
1 23

The Journal of Supercomputing
An International Journal of High-
Performance Computer Design,
Analysis, and Use
 
ISSN 0920-8542
Volume 59
Number 1
 
J Supercomput (2012) 59:443-468
DOI 10.1007/s11227-010-0444-9

A low-overhead networking mechanism for
virtualized high-performance computing
systems

Jae-Wan Jang, Euiseong Seo, Heeseung
Jo & Jin-Soo Kim



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you

wish to self-archive your work, please use the

accepted author’s version for posting to your

own website or your institution’s repository.

You may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.



J Supercomput (2012) 59:443–468
DOI 10.1007/s11227-010-0444-9

A low-overhead networking mechanism for virtualized
high-performance computing systems

Jae-Wan Jang · Euiseong Seo · Heeseung Jo ·
Jin-Soo Kim

Published online: 26 May 2010
© Springer Science+Business Media, LLC 2010

Abstract The use of virtualized parallel and distributed computing systems is rapidly
becoming the mainstream due to the significant benefit of high energy-efficiency and
low management cost. Processing network operations in a virtual machine, however,
incurs a lot of overhead from the arbitration of network devices between virtual ma-
chines, inherently by the nature of the virtualized architecture. Since data transfer
between server nodes frequently occurs in parallel and distributed computing sys-
tems, the high overhead of networking may induce significant performance loss in
the overall system. This paper introduces the design and implementation of a novel
networking mechanism with low overhead for virtualized server nodes. By sacrific-
ing isolation between virtual machines, which is insignificant in distributed or par-
allel computing systems, our approach significantly reduces the processing overhead
in networking operations by up to 29% of processor load, along with up to 36% of
processor cache miss. Furthermore, it improves network bandwidth by up to 8%,
especially when transmitting large packets. As a result, our prototype enhances the
performance of real-world workloads by up to 12% in our evaluation.

J.-W. Jang · H. Jo
CS Dept., KAIST, Yuseong-gu, Daejeon, Republic of Korea

J.-W. Jang
e-mail: jwjang@calab.kaist.ac.kr

H. Jo
e-mail: heesn@calab.kaist.ac.kr

E. Seo
School of ECE, UNIST, Ulju-gun, Ulsan, Republic of Korea
e-mail: euiseong@unist.ac.kr

J.-S. Kim (�)
School of ICE, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
e-mail: jinsookim@skku.edu

Author's personal copy

mailto:jwjang@calab.kaist.ac.kr
mailto:heesn@calab.kaist.ac.kr
mailto:euiseong@unist.ac.kr
mailto:jinsookim@skku.edu


444 J.-W. Jang et al.

Keywords Virtualization · Virtual machine · Network · Optimization

1 Introduction

By virtualizing existing server nodes in distributed or parallel computing systems and
consolidating them into fewer physical nodes, virtualization technology reduces the
cost to own the systems, as well as the management cost [26]. Moreover, energy effi-
ciency is greatly improved by reducing the physical nodes. This advantage is increas-
ingly important in the large-scale computing environment due to the rapidly rising
energy costs [17]. Therefore, a lot of virtualized parallel and distributed computing
platforms [9, 15] have been introduced and continue to become more popular.

To implement virtualization technology, there should be an additional software
layer, called a virtual machine monitor or a hypervisor, inserted between the existing
operating system and hardware to manage the physical hardware resource and vir-
tual machines. Generally, modern hypervisor implementations are divided into two
categories: the host-based approach that uses modified operating systems to provide
virtual machine monitoring, and the bare-metal approach that employs small dedi-
cated hypervisors that run on physical machines like operating systems in nonvirtual-
ized environments. FreeBSD jail [14], Linux-VServer [27], OpenVZ [22], and Solaris
Zones [23] are examples of the host-based approach, and VMware ESX server [29]
and Xen [3] are examples of the bare-metal approach.

Regardless of the type, a hypervisor induces significant overhead that harms the
system throughput. However, with the aid of virtualization instruction sets employed
in the modern processors along with the effectively designed hypervisors, the perfor-
mance loss of a processor-bound virtual machine now becomes less than 3%, in com-
parison with that in the nonvirtualized environment [3]. However, the performance
degradation of an I/O-bound virtual machine is still significant because virtualizing
I/O devices, such as disks or network interface cards, to be shared by multiple guest
systems inherently requires the intervention of the hypervisor. The hypervisor has to
control all the I/O requests issued by guest systems in order to prevent the unautho-
rized access to these physical devices, as well as to arbitrate their use among guest
systems.

Among all virtualized devices, the relative overhead of the virtualized network
devices is higher than that of other virtual devices because the working cycle of a
network operation is usually very short. Therefore, the relative length of a hypervisor
intervention, compared to the device working time, is longer for a network operation
than the operation for the other types of I/O devices [2, 21, 22].

When each virtual machine has an independent mission, or the interactions be-
tween virtual machines occur infrequently, the network virtualization overhead may
not become a significant source of performance drawback. However, in distributed
parallel computing systems, where each virtual machine works cooperatively for a
common goal, network performance critically affects the overall system throughput
due to the large overhead induced by frequent networking between virtualized server
nodes.

Therefore, there have been a lot of research efforts to reduce the overhead and side
effects in virtualizing network devices. Restricting context switches between virtual

Author's personal copy



A low-overhead networking mechanism for virtualized HPC 445

machines to process network operations [28], devising a novel high-level interface
to support virtualized networking efficiently [20], and adding a new I/O channel for
network operations [25] are good examples that successfully reduce the networking
overhead in virtualized systems.

These existing research results aimed to improve the performance while keeping
all the benefits of the virtualization, including isolation and security among virtual
machines. However, we could gain greater performance improvement if we sacrifice
unnecessary benefits from virtualization in some specific target systems. Every node
in distributed systems or parallel computing systems has the same owner and operates
for the same goal. Thus, all the virtual machines trust each other and, therefore, the
isolation and security are less of a concern than the overall system throughput.

Our research starts from the precise analysis of the overhead of the networking
operations in the virtualized environments with various analysis methods, including
CPU performance measurement registers. Based on the analysis results, we redesign
the networking mechanism to have low overhead while retaining the performance
level. Our approach sacrifices the isolation and security among virtual machines to
reduce the overhead by using a shared buffer, which removes the data copy operations
across virtual machines and a hypervisor in the network operations. We implement
the prototype on Xen to evaluate our solution in comparison to an existing network
device virtualization approach, which is currently widely used in real-world systems.

The problems we are to tackle in this research are commonly found in most of
virtualization platforms including Xen and VMware ESX. In this paper, we selected
Xen as our platform for problem analysis and prototype implementation since, as
a full-featured virtualization platform, it is being widely used in both industry and
academic spheres, and its source code is open to the public.

The rest of this paper is organized as follows. Section 2 presents the background
and motivation, including the network device virtualization in the Xen architecture
and its performance drawback, along with the related research results to improve the
networking performance in virtualized systems. Then Sect. 3 introduces the design
of our solution to improve the network performance for virtualized distributed or
parallel computing systems, as well as the implementation issues of our approach.
Section 4 evaluates the performance-centric characteristics of the prototype imple-
mentation in comparison to the original virtualized network device of Xen. The re-
lated work is described in Sect. 5. Finally, we present the conclusion of our research
in Sect. 6.

2 Background and motivation

2.1 Xen virtual network architecture

Xen [3] is a popular bare-metal virtualization platform, which is now popular in in-
dustry as well as in academia. While some other commercial virtualization platforms
only support full-virtualization [29], in which the unmodified operating systems run
as virtualized guest systems, Xen also employs para-virtualization [3], in which guest
operating systems are modified to enhance performance. Due to para-virtualization

Author's personal copy



446 J.-W. Jang et al.

technology, Xen almost achieves near-native performance, especially for CPU-bound
guest systems.

Xen allows only privileged domains1 to directly access physical devices. In this
paper, we call these domains the Isolated Driver Domains (IDDs), while domains
other than IDDs are denoted simply as just the guest domains.

Because most I/O devices are designed to be used by a software entity and man-
aged by a hypervisor in virtualized systems, the guest domains may not be allowed to
access them directly. Therefore, the Xen hypervisor provides virtual devices to its vir-
tual machines. A virtual device is apparently a normal device in the viewpoint of each
guest system. However, any request to the virtual device from a guest system will be
sent to the hypervisor, and the hypervisor will forward it to an IDD that masters the
corresponding native device. In contrast, after processing the request, the IDD sends
the result back to the guest system, from which the request was originated, through
the hypervisor again. By employing this virtual device structure, the Xen hypervisor
enables multiple guest domains to share a physical device.

Xen employs the split device driver model to implement the virtual device drivers.
A virtual device driver consists of two sub-device drivers called the front-end driver,
which is located in the guest domains, and the back-end, which resides in the IDDs.
The front-end driver provides interfaces of the virtual device driver to guest domains,
and the back-end driver handles all the operations forwarded from the front-end
drivers in guest domains and returns the results to the front-end drivers. In short, the
back-end driver multiplexes the requests from each guest domain and demultiplexes
the results to the requests to send back to each guest domain.

The front-end and back-end drivers communicate with each other using two prim-
itives, shared memory, called an I/O ring, and event channels.

An I/O ring is a circular queue to be shared by the IDD and the guest domains. The
guest domains put the requests in the I/O ring, and the IDD collects the request by
dequeueing it from the I/O ring. In addition, the I/O ring plays the role of a medium
for the IDD to transfer the result data to the guest domains.

An I/O ring is established using grant table operations, which are a set of hyper-
calls2 to share memory pages between two domains. Suppose that Domain A allows
Domain B to access a memory page it has by presenting the grant reference of the
memory page to Xen hypervisor; then, Domain B maps the memory page into its ad-
dress space using grant table operations and accesses the memory page provided by
Domain A. Once the use of the memory page is finished, the memory page must be
explicitly unmapped using grant table operations again.

An event channel is an asynchronous way for a domain to notify an event to other
domains. When a domain sends an event through an event channel, the Xen hyper-
visor marks the corresponding event as pending, and the target domain processes the
event when it is scheduled.

As shown in Fig. 1, the original Xen virtual network device driver, VETH (virtual
ethernet), consists of Netfront, the front-end driver for VETH, and Netback, the back-
end driver. Netfront is located in every guest domain that wants to use VETH, while

1Domain denotes virtual machine in Xen terminology.
2A domain calls hypercalls to synchronously invoke a service in the Xen hypervisor.

Author's personal copy



A low-overhead networking mechanism for virtualized HPC 447

Fig. 1 Simplified current Xen
network virtualization

Fig. 2 Data transmission
procedure through VETH
architecture

the Netback is located in the IDD that actually manages the physical network devices.
Since all the data passing through the network devices must flow between Netfront
and Netback and they are separately located in different domains, the efficiency of
communication mechanism between Netback and Netfront is critical to the system
performance.

In detail, a guest domain transmits data through VETH by the following steps as
depicted in Fig. 2.

1. (Data acquisition 〈guest domain〉) Network layer of guest domain pushes down
a packet to be transmitted to netfront device.

2. (Data processing 〈guest domain〉) Netfront makes a grant reference of the
packet, and enqueues a transmit request into the I/O ring, along with control in-
formation and the grant reference of the packet.

3. (Notification 〈guest domain〉) Netfront notifies Netback of the new transmit re-
quest through event channel.

4. (Interrupt 〈IDD〉) Netback dequeues the transmit request from the I/O ring.
5. (Data processing 〈IDD〉) Netback reads the grant reference of the packet from

the transmit request and maps the packet into the address space of the IDD us-
ing grant table operations. Then, Netback copies the packet into a new socket
buffer to be used by the actual device driver for the physical network device. The
mapped packet is unmapped using the grant table operations after finishing the
copy. Finally, Netback enqueues the transmit reply that informs the completion of
transmitting the packet into the I/O ring.

Author's personal copy



448 J.-W. Jang et al.

Fig. 3 Data reception
procedure through VETH
architecture

6. (Bridging 〈IDD〉) The socket buffer which contains the copied packet is pushed
into the bridge between Netback and the physical device driver.

7. (Transmission 〈IDD〉) The physical device actually transmits the packet over the
physical network link.

8. (Cleaning up 〈guest domain〉) When Netfront sees the transmit reply from the
I/O ring, it frees the buffer from the packet.

In contrast, a guest domain receives data from VETH by the following steps as
shown in Fig. 3.

1. (Preprocessing 〈guest domain〉) Netfront allocates buffers for incoming packets
and makes grant references of the buffers. Then Netfront enqueues the receive
requests into the I/O ring. Each receive request contains the control information
and grant reference of the buffer.

2. (Data acquisition 〈IDD〉) The physical network device receives a packet and
pushes it into the bridge.

3. (Bridging 〈IDD〉) The bridge passes the packet over to Netback.
4. (Data processing 〈IDD〉) Netback sets up the buffers. Netback reads the grant

reference of the allocated buffer from the receive request and maps the buffer into
the address space of IDD. Then, Netback copies the packet into the buffer. Finally,
Netback enqueues the receive reply that specifies the new packet arrival into the
I/O ring.

5. (Notification 〈IDD〉) Netback notifies Netfront of the receive reply through the
event channel.

6. (Interrupt 〈guest domain〉) Netfront dequeues the receive reply from the I/O
ring.

7. (Data processing 〈guest domain〉) Netfront pushes the received packet up to the
network layer.

2.2 Motivation

In order to identify the source of the overhead in networking, we observe the proces-
sor usage of the IDD with Xenoprof [21], while a guest domain transmits and receives
64 Kbytes packets over the TCP connection, respectively, for 300 seconds. The mea-
surement results are shown in Table 1, with the kernel symbols frequently invoked in
the IDD, their execution times, and the L2 cache miss rate.

Author's personal copy



A low-overhead networking mechanism for virtualized HPC 449

Table 1 Some symbols
frequently used in network
processing in IDD when guest
domain executes network
operations (sorted by % CPU)

Symbol name % CPU % Cache miss

Bulk data transmitting

do_grant_table_op 5.33 7.09

tg3_poll 5.14 15.1

tg3_start_xmit_dma_bug 3.91 0.43

net_tx_action 3.64 5.17

hypercall 3.35 0.04

hypercall_page 3.17 0.03

skb_segment 3.04 3.31

_spin_lock_irqsave 1.64 0.37

Bulk data receiving

gnttab_copy 8.98 25.18

tg3_poll 3.48 4.05

do_grant_table_op 3.37 4.29

net_tx_action 2.92 5.06

hypercall 2.70 0.13

hypercall_page 2.58 0.25

net_rx_action 2.33 1.34

_spin_lock_irqsave 2.00 1.17

The most frequently executed functions while both transmitting and receiving data
are the grant table operations, such as do_grant_table_op and gnttab_copy.
Grant table operations are used to map the buffer in guest domains into the address
space of the IDD, as described in Sect. 2.1.

Every transmission and receipt of a single packet involves at least two grant table
operations, mapping and unmapping. Grant table operations are a kind of hypercalls,
and, naturally, frequent invocation of hypercall degrades the overall performance of
the system because calling a hypercall induces the privilege level switchings. To op-
timize this process, Xen could merge several hypercalls, including grant table opera-
tions, into a single hypercall. In spite of this optimization, we observe that grant table
operations are still extensively used, as shown in Table 1.

Copying packets increases memory footprints, and thus increases L2 cache misses.
Copying bulk data in receiving operations shows noteworthy CPU utilization, as well
as high L2 cache misses in Table 1. Copying operations during receiving operations
degrade the performance even more than transmitting operations. Copying the re-
ceived packet into the buffer in the guest domain incurs many L2 cache misses be-
cause NIC uploads the packet into the main memory using DMA, and the packet is
not cached in the L2 cache located inside the CPU.

Therefore, in order to effectively reduce CPU consumption and L2 cache misses,
both of which are significant sources of performance decline, the use of grant table
operations and copying packets have to be avoided in critical communication paths.

Author's personal copy



450 J.-W. Jang et al.

Fig. 4 Overall architecture of
SETH network virtualization

3 SETH: our approach

3.1 Design

The ultimate design principle of SETH (Simply-shared Ethernet) is to minimize the
use of grant table operations and to avoid copying packets across domains while
networking.

While transmitting a packet, it is inefficient to map and copy the entire packet
in the guest domain into the IDD. Thus, SETH does not map and copy the entire
packet. Instead, SETH exploits only the necessary information from the packet in
order to make a socket buffer used in the IDD and to bridge the packet, similar to the
approach used by Menon et al.

When receiving a packet, it is inevitable to conduct mapping and copying the re-
ceived packet, since the destination of the packet is the guest domain, and thus the
IDD must hand the packet to the recipient domain. To avoid mapping and copying,
SETH makes all the socket buffers in the IDD reside in the preallocated shared mem-
ory, while VETH dynamically shares the socket buffer, maps the buffer, and copies
the packet into the buffer of the guest domain. Thus every received packet is accessi-
ble from other domains, and, naturally, copying and mapping are not necessary.

Figure 4 shows the overall architecture of SETH. We divide the tasks of design-
ing SETH into three subtasks: handling network operations, managing preallocated
shared memory, and making a network stack in the IDD use the preallocated shared
memory.

Three components of SETH are responsible for these three tasks: snet, gbuffer,
and the socket buffer slab cache.

Snet has two components: snet front-end and snet back-end. Each of them han-
dles network operations similar to Netfront and Netback in the VETH architecture,
respectively. The Snet front-end works as a network device driver interface of the
snet network device driver in guest domains, and the Snet back-end connects the
Snet front-end with the physical network device driver. As the back-end driver in
VETH, the Snet back-end directly interfaces with physical network device driver in
the operating system of the IDD.

Author's personal copy



A low-overhead networking mechanism for virtualized HPC 451

Fig. 5 Creating preallocated
shared memory

Gbuffer initializes and manages preallocated shared memory, which is to be
shared among domains to pass the network packets. Gbuffer is also implemented
into two separate parts: gbuffer front-end, which resides in the guest domains, and
gbuffer back-end in the IDD.

The socket buffer slab cache makes the network stack in the IDD use data buffers
for packets, which are located in the preallocated shared memory. Note that gbuffer
and the socket buffer slab cache are made in order to remove the dynamic invocation
of grant table operations in the receiving path; they are not involved in the transmit-
ting path.

The following subsections describe gbuffer, the socket buffer slab cache, and snet
in detail, especially focusing on the interaction between these modules.

3.2 Gbuffer and socket buffer slab cache

Gbuffer prepares preallocated shared memory before the snet network device driver
begins to process network operations. SETH does not use the grant table operations
in creating preallocated shared memory. Instead, it acquires 4 MBytes of contiguous
memory from the domain heap and maps it into domains, as shown in Fig. 5.

The newly introduced hypercall in SETH allocates contiguous 1,024 pages from
the domain heap and returns the starting machine address of that area. Domains map
these pages into an empty contiguous virtual memory area, which is acquired from
the balloon driver of Xen. Each area has a unique zone id, and it is increased by one
whenever a new 4 Mbytes of shared memory is preallocated.

Preallocated shared memory is used as a buffer in the IDD for receiving packets.
Whenever gbuffer back-end creates a preallocated shared memory, it is notified to
gbuffer front-end through the event channel. In addition, gbuffer front-end maps the
preallocated shared memory into the virtual address space of the guest domain and
gives that area the same zone id to that in IDD. Thus, with the zone id and offset,
each domain accesses the same data without dynamically sharing the memory pages,
using grant table operations.

In addition, gbuffer back-end works as a kind of memory allocator, based on the
preallocated shared memory. It provides page-sized memory from the preallocated

Author's personal copy



452 J.-W. Jang et al.

shared memory, like the buddy allocator in the Linux kernel. When the gbuffer back-
end allocates all the pages in a zone, it creates additional preallocated shared memory
as mentioned before.

We modify the socket buffer slab cache in SETH to work on top of gbuffer back-
end, whereas all the slab caches run on top of the buddy allocator. The socket buffer
slab cache acquires pages from and releases pages to gbuffer back-end. We also mod-
ify APIs, such as alloc_skb(), which allocate socket buffers to use our socket
buffer slab cache when allocating the data buffers for packets.

However, SETH retains the way of allocating the socket buffer structure. The
socket buffer structure is allocated from normal memory area not in preallocated
shared memory. Thus, every data buffer of the socket buffer in IDD is from the pre-
allocated shared memory and the guest domain accesses it without using grant table
operations, once the guest domain maps the preallocated shared memory in its ad-
dress space. In this mechanism, all the received packets from the physical network
device driver in the IDD are located in the preallocated shared memory, and the guest
domain accesses the received packet with the zone id and offset.

Gbuffer provides helper APIs as follows.

– custom_kmem_getpages() is a custom version of kmem_getpages() of
the original virtualized Linux kernel. It is used to allocate page frames from the free
page pool in the virtual machine. Like kmem_getpages(), the custom version
provides page frames. However, it gets the free page frames from the preallocated
shared memory.

– custom_kmem_freepages() is a custom version of kmem_freepages().
It releases pages, which were allocated from custom_kmem_getpages(), to
the preallocated shared memory.

– custom_get_base() receives a virtual address and tells the preallocated
shared memory zone id where the virtual address is from and the starting virtual
address of the zone. When the virtual address is not included in the preallocated
shared memory, this API returns NULL, which can be used to test whether an
address is included in the preallocated shared memory.

The preallocated shared memory consumes 4 Mbytes of contiguous virtual ad-
dress space per shared memory zone. According to our observation in receiving bulk
data, a small preallocated shared memory is enough in network processing. Only two
preallocated shared memory zones (8 Mbytes) are observed to be utilized in receiving
bulk data with one NIC in the preliminary evaluation of the prototype.

3.3 Snet

This section explains the mechanisms of the snet operations: transmitting data, re-
ceiving data, and interfacing with physical network device driver. We describe imple-
mentation details focusing on the interactions between the snet back-end and front-
end device driver.

3.3.1 Transmitting packets

In VETH, when transmitting a packet in guest domain, the packet may be accessed in
the following three cases. First, Netback reads the entire packet. Netback copies the

Author's personal copy



A low-overhead networking mechanism for virtualized HPC 453

Fig. 6 Data transmission
procedure through SETH
architecture

entire packet to the data buffer of the newly-created socket buffer. Second, the bridge
reads the packet for bridging. Finally, the physical network device reads the entire
packet to download onto its onboard memory to transmit over the link. Note that the
physical network device needs only the starting machine address and the size of the
packet, since the physical network device usually does not utilize MMU in accessing
memory.

Snet removes the first two steps done in VETH when transmitting packets. Since
snet back-end directly interfaces with the physical network device, snet back-end
does not access any single byte in the packet for bridging and thus does not need
to copy the entire packet. Snet back-end makes a new socket buffer structure, which
handles the packet, and then the physical network device driver transmits the packet
using the starting machine address of the packet specified in the transmit request.

Snet back-end creates both a pseudo packet and socket buffer structure, since the
bridge of the IDD needs to read the header of the packet. The header of the pseudo
packet is synthesized from the necessary information, such as the destination MAC
address specified in the transmit request, and the payload of the pseudo packet is
empty since the physical network device driver directly uses the machine address of
the actual packet.

The following illustrates the steps for transmitting packets in snet as shown in
Fig. 6:

1. (Data acquisition 〈guest domain〉) Network layer pushes down a packet to be
transmitted into snet front-end.

2. (Control information construction 〈guest domain〉) Snet front-end creates a
transmit request. A transmit request contains all the necessary information that is
used in the IDD to create a new socket buffer structure that handles the packet in
the IDD. It includes the starting machine address of the packet, size of the packet,
offset of the MAC header, and so on. In SETH, a transmit request additionally
contains the MAC address. Along with this, Snet front-end increases the usage
count of the socket buffer by one, since it has to be free only after the physical
network device driver successfully transmits the packet.

3. (Notification 〈guest domain〉) Snet front-end enqueues the transmit request into
the I/O ring and notifies snet back-end.

4. (Interrupt 〈IDD〉) Snet back-end dequeues the transmit request from the I/O ring.

Author's personal copy



454 J.-W. Jang et al.

5. (Socket buffer re-organization 〈IDD〉) Snet back-end creates a new socket buffer
structure, which handles the packet as follows. First, snet back-end allocates a new
socket buffer and releases the data buffer of the socket buffer. Then snet back-end
updates the socket buffer structure with the information specified in the transmit
request. For example, the head in the socket buffer structure points to the start-
ing machine address of the packet, and other layout fields, including data, tail,
and end, are updated based on the starting machine address of the packet. In the
bridge-enabled mode of SETH, Snet back-end does not release the data buffer of
the socket buffer and reconstructs pseudo-header with the necessary information,
including the destination MAC address of the actual packet. This pseudo-header
is used in bridging.

6. (Bridging 〈IDD〉) Snet back-end directly interfaces with the physical network
device driver or uses the bridge, alternatively. When directly interfacing with the
physical network device driver, SETH back-end invokes hard_start_xmit()
virtual function of the physical network device driver. When using the bridge,
SETH back-end hands over the socket buffer to the bridge, which enqueues the
socket buffer into the send queue of the physical network device driver.

7. (Transmission 〈IDD〉) The socket buffer newly-created in IDD contains the start-
ing machine address and the size of the packet. Using this information, the phys-
ical network device driver orders the network device to download the packet
through DMA, and then the network device actually transmits the packet over
the physical network link.

8. (Notification 〈IDD〉) After the physical network device driver is notified of the
successful transmission, snet back-end sends a transmit reply to snet front-end.

9. (Cleaning up 〈guest domain〉) Once snet front-end receives the transmit reply,
the socket buffer that contains the transmitted packet is freed.

3.3.2 Receiving packets

In both cases of VETH and SETH, accessing the received packets in the IDD is in-
evitable, since the physical network device driver automatically uploads the received
packet from its on-board memory into the memory of the IDD, contrary to transmit-
ting packets. Figure 7 shows how the guest domain accesses the received packet both
in VETH and SETH.

In VETH, the received packet is located in the data buffer of a socket buffer in
IDD. Since the guest domain cannot access the data buffer in other domains, VETH
copies the packet into the shared buffer through grant table operations, as shown in
Fig. 7(a). Then the guest domain utilizes the received packet. During this mechanism,
every receiving operation involves several grant table operations, such as mapping,
copying, and unmapping.

SETH allocates every data buffer of a socket buffer used in IDD in the preallocated
shared memory, as shown in Fig. 7(b), due to gbuffer and socket buffer slab cache
explained in the previous section. Thus, snet does not exploit grant table operations
in every receiving operation, but directly accesses the packet.

Following illustrates every step involved in receiving packets in snet as illustrated
in Fig. 8.

Author's personal copy



A low-overhead networking mechanism for virtualized HPC 455

Fig. 7 Access data buffer of the
socket buffer in guest domain

Fig. 8 Data reception
procedure through SETH
architecture

1. (Buffer provisioning 〈IDD〉) The physical network device driver prepares socket
buffers for incoming packets. The data buffers of the socket buffers are already al-
located from the preallocated shared memory, due to gbuffer and the socket buffer
slab cache, before the physical network device uploads the received packet into
the memory of IDD.

2. (Data acquisition 〈IDD〉) When a packet arrives, the physical network device
driver passes over the socket buffer, which contains the received packet to the
upper network layer.

Author's personal copy



456 J.-W. Jang et al.

3. (Bridging 〈IDD〉) We slightly modify the network layer to directly push the
socket buffer into the receive queue of snet back-end. Alternatively, when using
the bridge-enabled mode of SETH, the network layer pushes the received data to
the bridge. The bridge enqueues the socket buffer into the receive queue of snet
back-end.

4. (Control information construction 〈IDD〉) Snet back-end makes a receive re-
quest. A receive request contains the shared memory zone id, offset of the starting
address of the packet in the shared memory zone, size of the packet, and other
control information necessary to reorganize the socket buffer in the guest domain.
The shared memory zone id can be acquired from custom_get_base(), pro-
vided by gbuffer, by presenting the virtual address of the packet. Additionally, snet
back-end increases the usage counter of the socket buffer by one, since the socket
buffer should not be freed until the guest domain frees the data buffer of the socket
buffer.

5. (Notification 〈IDD〉) Snet back-end pushes the receive request into the I/O ring
and notifies snet front-end.

6. (Interrupt 〈guest domain〉) Snet front-end dequeues the receive request from the
I/O ring.

7. (Socket buffer reorganization 〈guest domain〉) Snet front-end creates a new
socket buffer and frees the data buffer of the socket buffer. Snet front-end calcu-
lates the virtual address of the packet from the shared memory zone id and the
offset specified in the receive request. Then snet front-end reorganizes the socket
buffer structure with the starting address of the packet and the other control infor-
mation in the receive request. Snet front-end passes the packet up to the network
layer.

8. (Notification 〈guest domain〉) After the kernel copies the payload data of the
packet to user process, the socket buffer is usually freed. When the data buffer is
freed in the guest domain, snet front-end creates a receive reply and sends it to
snet back-end.

9. (Cleaning up 〈IDD〉) Once snet back-end receives the receive reply, snet back-
end decreases the usage count of the data buffer. If the usage count is zero, the
data buffer is freed to the socket buffer slab cache and recycled.

3.3.3 Interfacing with physical NIC driver

Virtual network in Xen allows various network configurations, from simple to com-
plex. For example, administrators can use the bridge netfilter, NAT, routing, and so
on. Along with the flexibility Xen provides, this adds more computational overhead
to amend each packet to fit to the network configuration.

Snet back-end directly interfaces with the physical NIC drivers using ker-
nel patches, which insert several hooks in the network layer. When transmit-
ting data, snet back-end directly invokes hard_start_xmit() virtual func-
tion of the outgoing physical network device. When receiving data, the modified
netif_receive_skb() of network layer directly enqueues the received socket
buffer into the receive queue of snet back-end. Optionally, snet back-end can be con-
figured to use the bridge or other network configurations. It processes the packet
before calling the physical device driver functions, as Netback in VETH does.

Author's personal copy



A low-overhead networking mechanism for virtualized HPC 457

4 Evaluation

4.1 Evaluation environment

To evaluate the improvement of network performance and the reduction of proces-
sor overhead, we implement the prototype of our approach. The prototype is imple-
mented on the Xen-3.2.1 hypervisor, with paravirtualized Linux 2.6.18. We use the
unmodified Linux kernel with the same release number as the native counterpart to be
compared in our evaluation. The host system is equipped with Intel Pentium D 930,
a dual-core processor at 3.0 GHz, and 2 GB main memory, along with a Broadcom
BCM5701 gigabit ethernet NIC. The network performance as well as the overhead
of SETH, is compared with VETH in the same software configuration and also the
native Linux kernel.

Our evaluation was done with synthetic benchmarks, which conduct the same op-
erations continually, and real-world workloads. Whereas the synthetic benchmarks
present microscopic analysis of the networking overhead, the real-world workload
evaluation provides intuition about the performance enhancement by employing
SETH at the whole system level.

All the benchmarks and workloads evaluated in this section use TCP as the trans-
port protocol. Although our prototype implementation is applicable to any transport
protocols such as TCP, UDP, and RTP, we primarily target the workloads that use TCP
protocol. The main reason is that most of the enterprise-scale and high-performance
computing applications rely on the TCP protocol for data transfer since these work-
loads require high reliability and efficiency.

The choice of the virtual machine scheduler affects the scheduling latency. In our
evaluation, we use the credit scheduler, the default virtual machine scheduler with its
default configurations. In addition, we do not set processor-affinity for guest systems,
so that they can run on any processor to obtain the response as fast as possible.

4.2 Microscopic benchmarks

To compare the processor overhead for handling networking requests, we define a
new performance metric, Transfer Cost, because the overall performance of bench-
mark program reflects the networking overhead not accurately, but approximately.

Transfer cost (TC) is calculated as

TC = Million Clock Ticks

Transferred Data Size in Bytes
.

TC means how many processor cycles are required to transmit or receive data of
the unit size. The number of processor cycles during a network operation is sampled
by Xenoprof, a performance profiler for Xen. When computing-intensive virtual ma-
chines run with the networking virtual machines, all processor cycles are utilized in a
work-conserving manner, and no idle cycles remain. Therefore, we can tell that a net-
working mechanism with lower TC incurs less performance drop of the computing-
intensive virtual machines as well as the networking virtual machine than that with
higher TC.

Author's personal copy



458 J.-W. Jang et al.

Table 2 Round-trip time and
CPU utilization for a 4-byte
packet ping-pong test

Round-trip time (ms.) CPU utilization (%)

native 125.35 14.14

VETH 127.84 44.16

SETH 126.59 36.77

4.2.1 Round-trip time

Table 2 shows round-trip time and CPU utilization for a 4-byte ping-pong experiment.
Another computer, which has the same hardware configuration and connects to the
same subnet, is used for the experiment.

A round-trip time of a packet is an elapsed time that aggregates the time required
for sending a packet and receiving the reply packet from the counterpart. Since the
size of the ping packet is small, the round-trip time depends not on the data copy or
network transfer time, but on the sum of initializing cost for every step in processing
packets. Therefore, the latency of the ping-pong trials implies more than the band-
width.

According to Table 2, the round-trip times of each method do not show significant
differences, while the average processor utilization of VETH and SETH records 1.89
and 3.12 times higher numbers than that of native, respectively. This indicates that the
processor performance or the amount of processor resource is not a critical factor in
determining the round-trip time. In other words, the latency is affected by the network
delay, rather than the network processing overhead.

However, if there is a high demand on the processor resource by some other tasks
during the ping-pong task, their performance is negatively impacted by the high
processor utilization. Even though the processor utilization of a network mechanism
has a negligible effect on the network latency, it directly relates to the throughput
of other processor-bound tasks. Therefore, we can tell that by using SETH, we can
significantly reduce the side-effects to the throughput of other processor-bound tasks.
Especially when the size of network packets is small, like in the ping-pong experi-
ments, we expect approximately 17% performance improvement, based on the eval-
uation results.

4.2.2 Transmitting

To identify the transmission performance as well as its overhead, we measure the
transmission bandwidth, while changing the transmitting data size. The sent packet
is received by a host using the native Linux kernel.

As shown in Fig. 9, there are little differences in the transmission bandwidth
among all three architectures. This result is consistent with the ping-pong experiment
results. When the packet size is small, the time needed to copy data to the buffer is
relatively short in the VETH architecture. Therefore, the elapsed time in kernel to
process a packet is barely different from that in the native Linux kernel, and it results
in the negligible degradation of the transmission bandwidth.

However, as the data size to transmit grows, the processor utilization increases,
which results in the degradation of transmission throughput. It is verified that SETH

Author's personal copy



A low-overhead networking mechanism for virtualized HPC 459

Fig. 9 Transmitting bulk data
in various sizes

Table 3 CPU utilization and transfer cost (TC) measured in transmitting 64 Kbyte data

Approach CPU utilization (%) Transfer cost (TC) Normalized transfer cost

native 30.14 9.991 1.000

SETH 73.04 24.170 2.420

VETH 94.51 33.457 3.349

outperforms VETH by over 50 Mbps, when the transmission of the unit size larger
than 128 KB, and that the performance of SETH is closer to native, rather than VETH.
This result supports our hypothesis that the data copy operation to the device driver
buffer across the domains is one of the major causes of the networking overhead.

The process utilization during 64 KB-unit transmission, when all three approaches
perform similarly, is shown in Table 3. Although all of the approaches perform simi-
lar throughputs, VETH consumes 3.3 times more processor resources than the native
architecture, while SETH consumes 2.4 times more. This indicates that SETH signif-
icantly reduces the processor resource usage in comparison to VETH.

4.2.3 Receiving

Figure 10 shows the receiving bandwidth of native, VETH, and SETH from 4-byte to
64-Kbyte data. Similar to the round-trip time results in the previous section, receiv-
ing bandwidth among the network architectures does not differ considerably. The
bandwidth of the unvirtualized Linux is saturated at 256 bytes for 740.78 Mbps and
sustains its bandwidth as the data size increases.

VETH shows the maximum bandwidth at 256 bytes for 728.84 Mbps; we see
the small bandwidth fluctuation after 256 bytes, and the bandwidth is gradually de-
creased. The maximum observed bandwidth of SETH is 739.923 Mbps at 256 bytes.
The bandwidth of SETH is slightly reduced between 512 bytes and 1 Kbytes. One
of the reasons for the decreased bandwidth is that snet back-end occasionally cannot
enqueue new receive requests into the I/O ring, since the I/O ring is full with the
previous receive requests.

Author's personal copy



460 J.-W. Jang et al.

Fig. 10 Receiving bulk data in
various sizes

Table 4 CPU utilization and transfer cost (TC) measured in receiving 2-Kbyte packets

Approach CPU utilization (%) Transfer cost (TC) Normalized transfer cost

native 62.34 19.355 1.00

SETH 115.13 35.527 1.836

VETH 144.47 46.732 2.414

In fact, when the guest domain receives 512-byte and 1-Kbyte data, we discover
that the I/O ring is sometimes full of the receive requests, and the measured band-
width at those data sizes is a little smaller than VETH. While the I/O ring is the same
size for both VETH and SETH, the size of a receive request in SETH is larger than
that in VETH. Thus, the I/O ring of SETH can be more easily filled than that of
VETH.

Table 4 shows the CPU utilization and transfer cost measured when a guest do-
main receives 1500-byte packets. Native displays the smallest CPU consumption and
transfer cost. Similar to the previous round-trip time experiment, VETH and SETH
consumes higher CPU time to process receiving packets, compared to native.

For the detailed overhead analysis, we profile the whole system, including the
IDD and the guest domain, when the guest domain receives 1500-byte packets for
300 seconds, both in VETH and SETH. We group the entire sampling results of CPU
utilization and L2 cache misses into five categories and present them in Table 5. In
the table, tg3 denotes the device driver of our physical network device. Note that
when we run the same experiment in native, we observe 239 million L2 cache misses
with 62.34% CPU utilization.

SETH shows smaller CPU utilization and L2 cache misses compared to VETH.
CPU utilization of SETH is roughly 80% of that of VETH, and L2 cache misses
of SETH is about 64% of those of VETH. Increased CPU utilization and L2 cache
misses in VETH mainly come from two copy operations:

(1) a grant copy, which copies the received packet in the IDD to the kernel space of
the guest domain, and

Author's personal copy



A low-overhead networking mechanism for virtualized HPC 461

Table 5 CPU utilization, cache misses, and cache miss ratio in several components when receiving
2-Kbyte packets

VETH SETH

% CPU Cache miss % CPU Cache miss

Total 144.466 1007.8 (100.00) 115.131 642.3 (100.00)

Xen hypervisor

Xen kernel 38.730 470.8 (46.717) 20.647 159.8 (24.881)

scheduling & context switching 6.307 87.0 (8.63) 5.731 73.2 (11.403)

grant table operations 15.743 291.5 (28.92) 0.021 0.1 (0.02)

IDD

Linux kernel 44.081 194.0 (19.25) 38.620 166.5 (25.92)

spin lock 5.561 11.4 (1.14) 6.446 28.7 (4.47)

hypercall 2.839 1.3 (0.13) 2.389 0.2 (0.02)

network management 9.306 68.9 (6.84) 9.163 74.8 (11.64)

bridge 9.678 13.8 (1.37) 7.891 7.5 (1.18)

Modules 12.987 114.6 (11.37) 8.807 83.6 (13.01)

tg3 5.001 41.9 (4.16) 4.129 43.9 (6.84)

gbuffer back-end – – (–) 0.260 0.2 (0.03)

snet back-end – – (–) 4.418 39.5 (6.15)

netback 7.986 72.7 (7.21) – – (–)

Guest domain

Linux kernel 40.593 145.9 (14.47) 40.591 202.6 (31.54)

copy_to_user 4.557 61.6 (6.11) 4.094 100.9 (15.71)

spin lock 6.010 4.2 (0.42) 6.681 9.0 (1.40)

hypercall 1.595 0.1 (0.01) 1.865 0.1 (0.02)

tcp 5.164 3.3 (0.33) 5.367 4.0 (0.62)

ip 1.828 3.3 (0.33) 2.011 10.8 (1.69)

network management 2.713 6.2 (0.62) 3.260 44.4 (6.91)

Modules 6.149 80.7 (8.01) 4.493 28.1 (4.38)

snet front-end – – (–) 4.218 28.1 (4.37)

gbuffer front-end – – (–) 0.275 0.0 (0.01)

netfront 6.149 80.7 (8.01) – – (–)

(2) a copy to user, which copies the payload data of the copied packet in the previous
step to the user space of the guest domain.

These two copy operations not only considerably consume CPU time, but also
incur many L2 cache misses. Approximately half of the L2 cache misses in the grant
copy operations are cold misses in reading the received packets, since the physical
network device uploads the packets to the memory of the IDD using DMA. The other
half is write misses in writing the read packets to the memory of the guest domain.

These write misses are inevitable because the target buffers for grant copy oper-
ations are changed continuously. A copy to user operations also causes considerable
L2 cache misses. Copy to user operations does not cause write misses, since the user

Author's personal copy



462 J.-W. Jang et al.

process in the experiment uses the same buffer for receiving data. L2 cache misses
of VETH are smaller than those of SETH, since some parts of the packets are cached
from the handling of the write misses in the prior grant copy operations.

SETH does not copy the received packets twice, as explained in the previous sec-
tions. Removing packet copying during data transfer drastically decreases CPU uti-
lization and L2 cache misses in the grant table operations shown in the table. Unlike
the grant copy operations, the copy to user operations in SETH, however, do not take
advantage of caching effect like VETH and suffer from cold misses, since the copy
to user operations are the first to touch the whole packet. Nonetheless, among the L2
cache misses that occur in data transfer, L2 cache misses in SETH are only 28.6% of
those in VETH.

Removing packet copying between the IDD and the guest domain in SETH not
only decreases CPU utilization and L2 cache misses in data transfer, but also reduces
the entire memory footprint of network processing. Due to the reduced memory foot-
print in network processing, user processes or other kernel tasks are less affected by
the cache pollution. In Table 5, we observe that most of the measurement categories
of SETH show smaller CPU utilization, which mainly stems from the decreased L2
cache misses. In particular, the IDD of SETH uses only 83.1% of CPU utilization
consumed in the IDD of VETH.

Gbuffer efficiently manages the globally shared memory in receiving bulk data.
It consumes only 0.2% of CPU time and shows less than 0.04% of L2 cache misses
among entire L2 cache misses. Whereas the network stack frequently allocates and
releases data buffers of socket buffers, the socket buffer slab cache rarely allocates
memory pages from and releases memory pages to the globally shared memory, since
the socket buffer slab cache usually recycles the memory pages. Thus, invoking ser-
vices in gbuffer is substantially reduced, and we observe small CPU consumption and
L2 cache misses in gbuffer.

In both SETH and VETH, CPU spends more than 12% of its time executing spin
lock, which shows that network processing is still largely affected by SMP kernel.
For SETH, spin lock overhead is a little higher than VETH, since we currently do not
implement per-CPU data structures for fast prototyping of SETH.

4.3 Real-world workloads

Table 6 describes the combinations of some real-world workloads that are used in
our evaluation. By consolidating various CPU intensive workloads as well as I/O in-
tensive workloads, our experiments are designed to reflect the complex consolidation
cases of heterogeneous services [26], which are usually found in both industry and
academic spheres.

RayTracing is a synthetic distributed benchmark that consists of a few generic
ray tracing simulations. Here, parallel computing nodes are virtualized and run in
separate physical servers. Although it is a parallel workload, the communication be-
tween the nodes occurs infrequently because the data processing algorithm is well-
partitioned. Therefore, in the next experiment, we also consolidate another virtual
machine that runs FTP service in order to give greater networking load.

Sysbench OLTP is a MySQL server benchmark that handles SQL queries coming
from multiple clients over the network. The queries of OLTP are designed to simulate

Author's personal copy



A low-overhead networking mechanism for virtualized HPC 463

Table 6 Description of real-world workloads used in our evaluation

Name Description

RayTracing 2-way parallel distributed ray tracing simulation

(The nodes are located at physically separated servers.)

RayTracing + FTPServ. Consolidation of a RayTracing node and a FTP server

in a physical server

Sysbench OLTP [18] A virtualized MySQL server

RUBIS [1] + SPECCPU [13] Consolidation of a database server,

a web server and an intensive computing server

Fig. 11 Normalized execution
time of real-world benchmarks
(Shorter is better)

financial services. In order to process massive queries, the database server virtual
machine utilizes multiple resources such as processor, disk I/O, and network I/O,
continuously. This benchmark is chosen to show the effectiveness of SETH under a
workload that is both computing- and networking-intensive.

Finally, RUBIS + SPECCPU is an experiment to show the effectiveness of SETH
under even more complicated consolidation cases. RUBIS simulates typical 3-tier
e-commerce services, which consist of web server, content processor and database
server. Both the web server and content processor are run in a virtual machine to-
gether hosted in a physical server, and the database server works in a virtual machine
hosted in another physical server. The tiers communicate with each other only using
TCP connections. SPEC CPU2006, which simultaneously runs with RUBIS, is a set
of diverse compute-intensive programs. It is used for measuring the performance im-
pact with the networking overhead of RUBIS. The RUBIS + SPECCPU experiment,
thus, uses the execution time of SPEC CPU2006 as its performance metric.

The evaluation results are illustrated in Fig. 11. SETH improves the performance
of every workload by 4% to 12%. Especially, as easily expected, the improvement is
greater when communication occurs more frequently and the size of packet is smaller.

Author's personal copy



464 J.-W. Jang et al.

The OLTP benchmark shows the best performance enhancement. The size of both
request and response packets is usually small; the pattern of request and response re-
peats massively and concurrently. Therefore, the benchmark induces a lot of context
switches between the benchmark virtual machine and the IDD and data copies across
these two domains, which brings significant performance drop. By reducing the over-
head, SETH improves the throughput of the MySQL server by up to 12%. Similarly,
RayTracing + FTPserver also obtains about 11% performance enhancements by us-
ing SETH.

In RayTracing, the data transfer between nodes is done only twice; at the data
partitioning stage and the result aggregation stage. Since the amount of data to trans-
fer is proportional to the amount of data to process, the time for the data transfer
takes a significant part in the overall execution time. As a result, SETH shortens the
execution time by 5.6%.

Finally and surprisingly, SETH shows the least performance improvement with
RUBIS + SPECCPU. RUBIS generates lots of processor demand as well as network-
ing and disk I/O operations since processing a request of RUBIS involves dynamic
web page generating operations as well as massive database update operations, both
of which demand lots of processor cycles. Therefore, the time for networking in RU-
BIS is relatively small, and the reduced network overhead in SETH does not greatly
decrease the overall execution time. Moreover, the applications of SPEC CPU2006
generally utilize processor cache aggressively. Therefore, the reduced cache miss
from SETH might not affect the cache hit ratio of SPEC CPU2006, and this is another
major reason for the small performance improvement of RUBIS + SPECCPU.

5 Related work

Many research efforts have been introduced to reduce the overhead of the networking
in virtualized environments.

Menon et al. [20] improved Xen virtual network performance by optimizing I/O
channel and virtual memory. They also added new capabilities, such as scatter-gather
I/O, TCP/IP checksum offload and TCP segmentation offload to the Xen virtual net-
work device, which improve the performance dramatically if the physical NIC sup-
ports them. Although they reduce the number of grant table operation invocations,
they still depend on the use of grant table operations to exchange packets between
domains, and thus suffer from various overheads identified in this paper.

Sugerman et al. [28] optimized the virtual network architecture of VMware Work-
station by reducing the number of virtual machine switching as much as possible. In
addition, Govindan et al. are focusing on the network performance degradation that
stems from virtual machine scheduling [12]. In the split device driver model, trans-
ferring packets needs context switching between driver domains and guest domains.
They modified SEDF virtual machine scheduler to reduce scheduling-induced delays,
which also improves the throughput of servers and reduces service latency. Our ap-
proach does not deal with the network performance degradation from virtual machine
scheduling, but their approaches can be combined with our approach to improve net-
work performance.

Author's personal copy



A low-overhead networking mechanism for virtualized HPC 465

Along with the previous approaches that attempt to improve the performance over
traditional Ethernet devices, some researches try to use smart network devices. Liu
et al. proposed VMM-bypass I/O for Xen, an extension of OS-bypass I/O that was
originated from user-level communication, and implemented it on top of InfiniBand
network device [19]. User applications of guest domains can access the InfiniBand
network device directly without the intervention of VMM or IDDs. VMM-bypass I/O
does not dedicate a physical network device to a specific guest virtual machine, but
allows safe device sharing among guest virtual machines. Their approach also does
not require any modifications of applications or kernel drivers.

VMM-bypass I/O, however, heavily depends on the specialized hardware support.
Raj et al. suggested a similar approach for high performance network virtualization
using a customized network processor or a specialized core in a multi-core system
[24]. Willmann et al. modified RiceNIC to support virtualization and implemented
multiple transmitting and receiving paths and send/receive queues for multiple guest
domains [31]. Some recent 10 Gbps Ethernet adapters also support multiple trans-
mitting and receiving paths, along with multiple send/receive queues that obviate the
use of bridges and allow multiple guest domains to use the network device simultane-
ously [8, 10, 30]. These researches require new hardware devices for better network
performance, while our study focuses on software solutions when using traditional
Ethernet devices.

Our approach to gbuffer borrows many concepts from previous studies on preallo-
cated shared memory, which are aimed at accelerating IPC and network communica-
tion. Govindan et al. found that user/kernel domain switches and mapping switches
between different user virtual address spaces show substantial overheads and increase
IPC latency [11]. They proposed a new kind of IPC mechanism, memory-mapped
streams (MMS), which uses preallocated shared memory between applications, and
achieved better performance.

Druschel et al. suggested fast buffers for microkernel-based operating systems [7].
They pointed out that moving data across the multiple protected domains needs to
be efficient for high performance communication. They used immutability of I/O
buffers, which means that I/O buffers may not be changed once they are written, and
they improved the network communication performance of the Mach kernel.

Several researchers exploited preallocated shared memory for fast and efficient
packet capturing. Deri presented a new kind of socket, PF_RING, and libpcap library
for Linux [6]. They exported kernel-space ring buffers through mmap in order to allow
user-space applications to access the data in the ring buffers without system calls.
Bos et al. utilized preallocated shared memory to make more than two user-space
applications efficiently process the same packets in the buffers [5]. When more than
two applications try to process the packets, the packet in one virtual address space
must be copied to the other virtual address space. Instead of copying packets, they
used the preallocated shared memory called PBuf and displayed improved packet
processing throughput.

While our research focuses on the communication between sender and receiver,
which are not on the same machine, some studies have been presented to improve
inter-domain communication performance. Kim et al. proposed XWAY, which accel-
erates communication between domains on the same physical machine [16]. They

Author's personal copy



466 J.-W. Jang et al.

replaced the existing TCP/IP protocol stack with the lightweight communication pro-
tocol without modifications in Xen. This leads to the reduced communication path
and high network performance. Zhang et al. also used similar methods to achieve
better interdomain socket communication [32].

6 Conclusion

The infrastructure and energy cost of operating a datacenter are estimated to be three
times greater than the IT hardware cost in year 2014 [4], and emerging multicore
technology increases the idle time of processing elements in each server node. Vir-
tualizing the existing distributed systems or parallel processing systems reduces the
energy, cooling, maintenance, and hardware purchasing cost. It also improves the
availability of the entire systems by providing live-migration of server nodes. There-
fore, most of the parallel and distributed systems will be virtualized in the near future.

In the virtualized environment, the peripheral I/O devices, such as network inter-
face cards, are to be shared by multiple virtual machines simultaneously. However,
because the current network interface cards are not designed to be concurrently used
by multiple virtual machines, the virtual machine monitor must manage access to the
network devices from virtual machines and this result in the significant performance
overhead. In particular, the parallel and distributed systems have frequent networking
operations between the nodes in the systems; this overhead may induce the critical
performance degradation by reducing the processor time that could be given to other
processor-bound tasks.

Some of the major causes of this networking overhead, such as the cross-domain
data copy, exist to provide performance isolation and security protection between vir-
tual machines. Although both the isolation and protection between virtual machines
are strong points of the virtualization technology, they are of little value in parallel and
distributed systems, which are our targets. Based on this philosophy, we introduced
a novel virtual networking architecture, named SETH that reduces the performance
overhead of the virtualized network device driver.

The SETH architecture features the front-end device driver and back-end device
driver, which employ shared buffer memory to transfer network packets between the
normal guest systems and isolated device driver guest system that masters and con-
trols the physical network interface card. The prototype of the suggested approach is
implemented in the Xen hypervisor and paravirtualized Linux kernel to be evaluated.
In our evaluation, it shows up to 9% bandwidth improvement when transmitting large
packets, and up to 30% of processor utilization reduction when it receives small pack-
ets continually. Also, it enhances the performance of real-world workloads by up to
12% in the evaluation. With these results, we can tell that our solution reduces signifi-
cant performance overhead, as well as improves network bandwidth in the virtualized
environment.

Ultimately, SETH modifies only the fundamental device driver layer, and it is not
seen from the upper layer. Therefore, we can combine the existing research results,
which aim to reduce network virtualization, with our approach to obtain synergy ef-
fects. We will explore the possibility to reduce the overhead further using SETH alone

Author's personal copy



A low-overhead networking mechanism for virtualized HPC 467

by applying the existing research results with consideration to the characteristics of
the target systems.

Acknowledgements This work was supported by the Korea Science and Engineering Foundation
(KOSEF) grant funded by the Korea government (MEST) (R01-2007-000-11832-0) and also by the Korea
Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2008-314-D00345).

References

1. Amza C, Cecchet E, Chanda A, Cox A, Elnikety S, Gil R, Marguerite J, Rajamani K, Zwaenepoel W
(2002) Specification and implementation of dynamic web site benchmarks. In: Proceedings of IEEE
5th annual workshop on workload characterization

2. Apparao P, Makineni S, Newell D (2006) Characterization of network processing overheads in Xen.
In: Proceedings of IEEE int’l workshop on virtualization technology in distributed computing, Nov
2006

3. Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauery R, Pratt I, Warfield A (2003)
Xen and the Art of Virtualization. In: Proceedings of ACM symp. operating systems principles, Oct
2003, pp 164–177

4. Belady C (2007) In the data center, power and cooling costs more than the IT equipment it supports.
In: Electronics Cooling, Feb 2007

5. Bos H, Bruijn WD, Cristea M, Nguyen T, Portokalidis G (2004) FFPF: fairly fast packet filters. In:
Proceedings of 6th symp. operating systems design and implementation, Dec 2004, pp 24

6. Deri L (2004) Improving passive packet capture: beyond device polling. In: Proceedings of int’l sys-
tem administration and network engineering conf., Sep 2004

7. Druschel P, Peterson LL (1993) Fbufs: a high-bandwidth cross-domain transfer facility. In: Proceed-
ings of ACM symp. operating systems principles, Dec 1993, pp 189–202

8. Enabling virtualization in the datacenter. White paper, Neterion, Jan 2007
9. Evangelinos C, Hill CN (2008) Cloud computing for parallel scientific HPC applications: feasibility

of running coupled atmosphere-ocean climate models on Amazon’s EC2. In: Proceedings of cloud
computing and its applications

10. GadelRab S (2007) 10-Gigabit ethernet connectivity for computer servers. IEEE Micro 27(3):94–105
11. Govindan R, Anderson DP (1991) Scheduling and IPC mechanisms for continuous media. Proc ACM

SIGOPS Oper Syst Rev 25(5):68–80
12. Govindan S, Nath AR, Das A, Urgaonkar B, Sivasubramaniam A (2007) Xen and Co.:

Communication-aware CPU scheduling for consolidated Xen-based hosting platforms. In: Proceed-
ings of int’l conf. virtual execution environments, Jun 2007, pp 126–136

13. Henning JL (2006) SPEC CPU2006 benchmark descriptions. ACM SIGARCH Comput Archit News
34(4):1–17

14. Kamp P-H, Watson RNM (2000) Jails: confining the omnipotent root. In: Proceedings of int’l system
administration and networking conference, May 2000

15. Keahey K, Figueiredo R, Fortes J, Freeman T, Tsugawa M (2008) Science clouds: early experiences in
cloud computing for scientific applications. In: Proceedings of cloud computing and its applications

16. Kim K, Kim C, Jung S-I, Shin H-S, Kim J-S (2008) Inter-domain socket communications supporting
high performance and full binary compatibility on Xen. In: Proceedings of ACM SIGPLAN/SIGOPS
int’l conf. virtual execution environments, Mar 2008, pp 11–20

17. Koomey J (2006) Estimating total power consumption by servers in the U.S. and the world. Technical
report, Lawrence Berkeley National Laboratory

18. Kopytov A (2009) SysBench: a system performance benchmark. http://sysbench.sourceforge.net/
19. Liu J, Huang W, Abali B, Panda DK (2006) High performance VMM-bypass I/O in virtual machines.

In: Proceedings of 2006 USENIX annual technical conf., May 2006, pp 1–3
20. Menon A, Cox AL, Zwaenepoel W (2006) Optimizing network virtualization in Xen. In: Proceedings

of 2006 USENIX annual technical conf., Jun 2006, pp 15–28
21. Menon A, Santos JR, Turner Y, Janakiraman G, Zwaenepoel W (2005) Diagnosing performance over-

heads in the xen virtual machine environment. In: Proceedings of ACM/USENIX int’l conf. virtual
execution environments, Jun 2005, pp 13–23

Author's personal copy

http://sysbench.sourceforge.net/


468 J.-W. Jang et al.

22. Padala P, Zhu X, Wang Z, Singhal S, Shin KG (2007) Performance evaluation of virtualization tech-
nologies for server consolidation. Technical Report HPL-2007-59, HP

23. Price D, Tucker A (2004) Solaris zones: operating systems support for consolidating commercial
workloads. In: Proceedings of 18th large installation system administration conf., Nov. 2004, pp 241–
254

24. Raj H, Ganev I, Schwan K, Xenidis J (2006) Self-virtualized I/O: high performance, scalable I/O
virtualization in multi-core systems. Technical Report GIT-CERCS-06-02, CERCS, Georgia Tech

25. Santos JR Janakiraman G, Turner Y (2007) Xen network I/O: Performance Analysis and Oppor-
tunities for Improvement. Xen Summit Spring 2007. http://xen.xensource.com/files/xensummit_4/
NetworkIO_Santos.pdf, Apr

26. Singh R (2007) Server virtualization and consolidation — a case study. White paper. http://www.ibm.
com/support/techdocs, IBM

27. Soltesz S, Pötzl H, Fiuczynski ME, Bavier A, Peterson L (2007) Container-based operating sys-
tem virtualization: a scalable, high-performance alternative to hypervisors. In: Proceedings of ACM
SIGOPS/Eurosys European conf. on computer systems, Mar. 2007, pp 275–287

28. Sugerman J, Venkitachalam G, Lim B-H (2001) Virtualizing I/O devices on VMware workstation’s
hosted virtual machine monitor. In: Proceedings of 2001 USENIX annual technical conf., Jun 2001,
pp 1–14

29. Waldspurger CA (2002) Memory resource management in VMware ESX server. In: Proceedings of
symp. operating systems design and implementation, Dec 2002, pp 181–194

30. Virtual Machine Device Queues. White paper, Intel, 2007
31. Willmann P, Shafer J, Carr D, Menon A, Rixner S, Cox AL, Zwaenepoel W (2007) Concurrent direct

network access for virtual machine monitors. In: Proceedings of IEEE int’l symp. high performance
computer architecture, Feb 2007, pp. 306–317

32. Zhang X, McIntosh S, Rohatgi P, Griffin JL (2007) XenSocket: a high-throughput interdomain trans-
port for virtual machines. In: Proceedings of ACM/IFIP/USENIX int’l middleware conf., Aug 2007,
pp 184–203

Author's personal copy

http://xen.xensource.com/files/xensummit_4/NetworkIO_Santos.pdf
http://xen.xensource.com/files/xensummit_4/NetworkIO_Santos.pdf
http://www.ibm.com/support/techdocs
http://www.ibm.com/support/techdocs

	A low-overhead networking mechanism for virtualized high-performance computing systems
	Abstract
	Introduction
	Background and motivation
	Xen virtual network architecture
	Motivation

	SETH: our approach
	Design
	Gbuffer and socket buffer slab cache
	Snet
	Transmitting packets
	Receiving packets
	Interfacing with physical NIC driver


	Evaluation
	Evaluation environment
	Microscopic benchmarks
	Round-trip time
	Transmitting
	Receiving

	Real-world workloads

	Related work
	Conclusion
	Acknowledgements
	References


