freely
operations can be performed. Optimistic operations that are exe-
cuted first at each local site enable to achieve these properties, but
consistency should be maintained as sites execute operations in
different orders.

Optimistic replication contrasts with pessimistic concurrency
control protocols [30], such as serialization [5,14] or locking [3,12].
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Even if a global locking protocol allows optimistic operations
[13], it not only requires a state rollback mechanism, but also
damages interactivity due to the nature of the locking protocol.
There has been research on genuine optimistic replication ori-
ented to specific services, such as a replicated databases [36,37],
Usenet [21,9,6], and a collaborative textual or graphical editor
[8,27,34,33]. However, these service-oriented techniques are in-
flexible for various complex functions of modern interactive appli-
cations; e.g., electronic blackboards, games, CAD tools, and office
tools such as Microsoft Office and Google Docs, all of which can be
extended for collaboration.

Interactive applications, e.g., CAD tools designing for skyscrap-
ers or spaceships, have demanded managing of indeterminate
data; one data may consist of limited elements, another data may
need quick access to unlimited elements, and the other data may
contain ordered elements frequently inserted anddeleted. Sensible
developers would make use of various abstract data types (ADTs)
to reflect such a demand.When those applications are extended for
collaboration, however, developers may abandon to use ADTs for
shared data owing to inconsistency. Hence, we suggest replicated
abstract data types (RADTs), a novel class of ADTs that can be used
as building blocks for collaborative applications.

RADTs are multiple copies of a shared ADT replicated over
distributed sites. RADTs provide a set of primitive operations
corresponding to that of normal ADTs, concealing the details of
consistency maintenance. RADTs ensure eventual consistency [30],
a weak consistency model for achieving responsiveness and
interactivity. By imposing no constraint on operation delivery
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except causal dependency, we accommodate RADT deployment in
general environments. This allows a site to execute operations in
any causal order.Wemodel such executions and explore principles
to achieve eventual consistency.

This paper suggests two principles that lead to successful
designs of non-trivial RADTs. First, operation commutativity (OC)
requires that every pair of concurrent operations commutes.
Though the concept of commutativity was discussed in many
distributed systems [39,1,27], it was not fully assimilated. We
formally prove that OC guarantees eventual consistency for all
possible execution orders; so, we mandate RADT operations to
satisfy OC. Second, precedence transitivity (PT) requires that all
precedence rules are transitive. RADTs require precedence rules to
reconcile conflicting intentions. PT is a guideline on how to design
remote operations so that RADT operations satisfy OC and preserve
their intentions. In short, OC is a sufficient condition to ensure
eventual consistency, while PT is a principle for exploiting OC.

We present efficient implementations of three RADTs: repli-
cated fixed-size arrays (RFAs), replicated hash tables (RHTs),
and replicated growable arrays (RGAs). Although some key
ideas for RFAs and RHTs were already present in the literature
[36,37,21,9,6], we introduce them again because they exemplify
the concepts of RADTs, and above all because their problems and
ideas are inherited by RGAs.

RGAs are another main contribution of this paper, which solves
the problem of optimistic insertions and deletions into a replicated
ordered set. As these operations have been highly desired in
collaborative applications [8,13], the operational transformation
(OT) framework is the classic approach for these operations.
Various OT methods have been introduced [7,27,35,34,19,22],
and one of them is adopted by a web collaboration tool Google
Wave [11]. However, the OT framework has difficulty in verifying
correctness, and an evaluation study on recent OT methods
reports that their performance and scalability are poor and non-
negligible [18].

Thanks to OC and PT, RGAs provide full correctness verification
not only for insertions and deletions, but also for updates [29].
In addition, RGAs are superior to most of the previous works in
complexity, scalability, and reliability. Whereas remote operations
of OT methods generally have quadratic time-complexity, remote
RGAoperations canperform inO(1) timebyproposing the s4vector
index (SVI) scheme. Our evaluation shows that operations needing
about hundreds of ms in OT methods take only dozens of µs in
RGAs. Due to the optimal remote operations and the fixed-size
s4vectors, RGAs scale. Additionally, RGAs have a chance to enhance
reliability by autonomous causality validations of the SVI scheme.
RGAs, therefore, can be a better alternative of OT methods.

Section 2 describes three RADTs and their inconsistency
problems. Sections 3 and 4 formalize OC and PT, respectively.
Concrete algorithms of RADTs are proposed in Section 5.We survey
the related work in Section 6, and contrast RGAs with previous
work in Section 7. Section 8 presents the performance evaluation,
and we conclude this paper in Section 9.

2. Problem definition

2.1. Preliminary: causality preservation among operations

The replication system discussed in this paper is characterized
by a set of distributed sites and operations as shown in the
time–space diagram of Fig. 1 which describes the propagations
and executions of operations. Lamport presented two definitions
for causality [15]: happened-before relation (‘→’) and concurrent
relation (‘‖’). Given a time–space diagram consisting of n
operations, all n(n−1)

2 relations are obtained; every pair of distinct
operations is in either of the two relations.
Fig. 1. A time–space diagram in which three sites participate. A vector on the right
of each operation is its vector clock.

While no uniquely correct order is defined for concurrent
operations, partial orders defined by happened-before relations
need to be preserved at every site [27,35] owing to the causality
that might exist; e.g., imagine O4 is to delete the object inserted
by O2 in Fig. 1. Vector clocks can ensure such causality (or causal
execution orders) by preserving happened-before relations [5,35].
Following Birman et al.’s CBCAST scheme [5], in our replication
system consisting of N sites, site i updates its own N-tuple vector
clock −→v i according to lines 2, 8, 10, and 16 in Algorithm 1. To
preserve causality, causally unready operations are delayed using
a queue (lines 13–15). When an operation O issued at site j (i ≠ j)
arrives with its vector clock −→v O,O is causally ready if −→v O[j] =
−→v i[j] + 1 and −→v O[k] ≤

−→v i[k] for 0 ≤ k ≤ N − 1 and k ≠ j.
To illustrate, consider site 2 in Fig. 1. After O1’s execution, site
2 has −→v 2 = [1, 0, 1]. When O4 arrives at site 2 with −→v O4 =

[2, 1, 1], it is causally unready; thus, it is delayed until executing
O2. According to Birman and Cooper [4], CBCAST is 3–5 times faster
than ABCAST that supports a total ordering. Nevertheless, this
causality preservation scheme is so strict that itmight incur a chain
of inessential delays, when a site fails to broadcast operations; in
Section 7, we discuss relaxing of this scheme.

2.2. System model of RADTs

A replicated abstract data type (RADT) is extended from a
normal ADT. The system model of RADTs can be summarized
below, and the main control loop is presented in Algorithm 1.
• An RADT is a particular data structure with a definite set of

operation types (OPTYPE).
• RADTs are multiple copies of an RADT, each of which is

replicated at one of the distributed sites.
• At a site, a local operation is one issued locally, whereas a remote

operation is one received from a remote site.
• At a site, every local operation is immediately executed on the

RADT of the site according to its local algorithm.
• Every local operation modifying the local RADT is broadcast to

the other sites in the form of the remote operation.
• At a site, every remote operation is immediately executed

according to its remote algorithmwhen it is causally ready.

For the operations modifying RADTs, two kinds of algorithms are
given: local and remote. In RADTs, local algorithms are almost
the same as those of the normal ADTs, but remote algorithms
might operate differently in order to maintain consistency. Since an
operation is executed first at its local site and later at remote sites,
different sites execute operations in different orders. Section 3
will go into detail on operation execution.

On the other hand, though local Read operations are allowed
without restriction, they are not propagated to remote sites. A
Read issued at a site, therefore, never globally performs, and thus
consistency is not defined for Reads. Instead, RADTs guarantee an
eventual consistency modelwhich is defined only for the operations
modifying replica states as follows.
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Algorithm 1 The main control loop of RADTs at site i
1 MainLoop():
2 ∀k:−→v i[k] := 0;
3 i := this site ID;
4 initialize queue Q;
5 initialize RADT;
6 while(not aborted)
7 if(O is a local operation but not Read)
8 −→v i[i] :=

−→v i[i] + 1;
9 if(RADT.localAlgorithm(O) = true) broadcast (O, −→v i);

10 else −→v i[i] :=
−→v i[i] − 1;

11 if(O is a Read) RADT.localAlgorithm(O);
12 if(an operation O arrives with −→v O from site j)
13 enqueue set (O, −→v O) into Q;
14 while(there is a causally ready set in Q)
15 (O, −→v O) := dequeue the set from Q;
16 ∀k:−→v i[k] := max(−→v i[k],

−→v O[k]);
17 RADT.remoteAlgorithm(O);

Definition 1 (Eventual Consistency of RADTs). Eventual consistency
is the condition that all the states of RADTs are identical after
sites have executed the same set of modifying operations from the
same initial states regardless of any causal execution order of the
operations at each site.

In this model, even if every site executes the same Read
at the exact same time, sites might read different values. As
in the scenario of editing newspapers, however, if consistency
of shared objects, displayed to human users, accords with this
model, momentary inconsistency is acceptable to human users. In
particular, the eventual consistency is appropriate for achieving
high responsiveness and transparent interactivity; thus, it has been
widely accepted in collaborative applications [7,8,13,30].

2.3. Definitions of RADTs and inconsistency problems

This paper focuses on three kinds of representative ADTs and
extends them into RADTs: fixed-size array into RFA, hash table
into RHT, and growable array or linked list into RGA. A real
example of the growable array is the Vector class of JAVA or STL.
As shown in Fig. 2, their functionality is prevalently demanded
in such applications as in the newspaper editing scenario. Note
that multiple RADTs can handle the same object in memory. For
example, news items can be managed not only with RHTs as in
Fig. 2 but also with RGAs to display a number of news items on
a page. To manage the overlapping order of news items, i.e., Z-
order, consistently over all sites, RGAs can be used even if some
items are inserted or deleted. Therefore, just like linked lists or
growable arrays are widely used, RGAs will be highly demanded
in collaborative applications. However, if remote algorithms are
not properly designed, RADTs suffer pathological inconsistency
problems. Below, we precisely define each RADT and show its
potential inconsistency problems when it executes operations
naïvely.

A replicated fixed-size array (RFA) is a fixed number of elements
with OPTYPE = {Write, Read}. An element is an object container of
RFAs,which contains one object. In Algorithm2, the local algorithm
of Write(int i, Object o) replaces the object at the ith element
with a new one o. In RFAs, different execution orders lead to
inconsistency. For example, if three operations of Fig. 3 are given
as O1: Write(1, o1), O2: Write(1, o2), and O3: Write(1, o3) in RFAs,
the element of index 1 lastly contains o1 at sites 1 and 2, but o2 at
site 0.

Hash tables are extended into replicated hash tables (RHTs),
which access shared objects in slots by hashing unique keys with
OPTYPE = {Put, Remove, Read}, as in Algorithm 3. This paper
assumes that an RHT resolves key collisions by separate chaining
scheme. If a Put performs on an existing slot, it updates the
Fig. 2. A usage example of RADTs in the newspaper editing scenario. A newspaper
page might be divided into a fixed number of blocks, which can be managed by an
RFA. An RHT makes it possible to rapidly access news items with unique keys. An
RGA enables pages to be inserted and deleted, respecting the order of existing pages.

Algorithm 2 The local algorithms for RFA operations
1 Write(int i, Object o):
2 if(RFA[i] exists) //RFA[i]: the ith element
3 RFA[i].obj := o; //replaces the ith object with o
4 return true;
5 else return false;
6 Read(int i):
7 if(RFA[i] exists) return RFA[i].obj;
8 else return nil;

Fig. 3. A simple example of a time–space diagram.

slot with its new object. RHTs have an additional source of
inconsistency because Puts and Removes dynamically create and
destroy slots. This necessitates the idea of tombstones, which are
invisible object containers kept up after Removes [21,9,6]. Despite
the tombstone, if the remote algorithms are the same as the local
ones, RHTs might diverge. Consider Fig. 3 again, assuming O1:
Remove(k1), O2: Put(k1, o2), and O3: Put(k1, o3). Having executed
the two Puts, sites 1 and 2 have different objects for k1. Finally,
sites 1 and 2 have the tombstone for k1 while site 0 has o2 for k1.

Algorithm 3 The local algorithms for RHT operations
1 Put(Key k, Object o):
2 s := RHT[hash(k)]; // RHT[hash(k)]: the slot where k is mapped;
3 if(s != nil) s.obj := o; // if slot exists;
4 else new_s := make a new slot;
5 new_s.obj := o;
6 RHT[hash(k)] := new_s; // link new_s to RHT;
7 return true;
8 Remove(Key k):
9 s := RHT[hash(k)];

10 if(s = nil) return false; // if no slot exists,
11 s.obj := nil; // make s tombstone;
12 return true;
13 Read(Key k):
14 s := RHT[hash(k)];
15 if(s = nil or s.obj = nil) return nil; // no slot or tombstone
16 return s.obj;

A replicate growable array (RGA) of primary interest to this
paper supports OPTYPE = {Insert,Delete,Update, Read}, each of
which accesses an objectwith an integer index. The local algorithms
of RGAs are presented in Algorithm 4. Since nodes, the object
containers of RGAs, are ordered and inserted/deleted, an RGA
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adopts a linked list internally for efficiency. Update is also required
because Inserts cannot update nodes and modifications on nodes
should be explicitly propagated. RGAs, therefore, inherit all the
problems of RFAs and RHTs.

In order to enhance user interactions, such as carets or
cursors, it is also possible to supplement OPTYPE with the local
pointer operations, which are parameterized with node pointers
instead of integers by using findlink in Algorithm 4. This paper,
however, mainly deals with the operations of integer indices
since their semantics have been frequently studied in collaborative
applications [7,27,35,34,19,22]. Note that local RGA operations on
tombstones fail by findlist or findlink and are not propagated to
remote sites in Algorithm 1.

Since the order among nodes matters, RGAs have additional
inconsistency problems. Suppose that the operations in Fig. 3 are
given as O1: Update(2, ox), O2: Insert(1, oy), and O3: Insert(1, oz)
and executed on an initial RGA [o1o2] by the local algorithms.1
After executing both O2 and O3, sites 1 and 2 have different results:
[o1ozoyo2] at site 1, and [o1oyozo2] at site 2. Here, only onemust be
chosen for consistency.

Algorithm 4 The local algorithms for RGA operations
1 findlist(int i):
2 n := head of the linked list;
3 int k := 0;
4 while(n != nil)
5 if(n.obj != nil) // skip tombstones;
6 if(i = ++k) return n;
7 n := n.link; // next node in the linked list;
8 return nil;
9 findlink(node n):

10 if(n.obj = nil) return nil; // if n is tombstone;
11 else return n;
12 Insert(int i, Object o):
13 if((refer_n := findlist(i)) = nil) return false;
14 new_n := make a new node;
15 new_n.obj := o;
16 link new_n next to refer_n in the RGA structure;
17 return true;
18 Delete(int i):
19 if((target_n := findlist(i)) = nil) return false;
20 target_n.obj := nil; // make target_n tombstone;
21 return true;
22 Update(int i, Object o):
23 if((target_n := findlist(i)) = nil) return false;
24 target_n.obj := o;
25 return true;
26 Read(int i):
27 if((target_n := findlist(i)) = nil) return nil;
28 return target_n.obj;

When executing O1, its remote sites might violate the intention
of O1, which is what O1 intends to do at its local site. We formally
define the intention of an operation as follows.

Definition 2 (Intention of an Operation). Given an operation with
parameter(s) on an RADT, its intention is the effect of its local
algorithm on the RADT.

In RGAs, intentions can be violated at remote sites because Inserts
and Deletes change integer indices of some nodes located behind
their intended nodes. This intention violation problem was first
addressed by Sun et al. [35]. In the example, although O1 intends
to replace oz on [o1ozo2] with ox at its local site, O1 of site 2 may
update oy on [o1oyozo2], which is not the intention ofO1. RGAsmay
incur many other puzzling problems regarding intentions [19], but
solve them in Sections 4 and 5.

1 The first object is referred to by index 1. An Insert adds a new node next to
(in the right of) its reference. To insert ox at the head, we use Insert(0, ox).
Fig. 4. CEG of the time–space diagram of Fig. 1.

The local RADT algorithms ensure the same responsiveness and
interactivity as thenormalADTs. Note that local Algorithms2–4 are
incomplete since we present no exact details of the data structures
yet. After introducing twoprinciples, the remote algorithms,which
mandate consistency maintenance, will be presented with the
details of the data structures in Section 5.

3. Operation commutativity

RADTs allow sites to execute operations in different orders. To
denote an execution order of two operations, we use ‘ →’; e.g.,
Oa → Ob if Oa is executed before Ob. In addition, we use ‘⇒’ to
express changes of replica states caused by the execution of an
operation or a sequence of operations; e.g., RS0

Oa
⇒ RS1

Ob
⇒ RS2

means that Oa and Ob change a replica state RS0 into RS1 and
then into RS2 in order. We abbreviate this as RS0

Oa →Ob
⇒ RS2.

Though time–space diagrams, such as Figs. 1 and 3, are intuitive
and illustrative, we present a better definition for formal analysis
as follows.

Definition 3 (Causally Executable Graph (CEG)). Given a time–space
diagram TS, a graph G = (V , E) is a causally executable graph, iff :
V is a set of vertices corresponding to all the operations in TS, and
E ⊂ V × V is a set of edges corresponding to all the relations be-
tween every pair of distinct operations in V , where a happened-
before relation Oa → Ob corresponds to a directed edge in E from
Oa to Ob, and a concurrent relation to an undirected edge in E,
respectively.

Fig. 4 shows the CEG obtained from the time–space diagram in
Fig. 1. Every CEG essentially has the following properties.

Lemma 1. A CEG G has no cycle with its directed edges and is a
complete graph.

Proof. According to the definitions of happened-before and
concurrent relations [15], they are not defined reflexively and
happened-before relations are all transitive; thus, G has no cycle.
Unless every pair of two distinct operations is in happened-before
relation, it is concurrent; hence, G is complete. �

For a given CEG, if all the vertices can be traveled without going
against directed edges, casuality can be preserved in the execution
sequence. In Fig. 4, at site 0, the execution sequence ofO1 → O2 →

O3 → O4 → O5 does not go against the direction of any directed
edges, but at site 2, O3 → O1 → O4 → O2 → O5 violates causality
because O4 is executed before O2, whose order is the reverse of
edge O2 → O4. A causality-preserved sequence encompassing all
the operations of a CEG satisfies the conditions in the following
definition.

Definition 4 (Causally Executable Sequence (CES)).Given a CEGG =

(V , E), where |V | = n, an execution sequence s : O1 → · · · → On
is a causally executable sequence (CES), iff : all the operations in V
participate only once in s, and no Oj → Oi for 1 ≤ i < j ≤ n.
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Unless all the edges in E are directed ones, a CEG has more
than one CES. According to the system model, RADTs permit the
executions of all possible CESes. Eventual consistency, therefore,
is achieved if all the CESes lead to the same replica state. To ob-
serve the relationship among CESes of a CEG, consider a CES s1:
O1 → O2 → O3 → O4 → O5 in the CEG of Fig. 4. If a pair of ad-
jacent operations on s1 is concurrent, another CES can be derived
by swapping the order in the pair; e.g., if O1 ‖ O2 is swapped, s1 is
transformed into another CES s2: O2 → O1 → O3 → O4 → O5.
Only if both O1 → O2 and O2 → O1 yield the same result from
an identical replica state, will s1 and s2 produce a consistent result.
In this regard, given a CES s from a CEG G, if we show that all the
possible CESes derived from G can be transformed from s and find
the condition that they yield the same result, eventual consistency
will be guaranteed. This is the basic concept of operation commu-
tativity (OC), which is developed from the commutative relation.

Definition 5. [Commutative Relation ‘↔’]. Given concurrent Oa
and Ob, they are in commutative relation, denoted as Oa ↔ Ob, iff :
for a replica state RS0, when RS0

Oa →Ob
⇒ RS1 and RS0

Ob →Oa
⇒ RS2, RS1

is equal to RS2.

To illustrate the effect of a commutative relation in CESes,
consider two CESes in Fig. 1: s1 : O1 → O2 → O3 → O4 → O5
at site 0 and s3 : O2 → O5 → O1 → O3 → O4 at site 1. Even if
O1 ‖ O5 is O1 ↔ O5, we are not sure if this commutative relation
helps s1 and s3 to be consistent because the initial states where
O1 ‖ O5 are executed are different and because other operations
may or may not intervene between them. Indeed, to make all the
possible CESes consistent, the following condition is necessary.

Definition 6 (Operation Commutativity (OC)). Given a CEG G =

(V , E), operation commutativity is established in G, iff : Oa ↔ Ob
for ∀(Oa ‖ Ob) ∈ E.

OC is the condition inwhich every pair of concurrent operations
commutes. For example, consider s1 and s3 again. If OC holds in the
CEG of Fig. 4, O1 ↔ O2,O4 ↔ O5,O3 ↔ O5, and O1 ↔ O5 are en-
sured. By applying the properties of those commutative relations
in sequence, s1 can be transformed into s3. For completeness, we
present the following theorem.

Theorem 1. If OC holds in a given CEG G = (V , E), all the possible
CESes of G executed from the same initial replica state eventually
produce the same state.

This theorem, proved in [29], implies that OC is a sufficient
condition for eventual consistency. We, therefore, mandate every
pair of operation types to be commutative when they are
concurrent. Besides, OC will be used as a proof methodology. To
prove if a kind of RADTs is consistent or not, we show that each
pair of concurrent operations actually commutes on all the replica
states defined exhaustively (see [29] for detail).

However, OC suggests no guideline to exploit OC itself. In
the next section, precedence transitivity gives a practical way to
achieve OC for the RADT operations.

4. Precedence transitivity

4.1. Precedence transitivity

In RADTs, operations relate to object containers, i.e., elements
of RFAs, slots of RHTs, and nodes of RGAs. This relationship would
be clarified by causal object (cobject) and effective operation
(eoperation).
• cobject: For a local operationO, its cobject is the object container

indicated by the index of O. If O is an Insert, it has two cobjects:
one is called as left cobject which is indicated by the index of O
(say i), and the other is right cobject which is the one of i + 1
when O is generated.
• eoperation: For an object container, its eoperation is the opera-
tion whose local or remote algorithm succeeds in creating/de-
stroying/updating the container.

Except Inserts, a local operation on an existing container regards
the container as its cobject (cf. a Put onno slot has no cobject)while
it becomes an eoperation on its cobject. An Insert has two cobjects,
but becomes an eoperation only on its new node.

The intention of a remote operation is preserved, (1) if a remote
Insert places a new node between its two cobjects, (2) if a remote
Put on no slot becomes the eoperation on a new slot for its key, or
(3) if a remote Write, Put, Remove, Delete, or Update becomes the
eoperation on its cobject.

The intentions of different operations might be in conflict, if
they are supposed to be eoperations on a common cobject or their
cobjects overlap. To decide which operation has higher priority
than the other conflicting one in preserving their intentions,
precedence rules are needed. Enacting precedence rules is,
however, complicated since the rules should not conflict with
each other. We, therefore, suggest precedence transitivity that
makes precedence rules consistent with each other. Initially, the
precedence relation is defined as an order between two operations
as follows.

Definition 7 (Precedence Relation ‘99K’). Given two operations Oa
and Ob,Ob takes precedence over Oa, denoted as Oa 99K Ob, iff :
(1) Oa → Ob or (2) for Oa ‖ Ob,Ob has higher priority than Oa in
preserving their intentions.

ForOa → Ob, it is evident that the intention ofOb should be pre-
served even if that of Oa is impeded or canceled; thus, Oa 99K Ob. In
a similar sense, the precedence relation between concurrent op-
erations is defined. For instance, suppose Oa 99K Ob for Oa ‖ Ob.
If they are twoWrites on the same element, Ob overwrites the ele-
ment where Oa has performed, but Oa does nothing on the element
where Ob has performed so that Ob preserves its intention rather
than Oa. If Oa and Ob are two Inserts of the same cobjects, Ob should
insert its new node closer to the left cobject than Oa because that
makes the effect similar to the effect of Oa 99K Ob derived from
Oa → Ob. Obviously, intentions of no conflict are preserved at once.

If precedence relations on current operations are arbitrarily en-
acted, they might conflict with each other. To illustrate, suppose
that the operations in Fig. 3 are given as O1: Write(1, o1), O2:
Write(1, o2), and O3: Write(1, o3). For each pair of operations,
assume the following arbitrary precedence relations: O1 99K
O2,O3 99K O1 (from O3 → O1), and O2 99K O3. These precedence
relations on an element are expressed with a graph called a prece-
dence relation graph (PRG). A PRG can be derived from a CEG by
keeping the directed edges intact and by choosing a direction for
each undirected edge. Such a directed complete graph is called a
tournament in graph theory [2]. The PRG of the above precedence
relations is shown in Fig. 5(a). Assuming that the three operations
are executed according to this PRG, the element of index 1 at each
site will be as follows.

Site 0: o?
O3
⇒ o3

O1
⇒ o1

O2
⇒ ox,

Site 1: o?
O2
⇒ o2

O3
⇒ o3

O1
⇒ oy,

Site 2: o?
O3
⇒ o3

O2
⇒ o3

O1
⇒ oz .

The first operations of sites 1 and 2 are local ones, which are
effectively executed by the local algorithms; i.e.,O2 andO3 become
the eoperations on RFA[1], respectively. At site 0, we assume that
the remote operation O3 is effectively executed. At each site, the
second operation is effectively executed if it takes precedence over
the first one, otherwise it does nothing. Thus, the elements of index
1 become o1 at site 0 by O3 99K O1 and o3 at sites 1 and 2 by
O2 99K O3, respectively.

When the third operation arrives at each site, its executionmust
obey the precedence relations with the previous two operations.
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Fig. 5. Two PRGs of the time–space diagram of Fig. 3.

For example, at site 1, the execution of O1 should obey both O3 99K
O1 and O1 99K O2. However, O1 cannot satisfy both; if O1 does
nothing according toO1 99K O2, it violatesO3 99K O1, but otherwise
O1 99K O2 is disobeyed. We can find the reason from the PRG
of Fig. 5(a). Note that PRG (a) has a cycle, that is, the precedence
relations are intransitive such that O1 99K O2 and O2 99K O3, but
notO1 99K O3. Hence, obeying two precedence relations among the
three inevitably leads to violating the rest in this PRG. On the other
hand, another PRG shown in Fig. 5(b) is an acyclic tournament.
Since all the edges in an acyclic tournament are transitive (see
Theorem3.11 in [2]), the third operation at each site can be applied
while obeying all the precedence relations; thus, ox, oy, and oz
become o1.

In the final analysis, we suggest the following condition as a key
principle to realize OC.

Definition 8 (Precedence Transitivity (PT)).Given aCEGG = (V , E),
precedence transitivity holds in G, iff : if Oa 99K Ob and Ob 99K Oc for
∀(Oa ≠ Ob ≠ Oc) ∈ V ,Oa 99K Oc .

PT is a condition in which all precedence relations are transitive.
Since an acyclic tournament has a unique Hamiltonian path (see
Theorem 3.12 in [2]), which visits all the vertices of the graph
once, precedence relations are totally ordered; e.g., the PRG of
Fig. 5(b) are ordered as O2 99K O3 99K O1. Note that PT is not a
principle that regulates operation executions and operations need
never be executed in this order. Instead, each object container
has only to store a few hints for its last eoperation(s), which are
used to reconcile the intention of a new operation. In this way,
PT enables RADT operations to commute without serialization and
state rollback mechanisms.

While OC is a principle only on concurrent operations, PT
explains how concurrent relations are designed against happened-
before ones; indeed, precedence relations between concurrent
operations (concurrent precedence relations) must accord with
precedence relations inherent in happened-before relations. If
static priorities are used to decide concurrent precedence relations,
a derived PRG might have cycles. For example, suppose that an
operation issued at a higher site ID takes precedence over an
operation issued at a lower site ID. The graph of Fig. 6(a) is the PRG
derived from the CEG of Fig. 4. As those static priorities never take
happened-before relations into account, PRG (a) has a cycle with
O3,O4, and O5.

To accord concurrent precedence relations with happened-
before ones, any logical clocks that arrange distributed operations
in a particular total order, such as Lamport clocks or vector clocks,
can be used. For instance, since RADTs are in need of vector clocks
for causality preservation, we can use the condition deriving a
total order of vector clocks [35]; then, the PRG of Fig. 6(b) can be
obtained by making the precedence relations comply with their
vector clock orders. Note that RADTs never serialize operations
and never undo/do/redo operations, but all sites obtain the same
effect as serialization by reconciling operation intentions. Instead
of using original vector clocks, in Section 5.1, we introduce a fixed-
size (quadruple) vector named an s4vector that is derived from a
vector clock. Based on the s4vectors,wedefine a transitive s4vector
order.
a b

Fig. 6. Two PRGs of Fig. 4. (a) is the PRG based on static priorities, and (b) is the
PRG based on vector clock orders.

In RADTs, precedence relations are mostly determined on the
basis of s4vector orders and will be realized in remote algorithms
by considering data structures and operation semantics. However,
all precedence relations do not depend on only the s4vector orders.
In RGAs, the precedence relation between concurrent Update and
Delete isUpdate 99K Delete, i.e.,Delete always succeeds in removing
its target container regardless of the s4vector orders. Nevertheless,
since no operations happening after the Delete can arrive to
the container, PT holds for the operations arriving to the object
container.

Since precedence relations, onwhich PT is based, are differently
implemented with specific operation types, it is difficult to
prove that, without loss of generality, PT guarantees eventual
consistency. In this paper, we apply PT to the implementations of
operation types, and thus make pairs of operation types commute.
Hence, in our report [29], we prove OC for every pair of operation
types to which PT is applied. As the proofs show, PT is a successful
guideline to achieve OC. Although this paper uses PT as a means of
achieving OC, PT itself could accomplish eventual consistency for
the implementations of RFAs or RHTs. Furthermore, unlike OC, PT
might be able to ensure consistency for the execution sequences
that are not CESes. We will discuss this issue further in Section 7.

4.2. Discussion

In summary, the relationship among the various concepts
introduced so far can be represented as follows:

Responsiveness and interactivity
can be enabled by

Eventual Consistency
can be guaranteed by

Operation Commutativity (OC)
can be exploited by

Precedence Transitivity (PT)

In fact, PT is not the only solution to exploitingOC. Especially, for
insertion and deletion, several techniques have been introduced to
achieve OC: some approaches derive a total order of objects from
partial orders of objects [16,17,19,23], or introduces dense index
schemes [26,40]. In Section 6, we compare those approaches with
PT in more detail.

On the other hand, for some types of operations, defining prece-
dence is not possible. For example, consider the four binary arith-
metic operations, i.e., addition, subtraction, multiplication, and
integer division, which are allowed on replicated integer variables.
Since somepairs of these operations are not commutative, this data
type does not spontaneously ensure OC. Unlike the RADT opera-
tions, their intentions are realized depending on the previous value
as an operand. Therefore, the precedence relation defined for RADT
operations is difficult to apply to those arithmetic operations. Nev-
ertheless, OC is still available in this example, if multiplications
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or integer divisions are transformed into appropriate additions or
subtractions as the corresponding remote operations, OC can be
achieved due to the commutative laws for additions and subtrac-
tions. To illustrate, suppose that, in Fig. 3, O1 is to multiply 3, O2 to
add 2, and O3 to subtract 5 on the initial shared variable 10. If O1 is
transformed into the addition of 10, i.e., an increased value by the
multiplication, the replicated integers will converge into 17.

5. RADT implementations

5.1. The S4Vector

For optimization purpose, we define a quadruple vector type.
typedef S4Vector⟨int ssn, int sid, int sum, int seq⟩;

Let−→v O be the vector clock of an operation issued at site i. Then, an
S4Vector −→s O can be derived from−→v O as follows: (1)−→s O[ssn] is
a global sessionnumber that increasesmonotonically, (2)−→s O[sid]
is the site ID unique to the site, (3) −→s O[sum] is

∑
(−→v O) :=∑

∀i
−→v O[i], and (4) −→s O[seq] is −→v O[i] reserved for purging tomb-

stones (see Section 5.6). To illustrate, suppose that −→v O = [1, 2, 3]
is the vector clock of an operation that is issued at site 0 at session
4. Then, the s4vector of −→v O is −→s O = ⟨4, 0, 6, 1⟩. As a unit of col-
laboration, a session begins with initial vector clocks and identical
RADT structures at all sites. When a membership changes or a col-
laboration newly begins with the same RADT structure stored on
disk, −→s O[ssn] increases. The s4vector of an operation is globally
unique because

∑
(−→v O) is unique to every operation issued at a

site. We define an order between two s4vectors as follows.

Definition 9 (S4vector Order ‘≺’). Given two s4vectors −→s a and
−→s b,

−→s a precedes
−→s b, or

−→s b succeeds
−→s a, denoted as−→s a ≺

−→s b,
iff : (1) −→s a[ssn] <

−→s b[ssn], or (2) (
−→s a[ssn] =

−→s b[ssn]) ∧

(
−→s a[sum] <

−→s b[sum]), or (3) (
−→s a[ssn] =

−→s b[ssn]) ∧

(
−→s a[sum] =

−→s b[sum]) ∧ (
−→s a[sid] <

−→s b[sid]).

Lemma 2. The s4vector orders are transitive.

Proof. The s4vectors of different sessions are ordered by mono-
tonous −→s [ssn]s. In the same session, the s4vectors of a site are
totally ordered because−→s [sum] growsmonotonously. If−→s [sum]s
are equal across different sites, they are ordered by unique
−→s [sid]s. Since all s4vectors are totally ordered by the three con-
ditions, s4vector orders are transitive. �

In this section below, −→s O denotes the s4vector of the current
operation derived from −→v O in Algorithm 1.

5.2. Replicated fixed-size arrays

To inform a Write of the last eoperation, an element encapsu-
lates a single s4vector with an object. Using C/C++ language con-
ventions, an element of RFAs are as follows.

struct Element {
Object* obj;
S4Vector −→s p;

};
Element RFA[ARRAY_SIZE];

An RFA is a fixed-size array of Elements. Based on this data
structure, Algorithm 5 describes the remote algorithm of Write,
where−→s O is the s4vector of the current remote operation, and−→s p
is the s4vector of the last eoperation on the Element.

Only when−→s O succeeds−→s p in line 2, does a remoteWrite(int i,
Object* o) replace obj and−→s p of the ithElementwith a newobject
o and −→s O. This Write becomes the new last eoperation on the
Algorithm 5 The remote algorithm forWrite
1 Write(int i, Object* o)
2 if(RFA[i].−→s p ≺

−→s O) //
−→s O: s4vector of this Write;

3 RFA[i].obj := o;
4 RFA[i].−→s p := −→s O;
5 return true;
6 else return false;

Element by replacing RFA[i].−→s p with −→s O. Since the s4vector of a
local operation is always up-to-date at its issued time, it succeeds
any s4vectors in the local RFA; hence, PT holds in both the local and
remote algorithms ofWrite.

5.3. Replicated hash tables

An RHT is defined as an array of pointers to Slots.

struct Slot {
Object* obj;
S4Vector −→s p;
Key k;
Slot* next;

};
Slot* RHT[HASH_SIZE];

A Slot has a key (k) and a pointer to another Slot (next) for the
separate chaining. Algorithms 6 and 7 show the remote algorithms
for Put and Remove, respectively.

Algorithm 6 The remote algorithm for Put
1 Put(Key k, Object* o)
2 Slot *pre_s := nil;
3 Slot *s := RHT[hash(k)];
4 while(s != nil and s.k != k) // find slot in the chain;
5 pre_s := s;
6 s := s.next;
7 if(s != nil and −→s O ≺ s.−→s p) return false;
8 else if(s != nil and s is a tombstone) Cemetery.withdraw(s);
9 else if(s = nil)

10 s := new Slot;
11 if(pre_s != nil) pre_s.next := s;
12 s.k := k;
13 s.next := nil;
14 s.obj := o;
15 s.−→s p := −→s O;
16 return true;

A Put first examines if the Slot of its key k, mapped by a hash
function hash, already exists (lines 3–6). If a Put precedes the last
eoperation on the Slot, i.e., −→s O ≺ s.−→s p, it is ignored (line 7). In
the case of no Slot, a new Slot is created and connected to the
chain (lines 9–13). Finally, it allocates a new object and records the
s4vector in the Slot (lines 14–15) only when s.−→s p ≺

−→s O or no
Slot exists.

A Remove first finds its cobject addressed by its key k (lines
2–3). Although a local Remove can be invoked on a non-existent
Slot, it is not propagated to remote sites by Algorithms 1 and 3.
Consequently, a remote Remove on no Slot throws an exception
and does nothing (line 4). In line 5, a Remove is ignored if its
s4vector precedes the last eoperation’s, or otherwise it demotes its
target Slot into a tombstone by assigning nil and −→s O to obj and
−→s p (lines 7–8). Thanks to tombstones, no concurrent operation
misses its cobject; so, the precedence relationwith the last Remove
will not be lost. Obviously, local Reads regard tombstones as no
Slots. If we recall the example of RHTs in Section 2.3, O1 becomes
the last eoperation of the tombstone for k1 while O2 is ignored at
site 0.
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Fig. 7. An example data structure of an RGA. The Node of τ4 is a tombstone.
Algorithm 7 The remote algorithm for Remove
1 Remove(Key k)
2 Slot *s := RHT[hash(k)];
3 while(s != nil and s.k != k) s := s.next;
4 if(s = nil) throw NoSlotException;
5 if(−→s O ≺ s.−→s p) return false;
6 if(s is not tombstone) Cemetery.enrol(s);
7 s.obj := nil;
8 s.−→s p := −→s O;
9 return true;

Removes enrol tombstones in Cemetery, a list of tombstones
for purging. In Section 5.6, we discuss their purging condition. If
a tombstone receives an operation whose −→s O succeeds, its −→s p

is replaced with −→s O. When a succeeding Put is executed on a
tombstone, it is withdrawn from Cemetery as line 8 in Algorithm
6 since it must not be purged.

5.4. The S4Vector index (SVI) scheme for RGAs

In RGAs, Inserts and Deletes induce the intention violation
problem due to integer indices, as stated in Section 2.3; that
is, the nodes indicated by integer indices might be different at
remote sites. To make the remote RGA operations correctly find
their intended nodes, this paper introduces an s4vector index (SVI)
scheme. A local operation with an integer index is transformed
into a remote one with an s4vector before it is broadcast. The
SVI scheme is implemented with a hash table which associates an
s4vector with a pointer to a node. Note that the s4vector of every
operation is globally unique; thus, it can be used as a unique index
to find a node in the hash table. As mentioned in Section 2.3, RGAs
adopt a linked list to represent the order of objects. After an Insert
adds a new node into the linked list, the pointer to the node is
reserved in the hash table by using the s4vector of the Insert as
a hash key.

The following shows the overall data structure of an RGA.
struct Node {

Object* obj;
S4Vector −→s k; // for a hash key and precedence of Inserts
S4Vector −→s p; // for precedence of Deletes and Updates
Node* next; // for the hash table
Node* link; // for the linked list

};
Node* RGA[HASH_SIZE];
Node* head; // the starting point of the linked list

A Node of an RGA has five variables. −→s k is the s4vector index as a
hash key, and is used for precedence of Inserts. For precedence of
Deletes and Updates, −→s p is prepared. Two pointers to Nodes, i.e.,
next and link, are for the separate chaining in the hash table and
for the linked list, respectively. An RGA is defined as an array of
pointers to Nodes like an RHT, and head is a starting point of the
linked list.

Fig. 7 shows an example of an RGA data structure which is
constructedwith a linked list combinedwith a hash table. The local
algorithms also operate on such structures. To illustrate, assume
that, at session 1, site 2 invokes Insert(3, ox) with a vector clock
−→v O := [3, 1, 2] on the RGA structure of Fig. 7(a), which can be
denoted as [o1o2o3τ4o5]. As shown in Algorithm 4, the local Insert
algorithm first finds its referenceNode, i.e., the left cobject o3, from
the linked list. Then, it creates a new Node that contains the new
object ox in obj and the s4vector −→s O = ⟨1, 2, 6, 2⟩ in both −→s k
and −→s p. This Node is placed in the hash table by hashing −→s O as a
key and is connected to the linked list as shown in Fig. 7(b); thus,
[o1o2o3oxτ4o5]. We assume line 16 of Algorithm 4 does this.

Once −→s k of a Node is set, it is immutable, thereby being
adopted as an s4vector index in the remote operation into which
a local operation is transformed. For example, a local Insert(3, ox)
generated on the RGA of Fig. 7(a) will be transformed into In-
sert(⟨1, 0, 5, 3⟩, ox) before it is broadcast. In this way, three
RGA operations are broadcast to remote sites in the following
forms: Insert(S4Vector

−→
i , Object* o), Delete(S4Vector

−→
i ), and Up-

date(S4Vector
−→
i , Object* o), where o is a new object, andwhere

−→
i

is the s4vector index. Here,
−→
i is from −→s k in the cobject of a local

Delete/Update or the left cobject of a local Insert. If an Insert adds its
object at the head,

−→
i should be nil.

5.5. Three remote operations for RGAs

Algorithm 8 shows the remote algorithm for Insert. As shown
in Fig. 8, a remote Insert is executed through four steps. (i) First, a
remote Insert looks for its left cobject in the hash table with the
s4vector index

−→
i (lines 5–6). The SVI scheme ensures that this

left cobject is always the same of the corresponding local Insert.
For non-nil

−→
i , the left cobject always exists in the remote RGAs

because tombstones also remain afterDeletes. To this end, an Insert
throws an exception, unless finding its cobject (line 7). (ii) Next, an
Insert creates a new Node with −→s O as a hash key and connects it
to the beginning of the chain in the hash table (lines 8–13).

(iii) A remote Insert might not add its new Node on the exact
right of the left cobject in order to preserve the intentions of
some other concurrent Inserts that have already inserted their
new Nodes next to the same cobject. If an Insert has a succeeding
s4vector, it has higher priority in preserving its intention; thus,
it places its new Node nearer its left cobject. Accordingly, in line
20, a remote Insert scans the Nodes next to its left cobject until a
preceding Node whose −→s k precedes ins.

−→s k is first encountered.
As lines 14–18 are needed for inserting a new object at the head,
the conditions of line 15 are the converse of line 20; if not inserted
at the head, the comparison continues again from line 20. (iv)
Finally, the new Node is linked in front of the first encountered
preceding Node by lines 21–22.

The following example, known as the dOPT puzzle [34] (see
Section 6), illustrates how Inserts work.
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Fig. 8. The overview of the execution of I2 in Example 1.

Algorithm 8 The remote algorithm for Insert
1 Insert(S4Vector

−→
i , Object* o)

2 Node* ins;
3 Node* ref;

4 if(
−→
i != nil) // (i) Find the left cobject in hash table;

5 ref := RGA[hash(
−→
i )];

6 while(ref != nil and ref.−→s k !=
−→
i ) ref := ref.next;

7 if(ref = nil) throw NoRefObjException;
8 ins := new Node; // (ii) Make a new Node

9 ins.−→s k := −→s O;
10 ins.−→s p := −→s O;
11 ins.obj := o;
12 ins.next := RGA[hash(−→s O)]; // place the new node

13 RGA[hash(−→s O)] := ins; // into the hash table;

14 if(
−→
i = nil) // (iii) Scan possible places

15 if(head = nil or head.−→s k ≺ ins.−→s k)
16 if(head != nil) ins.link := head;
17 head := ins;
18 return true;
19 else ref := head;
20 while(ref.link != nil and ins.−→s k ≺ ref.link.−→s k) ref := ref.

link;
21 ins.link := ref.link; // (iv) Link the new node to the list.
22 ref.link := ins;
23 return true;

Example 1 (Fig. 3). dOPT puzzle, on initial RGAs = [oiaoib ] with
−→
i a = ⟨1, 0, 1, 1⟩ and

−→
i b = ⟨1, 1, 2, 1⟩,

I1: Insert(1 =
−→
i a, oi1) with [1, 0, 1]  

−→
i 1 = ⟨2, 0, 2, 1⟩,

I2: Insert(1 =
−→
i a, oi2) with [0, 1, 0]  

−→
i 2 = ⟨2, 1, 1, 1⟩,

I3: Insert(1 =
−→
i a, oi3) with [0, 0, 1]  

−→
i 3 = ⟨2, 2, 1, 1⟩.

We assume that I1, I2, and I3 correspond to O1,O2, and O3 of Fig. 3,
respectively. As all their remote forms have the same s4vector
index

−→
i a = ⟨1, 0, 1, 1⟩, their intentions are to insert new nodes

next to oia . In this example,
−→
i 1,

−→
i 2, and

−→
i 3 are the s4vectors

derived from the left vector clocks on the assumption of session 2.
As

−→
i 2 ≺

−→
i 3 ≺

−→
i 1, I2 99K I3 99K I1; I1 has the highest priority,

then I3, and I2 in order. At each site of Fig. 3, PT of Inserts is realized
as follows.

At site 0, remote I3 places oi3 in front of the preceding Node oib
of the previous session. Then, I1 is executed as [oiaoi1oi3oib ] by the
local Insert algorithm. Finally, remote I2 is executed as Fig. 8. In line
20, oi1 and oi3 are skipped in turn because they are the succeeding
Nodeswhose−→s k succeeds ins.

−→s k. Thus, I2 inserts oi2 past oi1 and
oi3 as [oiaoi1oi3oi2oib ].

At sites 1 and 2, concurrent I2 and I3 commute despite different
execution order because the scanning of line 20 sorts oi2 and oi3
between the same cobjects oia and oib as [oiaoi3oi2oib ]. Then, the
most succeeding I1 puts oi1 nearest the common left cobject oia so
that I1 preserves its intentionmore preferentially than I2 and I3; so,
the RGA states eventually converge as follows.

Execution 1. At each site of Fig. 3,

Site 0: [oiaoib ]
I3
⇒ [oiaoi3oib ]

I1
⇒ [oiaoi1oi3oib ]

I2
⇒ [oiaoi1oi3oi2oib ],

Site 1: [oiaoib ]
I2
⇒ [oiaoi2oib ]

I3
⇒ [oiaoi3oi2oib ]

I1
⇒ [oiaoi1oi3oi2oib ],

Site 2: [oiaoib ]
I3
⇒ [oiaoi3oib ]

I2
⇒ [oiaoi3oi2oib ]

I1
⇒ [oiaoi1oi3oi2oib ].

It is worth noting that the consistency is achieved without
comparing the s4vector of I1 with the effect of concurrent I2 at sites
1 and 2. This is due to PT that harmonizes concurrent precedence
relations with happened-before precedence relations.

Algorithm 9 The remote algorithm for Delete
1 Delete(S4Vector

−→
i )

2 Node* n := RGA[hash(
−→
i )];

3 while(n != nil and n.−→s k !=
−→
i ) n := n.next;

4 if(n = nil) throw NoTargetObjException;
5 if(n is not a tombstone)
6 n.obj := nil;
7 n.−→s p := −→s O;
8 Cemetery.enrol(n);
9 return true;

The local and remote Delete algorithms leave a tombstone
behind. In Algorithm 9, a remote Delete finds its cobject with

−→
i

via the hash table (lines 2–3); otherwise, it throws an exception
(line 4). Regardless of s4vector order, a Delete assigns nil and
−→s O into obj and −→s p (but not −→s k) as a mark of a tombstone,
and enrols it into Cemetery (lines 6–8). Note that tombstones
never revive in RGAs. As findlist and findlink in Algorithm 4
exclude tombstones from counting, local operations never employ
tombstones as cobjects. For example, in Fig. 7(a), local Insert(4, oy)
refers to o5 instead of the tombstone τ4, and thus is transformed
into remote Insert(⟨1, 1, 1, 1⟩, oy).

Algorithm 10 The remote algorithm for Update
1 Update(S4Vector

−→
i , Object* o)

2 Node* n := RGA[hash(
−→
i )];

3 while(n != nil and n.−→s k !=
−→
i ) n := n.next;

4 if(n = nil) throw NoTargetObjException;
5 if(n is a tombstone) return false;
6 if(−→s O ≺ n.−→s p) return false;
7 n.obj := o;
8 n.−→s p := −→s O;
9 return true;

In Algorithm 10, a remote Update operates in the sameway as a
remote Delete until finding its cobject. An Update also replaces obj
and −→s p (but not −→s k) of its cobject with its owns if −→s O succeeds
−→s p (lines 7–8). Unlike Put of RHTs, an Update does nothing on
a tombstone as in line 5; thus, always Update 99K Delete. This
prevents an Update on a tombstone from being translated into the
semantic of an Insert and makes the purging condition simple (see
Section 5.6).

Example 2 illustrates how RGA operations interact with each
other when they are propagated as shown in Fig. 1.

Example 2 (Fig. 1). Initially, RGAs = [oia ] with
−→
i a = ⟨1, 0, 1, 1⟩.

U1(O1): Update(1 =
−→
i a, ȯia) with [1, 0, 0]  

−→
i 1 = ⟨2, 0, 1, 1⟩,

U2(O2): Update(1 =
−→
i a, öia) with [0, 1, 0]  

−→
i 2 = ⟨2, 1, 1, 1⟩,

D3(O3): Delete(1 =
−→
i a) with [0, 0, 1]  

−→
i 3 = ⟨2, 2, 1, 1⟩,

I4(O4): Insert(0 = nil, oi4) with [2, 1, 1]  
−→
i 4 = ⟨2, 0, 4, 2⟩,

I5(O5): Insert(1 =
−→
i a, oi5) with [0, 2, 0]  

−→
i 5 = ⟨2, 1, 2, 2⟩.
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Fig. 9. A time–space diagram of Example 3.

For U1 ‖ U2 being in conflict, U2 has higher priority than U1 owing
to

−→
i 1 ≺

−→
i 2; thus, as shown in Execution 2, U1 is ignored at site

1 by line 6 of Algorithm 10. When D3 conflicts with U1 and U2,D3
always succeeds in leaving the Node of oia as the tombstone τia
regardless of the s4vector order of −→s p, but U1 and U2 do nothing
on τia by line 5 of Algorithm 10. The tombstone τia also enables I5 to
find the left cobject after having executed concurrent D3 at sites 1
and 2. In addition, since τia is regarded as a normal preceding Node
in Algorithm8, I4 places oi4 in front of τia at sites 1 and 2. Eventually,
RGAs converge at all the sites as follows.

Execution 2. At each site of Fig. 1,

Site 0: [oia ]
U1
⇒ [ȯia ]

U2
⇒ [öia ]

D3
⇒ [τia ]

I4
⇒ [oi4τia ]

I5
⇒ [oi4τiaoi5 ],

Site 1: [oia ]
U2
⇒ [öia ]

I5
⇒ [öiaoi5 ]

U1
⇒ [öiaoi5 ]

D3
⇒ [τiaoi5 ]

I4
⇒

[oi4τiaoi5 ],

Site 2: [oia ]
D3
⇒ [τia ]

U1
⇒ [τia ]

U2
⇒ [τia ]

I4
⇒ [oi4τia ]

I5
⇒ [oi4τiaoi5 ].

To sum up, the SVI scheme enables remote RGA operations to
find their intended Nodes correctly using the hash table. For this
purpose, −→s k is prepared in a Node as an s4vector index, which is
immutable once being set by an Insert. Also,−→s k is used to realize PT
among Inserts. Since tombstones are kept up, no remote operations
miss their cobjects. Another s4vector of a Node −→s p is renewed by
Updates andDeletes. The effectiveness ofUpdates is decided by−→s p,
but Deletes are always successful; i.e., always Update 99K Delete.
Nevertheless, OC holds because no operation happening after a
Delete targets or refers to the tombstone. Separation of−→s k and

−→s p
means that Inserts never conflict with any Updates or Deletes.

5.6. Cobject preservation

Cobjects need to be preserved for consistent intentions of
operations. If the cobjects causing the effect of a local operation
are not preserved at remote sites, its remote operations may
cause different effects. Tombstones enable remote operations to
manifest their intentions by retaining cobjects, but need purging.
However, the tombstone purging algorithm should be cautiously
designed for consistency. In fact, the operational transformation
(OT) framework has failed to achieve consistency because cobjects
are not preserved at remote sites (see Section 6). To illustrate,
consider Example 3 where three operations are executed as in
Fig. 9.

Example 3 (Fig. 9). Initially, RGAs = [oia ] with
−→
i a = ⟨1, 0, 1, 1⟩,

I1: Insert(0 = nil, oi1) with [1, 0, 0]  
−→
i 1 = ⟨2, 0, 1, 1⟩,

D2: Delete(1 =
−→
i a) with [0, 1, 0]  

−→
i 2 = ⟨2, 1, 1, 1⟩,

I3: Insert(1 =
−→
i a, oi3) with [0, 0, 1]  

−→
i 3 = ⟨2, 2, 1, 1⟩.

Two cobjects of I1 are the head and oia while those of I3 are oia
and the tail. The left cobject looks indispensable to the execution
of an Insert because it prescribes the position where an Insert has
to be executed at all sites. However, the necessity of the right
cobject might be overlooked, though it is required to terminate
the comparisons in lines 15 or 20 of Algorithm 8. However, if the
right cobject is purged before the remote execution of an Insert,
Inserts of different intentionsmight be in conflict. For example, see
Execution 3 where τib is assumed to be purged at the time T1 of

Fig. 9 ( P
⇒ means purging).

Execution 3. If purging τib at T1,

Site 0: [oia ]
I1
⇒ [oi1oia ]

D2
⇒ [oi1τia ]

I3
⇒ [oi1τiaoi3 ]

P
⇒ [oi1oi3 ],

Site 1: [oia ]
D2
⇒ [τia ]

I3
⇒ [τiaoi3 ]

P
⇒ [oi3 ]

I1
⇒ [oi3oi1 ],

Site 2: [oia ]
I3
⇒ [oiaoi3 ]

I1
⇒ [oi1oiaoi3 ]

D2
⇒ [oi1τiaoi3 ]

P
⇒ [oi1oi3 ].

Observe the effect of I1 concerning the existence of its right
cobject, i.e., oia or τia . At site 0, I1 places oi1 at the head. Being
indispensable to I3 as the left cobject, τia is retained. At site 2, I1
has to insert oi1 in front of the preceding oia , and then D2 performs.
Hence, sites 0 and 2 have the correct final result [oi1oi3 ]. At site
1, however, if τia is purged,

−→
i 1 of I1 is compared with −→s k of oi3

(=
−→
i 3 of I3) despite I3 having different cobjects; thus, [oi3oi1 ].

Consequently, the loss of the right cobject can lead to the different
effects of I1. Instead, if the right cobject is purged at T2 of Fig. 9, the
effects of I1 are consistent as follows.

Execution 4. At Site 1, if purging τib at T2,

Site 1: [oia ]
D2
⇒ [τia ]

I3
⇒ [τiaoi3 ]

I1
⇒ [oi1τiaoi3 ]

P
⇒ [oi1oi3 ].

In this respect, tombstones must be preserved as far as they
could be cobjects for consistent operation intentions. However, in
RGAs, tombstones, impeding search for Nodes in the linked list,
need purging as soon as possible. We, therefore, introduce a safe
tombstone purging condition using s4vectors.

Let Di be a Delete issued at site i and τi be the tombstone
caused by Di. Recall that Di assigns its s4vector into τi.

−→s p and that
RGAs guarantee two properties for a tombstone: (1) a tombstone
never becomes the cobject of any subsequent local operations,
and (2) a tombstone never revives. Hence, only for the operations
concurrent with Di, can τi be a cobject. By retaining τi as far as any
concurrent operations with Di can arrive, we can prevent those
concurrent operations from missing cobjects. Golding already
introduced a safe condition for this [10]. The existing condition
enables RHTs and RGAs to preserve the cobjects of their operations,
except the right cobjects of Inserts.

To preserve the right cobjects of Inserts, an additional condition
is needed. Note that, at site 1 in Example 3, the loss of τia causes
problems since the next Node of τia succeeds the s4vector of I1.
In other words, if it is ensured that a new arrival Insert succeeds
−→s k of every Node, the tombstone can be substituted by its next
Node as a right cobject. To this end, an RGA needs tomaintain a set
of vector clocks including as many vectors as the number of sites
N , i.e., VClast = {

−→v last0 , . . . ,
−→v lastN−1}; here,

−→v lastj ∈ VClast is the
vector clock of the last operation issued at site j and successfully
executed at the site of VClast. Using VClast, a tombstone τi of Di can
be safely purged if satisfying both of the following conditions.

(1) τi.
−→s p[seq] ≤ min∀

−→v ∈VClast
−→v [i] for i = τi.

−→s p[sid],
(2) τi.link.

−→s k[sum] < min∀
−→v ∈VClast

∑
(−→v ) or τi.link = tail.

Condition (1) is similar to Golding’s [10], which means that every
site had executed Di; so hereafter, only the operations happening
after Di will arrive. Condition (2) means the s4vector of any new
arrival operation succeeds that of the Node next to the tombstone
that will be purged in the linked list.

Consequently, we prepare Cemetery as a set of FIFO queues,
each of which reserves tombstones of different −→s p[sid]. A Delete
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enrols a tombstone at the end of the queue; thus, enrolling a
tombstone takes a constant time. A purge operation first inspects a
foremost tombstone in each queue of Cemetery to knowwhether
there are any tombstones that can be purged. If they exist, the
tombstones are purged in practice with the time complexity of
O(N) because the previous Node of a tombstone should be found
from the singular linked list of an RGA.

Note that, if a session changes, all tombstones in RGAs can be
purged. However, if a site stops issuing operations, the other sites
cannot purge tombstones. In this case, a site can request the paused
sites to send their vector clocks back and renews VClast with the
received ones, thereby continuing to purge.

6. Related work

The concept of commutativity was first introduced in dis-
tributed database systems [1,39]. It was, however, applied to con-
currency control over centralized resources, but not to consistency
maintenance among replicas. In other words, to grant more
concurrency to some transactions in a locking protocol, trans-
action schedulers allow only innately commutative operations,
e.g.,Writes on different objects, to be executed concurrently while
noncommutative operations still have to be locked. For maintain-
ing consistency among replicas, the works of [14,21] considered
commutativity, but allow only innately commutative operations to
be executed in different order.

The behavior of RFAs is similar to that of Thomas’s writing rule,
introduced in multiple copy databases [36,37]. The rule prescribes
that a Write-like operation can take effect only when it is newer
than the previous one [15]. To represent the newness, Lamport
clocks are adopted. In fact, Lamport clocks can be used in RADTs on
behalf of sum of s4vectors. We, however, use the s4vector derived
from a vector clock to ensure not only the causality preservation
but also the cobject preservation. The idea of tombstones was
also introduced in replicated directory services [21,9,6], which are
similar to RHTs.

With respect to RGAs, the operational transformation (OT)
framework is one of a few relevant approaches that allows opti-
mistic insertions and deletions on ordered characters. In this frame-
work, an integration algorithm calls a series of transformation
functions (TFs) to transform the integer index of every remote op-
eration against each of concurrent operations in the history buffer.
A function O′

a = tf (Oa,Ob) obtains a transformed operation of Oa
against Ob, that is, O′

a, which is mandated to satisfy the following
properties, called TP1 and TP2.

Property 1 (Transformation Property 1 (TP1)). For O1 ‖ O2 issued on
the same replica state, tf satisfies TP1 iff: O1 → tf (O2,O1) ≡ O2 →

tf (O1,O2).

Property 2 (Transformation Property 2 (TP2)). For O1 ‖ O2 and
O2 ‖ O3 and O1 ‖ O3 issued on the same replica state, tf satisfies
TP2 iff: tf (tf (O3,O1), tf (O2,O1)) = tf (tf (O3,O2), tf (O1,O2)).

TP1, introduced in the dOPT algorithm by Ellis and Gibbs [7],
is another expression of the commutative relation of Definition 5
in terms of the OT framework. As it is not sufficient, a
counterexample, called the dOPT puzzle (see Example 1), was
found. Ressel et al. proposed TP2, which means that consecutive
TFs along different paths must result in a unique transformed
operation [27]. It was proven that TP1 and TP2 are the sufficient
conditions that ensure eventual consistency of someOT integration
algorithms such as adOPTed [20,32], but it is worth comparing
them with OC and PT. Though we are not sure that TP2 is
equivalent to OC, TP2 is clearly a property only on sequential
concurrent operations. If happened-before operations intervene
among concurrent operations, OC and PT explain how operations
are designed, but TP2 nothing.

Various OT methods consisting of different TFs or integration
algorithms have been introduced: e.g., adOPTed [27], GOT [35],
GOTO [34], SOCT2 [32], SOCT4 [38], SDT [16] and TTF [22]. How-
ever, having presented no guidelines on preserving TP2, coun-
terexamples have been found in most of OT algorithms, such as
adOPTed, GOTO, SOCT2, and SDT. Though GOT or SOCT4 avoided
TP2 by fixing up the transformation path through an undo-do-redo
scheme or a global sequencer, responsiveness is significantly de-
graded. In addition, the intention preservation, addressed in [35],
also has gone through the lack of effective guidelines. We believe
PT could be an effective clue to preserving both TP2 and the in-
tention preservation. For example, when OT methods break ties
among insertions, or write the TF for an Update-like operation, PT
will explain how to compromise their conflicting intentions.

Another reason why OT methods have failed not only in
consistency but also in intention preservation is the loss of cobjects
(see Section 5.6) if illustrated in terms of our RADT framework.
Similar to Execution 3, once a character is removed, TFs are difficult
to consider it. Accordingly, Li et al. have suggested a series of
algorithms, such as SDT [16], ABT [17], and LBT [19]. The authors
said these algorithms are free from TP2 by relying on the effects
relation, which is an order between a pair of every two characters.
However, deriving effects relations incurs additional overhead to
transpose operations in the history buffer, or to reserve the effects
relations in an additional table.

Oster et al. introduced the TTF approach that invites tombstones
to the OT framework [22]. TTF introduces the TFs satisfying TP2
based on a document growing indefinitely. However, purging
tombstones in TTF is more restrictive than in RGAs because it
makes integer indices incomparable at different sites. Hence, some
optimizations, such as caret operations or D-TTF, are provided.
Since TTF must be combined with an existing OT integration
algorithm, such as adOPTed or SOCT2, it inherits the characteristics
of the OT framework.

Recently, several prototypes adopting unique indices were
introduced for the optimistic insertion and deletion. Oster et al.
proposed the WOOT framework that is free from vector clocks for
scalability [24]. Instead, the causality of an operation is checked by
the existence of cobjects at remote sites; also in RGAs, this can be in
use through the SVI scheme (see Section 7). In WOOT, a character
has a unique index of the pair ⟨site ID, logical clock⟩ and includes
the indices of two cobjects of the insertion; also, an insertion is
parameterized with the two indices. For consistency, an insertion
derives a total order among existing characters by considering
both sides of characters, but this makes the insertion of WOOT an
order of magnitude slower than that of RGAs. WOOT also keeps up
tombstones, but its purging algorithm is not yet presented.

Meanwhile, independently of our early work [28], Shapiro et al.
proposed a commutative replicated data type (CRDT) called treedoc
that adopts an ingenious index scheme [31,26]. Treedoc is a binary
tree whose paths to nodes are unique indices and ordered totally
in infix order. Using paths as unique indices, treedoc can avoid
storing indices separately and provide a new index to a new node
continuously. Conflicting insertions require special indices like the
WOOT indices to place their new characters into the same node.
Besides, if a deletion performs on a node that is not a leaf, its
tombstone should be preserved not to change indices of its child
nodes. Thus, as a treedoc ages, it becomes unbalanced and may
containmany tombstones. To clean up treedoc, the authors suggest
two structural operations, i.e., flatten and explode, which obtain a
character string from a treedoc and vice versa. However, flatten,
requiring a distributed commitment protocol, is costly and not
scalable.
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For scalability purpose, Weiss et al. suggested logoot, a sparse
n-ary tree, which provides new indices continuously like tree-
doc [40]. However, unlike in treedoc, a node of logoot encapsu-
lates a unique index that is an unbounded sequence of the pair
⟨pos, site ID⟩, where pos is the position in a logoot tree. Explicit
indices allow logoot trees to be sparse; that is, no tombstone is
needed for a deletion. Owing to the absence of tombstones, lo-
goot could incur less overhead than treedoc for numerous opera-
tions abounding in a large-scale replication. To enhance scalability,
the authors also suggest the causal barrier [25] on behalf of vector
clocks for causality preservation. Although causal barriers can re-
duce the transmission overhead, sites manage their local clock in
the samemanner aswith vector clocks formembership changes. In
fact, causality preservation relates to reliability, which is discussed
in Section 7.

Above all, none of the above three approaches could derive an
underlying principle, such as PT. Therefore, including the effects
relations of Li et al. [19], the approaches are bounded only to
the consistency of the insertion and deletion. In other words,
they present no solution for the Update-like operation. Though an
update can be emulated with consecutive deletion and insertion,
if multiple users concurrently update the same object, multiple
objects will be obtained. To our knowledge, the update has not
been discussed in the OT framework. Instead, independently of the
OT framework, Sun et al. proposed a multi-version approach for
the update in collaborative graphical editors, where the order of
graphical objects does not matter [33]. In this approach, when the
operations updating some attributes, such as position or color, are
in conflict, multiple versions of the object are shown to users in
order not to lose any intentions. Although the behavior of RADTs
must be deterministic as building blocks, RADTs can mimic the
multi-version approach; if remote Puts or Updates return false,
their effects can be shown as auxiliary information by using local
ADTs.

7. Complexity, scalability, and reliability

As the building blocks, the time complexity of RADTs is decisive
for the performance and quality of collaborative applications. The
time complexity of the local RADT operations is the same as that
of the operations of the corresponding normal ADTs. In RFAs and
RHTs, the remote operations perform in the same complexity as
the corresponding local ADTs based on the same data structures;
thus, Write, Put, and Remove work optimally in O(1). Only when
the hash functionsmalfunction, is the theoretical worst-case of Put
and Remove O(N) for the number of objects N due to the separate
chaining.

The local RGA operations with integer indices work in O(N)
time since findlist in Algorithm 4 searches intended Nodes via the
linked list from the head. As mentioned in Section 2.3, RGAs also
support the local pointer operations taking constant time by using
the findlink function. Meanwhile, the remote RGA operations can
perform in O(1) time as a Node is searched via the hash table. The
worst-case complexity of a remote Insert can be O(N) in case that
all the existing Nodes have been inserted by the concurrent Inserts
on the same reference Node.

We compare RGAswithWOOT and the recent OTmethods, such
as ABT, SDT, and TTF, in time-complexity. About the complexity
of ABT and SDT, we consult [18]. For the complexity of TTF, we
assume that D-TTF is combined with the adOPTed integration
algorithms [22,27]. According to [18], the performance of the
remote operations of both ABT and SDT fluctuates depending
on the size and characteristics of the history buffer. WOOT
presents different time complexity for insertion and deletion.
Also, the complexity differs according to the policy to find a
character; we assume that a local operation finds a character in
Table 1
Time complexity of local and remote operations in a few algorithms.

Algorithms Local operations Remote operations

RGAs O(N) oraO(1) O(1)
ABT O(|H|) O(|H|

2)

SDT O(1) O(|H|
2) orcO(|H|

3)

D-TTF w/adOPTed O(N) orbO(1) O(|H|
2
+ N)

WOOT dO(N2) andeO(1) dO(N3) andeO(N)

N: the number of objects or characters, |H|: the number of operations in history
buffer.

a Local pointer operations.
b The caret operations.
c Worst-case complexity.
d WOOT insertion operation.
e WOOT deletion operation.

O(1) time but a remote operation in O(N) [23]. Table 1 shows
that RGAs overwhelm the others, especially in the performance
of the remote operations. More significantly, the remote RGA
operations can perform without fluctuation, and thus guarantee
stable responsiveness in the collaboration.

We examine scalability in two aspects: membership size and
the number of objects. As membership size or the number
of objects scale up, performance may degrade. In a group
communication like the RADT system model, the more sites
participate in a group, the more remote operations a site must
have. For example, suppose that each of total s = 16 sites generates
evenlyN = 6250 operations. Then, though all sites execute equally
s × N = 100, 000 operations, each site will execute 6250 local
and 93,750 remote operations. Consequently, the performance
of remote operations are critical to scalability. RGAs have the
optimal remote operations that are irrelevant to the number of
objects. RGAs, therefore, are scalable, which will be proven in the
next section. Meanwhile, OTmethods are unscalable because their
remote operations are inefficient and because history buffers are
likely to grow for larger membership.

In the meantime, scalability can be affected by vector clocks,
adopted by most of optimistic replications requiring causality
detection and preservation, because the clock size must be
proportional to membership size. In the OT framework, a vector
clock per operation should be stored in the history buffer for the
causality detection. Hence, the space complexity to maintain the
history buffer is O(s × |H|), where s is the number of sites, and
wherein |H| has a tendency to grow in relation to s. In addition,
OT methods also demand at least more than O(N) space in order
to store a document or effects relations. However, RGAs reserve
only two s4vectors per object because PT enables consistency to be
achievedwithout causality detection; thus, the space complexity is
O(N). Therefore, the s4vector enhances the scalability of RGAswith
respect to the space overhead.

In fact, the overhead incurred by tombstones cannot be ignored
in collaborative applications; thus, tombstone purging algorithms
have an impact on overhead. The space complexity of treedoc
and WOOT is O(N) including tombstones, while unbounded
indices of logootmight incur theoretically higher space complexity
despite the absence of tombstones [40]. Compared with treedoc
or WOOT, RGAs may suffer more overhead owing to entries
of tombstones. However, unlike treedoc or WOOT, of which
indices are structurally related to tombstones, an RGA can purge
tombstones regardless of indices as it continuously receives
operations from the other sites. Section 8 presents a simple
experiment regarding tombstones.

As most of optimistic replication systems, RADTs also constrain
themselves to preserve the causality defined by Lamport [15],
but this relates to the reliability issue. When a site broadcasts an
operation, some of the other sites may lose it. Though such a fault
as an operation loss can be detected by the causality preservation
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scheme, it leads to a chain of delays in executing the operations
happening after the lost operation. In the sense that a fault
might result in a failure, preserving causality could significantly
exacerbate reliability in scalable collaborative applications. In
Example 2 and Fig. 1, if site 2 misses U2, then I4 and I5 happening
after U2 should be delayed. However, I4 and I5 can be executed
without delays while U2 is being retransmitted because U2 has no
essential causality with I4 and I5. In other words, reliability can be
enhanced by relaxing causality.

Relaxing causality permits sites to execute some additional
operation sequences that are not CESes, but that preserve only
essential causality (say eCES). Then, OC does not guarantee
consistency for eCESes. In fact, WOOT, the only approach allowing
eCESes, verifies consistency by the model-checker TLC on a
specification modeled on the TLA+ specification languages [41].
This checker exhaustively verifies all the states produced by
all possible executions of operations, leading to the explosion
of states; thus, the verification is made only up to four sites
and five characters in WOOT [23]. In any case, for eCESes
consisting of insertions and deletions, there is no generalized proof
methodology of consistency yet.

In RFAs and RHTs, it is simple to show that eventual consistency
is guaranteed even for eCESes, though lines 4 in Algorithm 7 needs
to be modified not to throw an exception. PT ensures that the
last eoperation on a container is always identical, if the same set
of operations is executed. Necessarily, to achieve consistency for
eCESes in RGAs, the algorithms need to be modified. We leave the
causality relaxation as future work, but believe OC and PT can be
clues to make eCESes converge and to prove consistency.

Compared with the OT framework, RGAs have much room for
improving reliability. In the OT framework, all happened-before
operations of a remote operation are indispensable to satisfying
the precondition, addressed by Sun et al. [35], because integer in-
dices are dependent on all the previously happened operations by
nature. Meanwhile, by means of the SVI scheme, the remote RGA
operations can validate their cobjects autonomously, i.e., indepen-
dently ofmost of the other operations, thereby checking the essen-
tial causality without vector clocks. Hence, like WOOT, RGAs have
a chance to be free from vector clocks, which could improve the
reliability.

8. Performance evaluation

We perform some experiments on RGAs to verify if the RGA
operations actually work as the analysis of Section 7 and to
compare with some previous approaches. To our knowledge,
however, no previous approaches have presented any performance
evaluation yet, except SDT and ABT [18]. Comparably to the
experiments in [18], RGAs are implemented in C++ language
and compiled by GNU g++ v4.2.4 on Linux kernel 2.6.24. We
automatically generate intensive workloads modeling real-time
collaborations with respect to the following four parameters:

• s: the number of sites.
• N: the number of operations that a site generates. In the

experiments, every site generates evenly N operations. Hence,
every site executes N local operations and N × (s − 1) remote
operations on its RGA.

• avd: average delay. As shown in Fig. 10, at every turn, a
site either generates a local operation or receives a remote
operation. Operations generated at a site are broadcast to
arbitrary forward turns of the other sites by keeping the order at
their local site. Thus, delays are measured in ‘turns’, and avd is
the average number of turns that total s × N operations take
to be delivered. We indirectly control avd by stipulating the
maximum delay of an operation.
Fig. 10. An example of a workload generation where s=3.

• mo: minimum number of objects. Since all experiments are
devised to begin with empty RGAs, mo controls the number of
objects in RGAs during the evaluation of a workload. If an RGA
at a site has objects fewer than mo (excluding tombstones), it
generates only Inserts. Otherwise, the site randomly generates
one of Insert, Delete, and Update with equal proportions.

For three groups of operations, i.e., (LI) local operations with
integer indices, (LP) local operations with pointer indices, and (R)
remote operations with s4vector indices, their generated indices
are uniformly distributed over their current RGAs. Unrelated to our
proposed algorithms, the times for communication or buffering
are excluded in the measurement. Currently, a purge operation
is invoked whenever every remote operation is executed (see
Section 5.6). We run the workloads on Intel r⃝ Pentium-4 2.8 GHz
CPU with 1 GB RAM.

Fig. 11 shows the average execution time of each operation
with respect to the number of objects. By restricting mo, we
control the average number of objects as in the line chart of
Fig. 11. As predicted in the time-complexity of Table 1, only the
execution times of operations (LI) are proportional to the number
of objects, whereas those of operations (LP) and (R) are irrelevant.
The execution time of the purge operation is also affected by the
object number, but less susceptible than those of operations (LI)
because tombstones are not always purged.

Compared with the OT operations of SDT and ABT [18], imple-
mented in C++, run on Intel r⃝ Pentium-4 3.4 GHz CPU, and eval-
uated for the workloads generated from only two sites, the RGA
operations overwhelm the OT operations in performance. As
shown in Table 1, the results of [18] prove that the history size
decides the performance of the OT operations. For example, if a
site has executed more than 3000 local and 1000 remote opera-
tions, it takes more than 600 ms (10−3 s) and 100 ms to execute a
remote SDT operation and two ABT operations (one local and
one remote operations), respectively [18]. Operations (LP) and (R),
however, can be executed in 0.4–1.3 µs (10−6 s) in our environ-
ment, and operations (LI) are also faster enough unless an RGA con-
tains excessively abundant objects.

Fig. 12 shows the effect of delays. In RGAs, delays decide the
lifetime of tombstones. As stated in Section 5.6, tombstones can be
purged if a site continues to receive operations from all the other
sites. In the line chart of Fig. 12, though each of roughly 33,000
Deletes makes one tombstone, smaller avd decreases tombstones;
irrespective of avd, the average number of objects excluding
tombstones is around 800. As a result, longer delays degrade the
performance of operations (LI), but not of operations (LP) and (R).
Also, avd hardly affects purge operations since the numbers of
purged tombstones are similar. Actually, in our experiments, one
tombstone is purged for every three purge operations on average.

In treedoc [26] and logoot [40], overhead was evaluated;
tombstones and fixed-size indices incur overhead in treedoc,
and unbounded indices do in logoot. Though the workloads are
obtained from Wikipedia or latex revisions, they cannot model
the real-time collaborations where multiple sites concurrently
participate. Though overhead depends on workloads in all
approaches, purging tombstones in RGAs is less costly than in
treedoc, and unlike logoot indices the size of a Node is fixed; as
the sizes of an S4Vector and a Node are 12 bytes and 36 bytes,
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Fig. 11. (Object effect) [s = 16 sites, N = 6250 ops, avd = 25.7 turns] With respect to mo, the average execution time of each operation (the column chart with the left
y-axis) and the average number of objects including tombstones (the line chart with the right y-axis).
0

Fig. 12. (Delay effect) [s = 16 sites, N = 6250 ops, mo = 800 objs]With respect to avd, the average execution time of each operation (the column chart with the left y-axis)
and the average number of objects including tombstones (the line chart with the right y-axis).
Fig. 13. (Site effect) [s × N = 100, 000,mo = 800 objs, avd = 16.5–27.3 turns] With respect to s, accumulated execution time of total 100,000 operations.
respectively, the overhead of 33,000 tombstones is about 1.1 MB
without purging tombstones. In addition, an update, emulated
with consecutive deletion and insertion in the twoapproaches, also
produces a tombstone or makes indices long; meanwhile, Updates
incur no additional overhead in RGAs.

To verify the scalability issue, addressed in Section 7, we have a
site execute total 100,000 operations which are equally generated
by all s sites; hence, a site executes 100,000/s local operations and
100,000×(1−1/s) remote and purge operations.With respect to s,
the accumulated execution times are presented in Fig. 13. Except
the times for purge operations, the accumulated execution times
tend to decrease as s is getting larger. However, the times for purge
operations, invoked more frequently, offset the gains by replacing
a slow local operationwith a fast remote one. Notwithstanding, the
result proves that RGAs are scalable with respect to the number of
sites owing to the excellent performance of the remote operations.

9. Conclusions

When developing applications, programmers are used to using
various ADTs. Providing the same semantics of ADTs to pro-
grammers, RADTs can support efficient implementations of col-
laborative applications. Operation commutativity and precedence
transitivity make it possible to design the complicated optimistic
RGA operations without serialization/locking protocols/state roll-
back scheme/undo-do-redo scheme/OT methods. Especially, in
performance, RGAs provide the remote operations of O(1) with
the SVI scheme using s4vectors. This is a significant achievement
over previous works and makes RGAs scalable. We have demon-
strated this outstanding performance of RGAswith intensivework-
loads. Furthermore, since the SVI scheme autonomously validates
the causality and intention of an RGA operation, reliability would
be enhanced. Theworkpresentedhere, therefore, has profound im-
plication for future studies of other RADTs such as various tree data
types.
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