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Abstract Since user-level communication (ULC) architecture provides only primi-
tive operations for application programmers, there have been several researches to
build a portable and standard communication interface, such as sockets, on top of
ULC architecture. Basically there are three different approaches to supporting the
sockets interface over ULC architecture: LAN emulation, a user-level sockets, and
a kernel-level sockets. The primary objective of this paper is to compare these ap-
proaches in terms of their design, implementation, and performance.

We have developed and implemented a kernel-level sockets layer over ULC archi-
tecture, since there is currently no available implementation. We also present differ-
ent design and implementation decisions on data receiving, data sending, connection
management, etc. in the three approaches. Through the performance comparison, we
show that LAN emulation approach exhibits the worst performance both in latency
and bandwidth. Our experiments also show that a user-level sockets is useful for
latency-sensitive applications and a kernel-level sockets is effective for applications
which require high bandwidth and full compatibility with the legacy sockets inter-
face.
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1 Introduction

As cluster systems are constructed with low-cost and high-performance commodity-
off-the-shelf (COTS) components, they exhibit relatively high performance/cost ratio
compared to the other proprietary computer architectures. Additionally, the loosely-
coupled organization of nodes in cluster systems improves scalability, maintainabil-
ity, and upgradeability. These advantages make cluster systems one of the most com-
mon computer architectures for high-performance computing. In the latest survey
results of the world’s fastest TOP500 supercomputer sites, 304 systems out of 500
are cluster systems and the number of cluster systems in the whole list is increasing
continuously [21].

Since every node in cluster systems shares the same network infrastructure, net-
work performance readily becomes a bottleneck of the entire cluster system. In order
to improve network performance, high-performance system area networks (SANs),
such as Gigabit Ethernet, Myrinet, Quadrics, and InfiniBand Architecture, are usually
employed in cluster systems. Although SANs deliver high-speed network hardware,
it is known that current cluster systems can not fully utilize their raw speed due to
software overhead. Interrupt handling, network protocol processing, context switch-
ing, data copying between the user and the kernel space, and error checking in the
operating system layer contribute to the software overhead. Therefore, it is essen-
tial to devise an efficient communication architecture which minimizes the software
overhead in order to improve the performance of the entire cluster system.

User-level communication (ULC) architectures attempt to enhance communica-
tion performance by removing the operating system from the critical communication
path. ULC architectures aim to relieve the aforementioned overhead by performing
most of the tasks involved in communication only in the user space. When the ULC
concept was first introduced, many proprietary architectures realizing the concept
were developed. After those early days, industries eager to standardize ULC archi-
tectures and bring about the emergence of the Virtual Interface Architecture (VIA)
[6, 8] and InfiniBand Architecture (IBA).

It is well known that primitives of ULC architectures are considered to be at too
low a level for general network application programming [3]. Those primitives do
not provide high-level functionalities such as buffer management or transport-level
functionality. In order to exploit advantages of ULC architectures efficiently, applica-
tion programmers should make those functions by themselves. Thus, an abstraction
layer over ULC architecture supporting high-level operations is highly necessary.
Many researchers have endeavored to build such layers over various ULC architec-
tures [2, 11, 15, 16, 18, 20].

One of possible candidates that can be used over ULC architecture is the Berkeley
sockets API [17] considering its widespread use and acceptance in distributed envi-
ronments. The sockets API is the de facto standard for network programming and
provides a means for developing applications independent of the network hardware.

Basically, there are three different approaches to supporting the sockets interface
on top of ULC architecture. The simple and transparent approach is to insert an adap-
tation layer between IP layer and network hardware and to make the adaptation layer
emulate LAN. In this approach, socket applications are executed through TCP/IP
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layer on top of the adaptation layer. Another approach is to make a sockets layer us-
ing primitives of ULC architecture either in user-level or in kernel-level bypassing
the TCP/IP stack.

The difference in the design of these approaches exhibits the different charac-
teristics in the performance. This urges us to investigate the pros and cons of each
approach both quantitatively and qualitatively. Since we have LAN emulation driver
for VIA-aware NIC from Emulex corp. [10] and a user-level sockets layer over VIA
from our previous work [15], we need a kernel-level sockets layer over VIA for the
comparison on the same VIA platform. Thus, the first goal of this paper is to design
and implement a kernel-level sockets layer over VIA (KSOVIA). The second goal
is to evaluate the impact of different design and implementation decisions of these
approaches on the sockets performance. Comparison among the approaches in view
of design decisions enables us to quantitatively analyze the various reasons for the
difference in performance. For example, if we compare a kernel-level sockets layer
with a user-level sockets layer, we can measure the overhead of the kernel-level im-
plementation. Also the comparison between LAN emulation layer and a kernel-level
sockets layer will reveal the overhead of TCP/IP protocol processing.

The major contributions of this paper can be summarized as follows.

• We classify three different approaches to supporting the sockets interface over
ULC architecture.

• We design and implement KSOVIA, a kernel-level sockets layer over VIA, in order
to make the comparison with the other approaches.

• We examine design and implementation issues in supporting the sockets interface
over ULC architecture, with paying attention to design differences and trade-offs
among the three approaches.

• We measure the latency and the bandwidth of the three approaches and native VIA
on the same platform to understand their relative performance.

• We quantitatively analyze the individual costs associated with communication
(e.g., socket implementation overhead, TCP/IP overhead, overheads from the use
of kernel services, etc.) by comparing the performance of the three approaches.

The rest of the paper is organized as follows. The next section presents the back-
ground of our work briefly, and describes the three different approaches to supporting
the sockets interface over ULC architecture. Section 3 compares design and imple-
mentation issues of the different approaches. Section 4 analyzes the experimental re-
sults comparing the performance of each approach. Section 5 presents related work.
Finally, we conclude and present future work in Sect. 6.

2 Background

2.1 Virtual Interface Architecture

The organization of VIA is briefly illustrated in Fig. 1. VIA consists of four basic
components: Virtual Interfaces (VIs), VI Provider, VI Consumer, and Completion
Queues (CQs).
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Fig. 1 The organization of the Virtual Interface Architecture

Virtual Interfaces. VIA provides a consumer process with a protected, directly-
accessible interface to a network hardware called Virtual Interface (VI). A VI has a
pair of work queues: a send queue and a receive queue. Each VI represents a commu-
nication endpoint and every send or receive operation is performed through VI.

VI Provider. VI Provider consists of a physical network adapter and the VI Ker-
nel Agent. The VI Kernel Agent is a kernel module which is responsible for register-
ing communication memory and setting up and shutting down VIs.

VI Consumer. VI Consumer represents the user of a VI in Fig. 1 which can be
optionally attached with some communication interfaces.

Completion queues. Completion queues store information used to notify VI con-
sumers of the completion of send or receive operations. Using completion queues, a
consumer process can check the completion of several send or receive operations at
once.

Several VIA implementations are available for Linux platform. M-VIA [4] emu-
lates the VIA specification by software for legacy Fast Ethernet and Gigabit Ethernet
NICs. Berkeley VIA [5], SVIA [22], and MyVIA [7] support the VIA specification
on Myrinet by modifying its firmware. Finally, Emulex Corp.(former Giganet Inc.)
has developed a proprietary, VIA-aware NIC called cLAN [9]. In this paper, we in-
vestigate various issues related to the sockets support on cLAN because it is one of
the most stable VIA implementations.

2.2 Approaches to supporting the sockets interface over VIA

Basically there are three different approaches to supporting the sockets interface over
VIA as illustrated in Fig. 2b–d. Figure 2a shows the traditional communication archi-
tecture, in which the sockets layer resides on top of the TCP and IP protocol stack.

2.2.1 LAN emulation layer

The simple and transparent approach to supporting sockets over VIA is to insert an
adaptation layer between IP layer and network hardware as depicted in Fig. 2b. The
IP layer considers the adaptation layer as a kind of Ethernet device, and any IP-based
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Fig. 2 Supporting the sockets interface over VIA

applications including socket applications can be executed on cLAN network without
any modifications using this layer.

cLAN provides LANEVI (LAN emulation on VI) driver which realizes this ap-
proach. LANEVI consists of kernel-level interface to NIC and LAN emulation rou-
tine. After LANEVI driver is loaded into the kernel, a network interface named clan0
is created and applications can access cLAN network through clan0 whose role is
similar to eth0 for typical Ethernet device.

2.2.2 A user-level sockets layer over VIA

The second approach is to make a sockets layer using primitives of VIA in the user
space, as shown in Fig. 2c. Since this layer is located in the user space, it provides
the socket interface without sacrificing the performance of the underlying VIA layer.
However, it is not easy to preserve sockets semantics perfectly because socket opera-
tions have to be implemented out of the kernel. In the typical Linux system, fork()
and exec() is commonly used to create a new process. In the user-level sock-
ets layer, however, calling exec() destroys the current process image where the
sockets-related data structures are kept. Hence, a newly created process can not use
the existing socket connection. This problem makes network servers such as inetd
hard to operate on the user-level sockets layer. In order to solve this problem, com-
plex mechanisms are necessary.

Our previous work, SOVIA [15] is an example of this approach. SOVIA im-
plements every socket operation in a user-level library, and any socket applications
linked to this library are able to send or receive data without the help of the kernel.

2.2.3 A kernel-level sockets layer over VIA

The final approach is to move the sockets layer from the user space into the kernel
again, as shown in Fig. 2d. The kernel-level sockets layer exploits the sockets inter-
face in the kernel but bypasses the network protocol stack. Also, this layer is free
from the problems in the user-level sockets layer, since it maintains sockets-related
data structures in the kernel. On the contrary, every socket operation should go though
the kernel accompanying context switching and data copying overhead.

Although there exist implementations for the previous two approaches, to the best
of our knowledge, a kernel-level sockets layer over VIA has currently no available im-
plementation. Thus, we have designed and implemented a kernel-level sockets layer
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over VIA (KSOVIA). Whereas SOVIA is developed as a user-level library, KSO-
VIA is developed as a kernel module which bypasses the TCP/IP protocol suite. For
unbiased comparison, KSOVIA is designed similar to SOVIA as much as possible.
Details of the design and implementation of KSOVIA will be provided in the next
section.

3 A comparison of design and implementation issues

In this section, we compare design and implementation issues among LANEVI
(a LAN emulation layer), SOVIA (a user-level sockets layer), and KSOVIA (a kernel-
level sockets layer). The detailed information on LANEVI has not been published in
the literature, and thus it is guessed from the source code. Although we briefly in-
troduce the design and implementation of SOVIA, readers who want to know more
on its internals are encouraged to refer to [15]. In this paper, we relatively elaborate
upon the internal workings of KSOVIA which we have developed for the complete
comparison among different approaches.

3.1 VIPL

cLAN provides primitive operations through VI Provider Library (VIPL). Since all
the implementations we have compared are built on top of VIPL, we present basic
operations of VIPL before we begin to compare the three approaches for clear and
complete analysis.

Posting and reaping operations. Sending or receiving data using VIPL is per-
formed through two distinct phases, namely the posting phase and the reaping phase.
In the posting phase, a process posts a descriptor, which contains a request specifica-
tion including data length and pointers to data buffers. The descriptor is posted either
on a send queue (for data sending) or on a receive queue (for data receiving). When
sending or receiving data finishes, NIC marks a DONE bit in the status field of the
corresponding descriptor to indicate the completion of descriptor processing. Those
completed descriptors are identified and then removed from the work queue in the
reaping phase. The completed descriptors can be detected either by polling the status
field of the head descriptor in the work queue, or by using a blocking call in which
a calling process is signaled upon the completion of the request. The reaping phase
is unavoidable because if the work queue is filled with the completed descriptors, the
process can not post further descriptors to send or receive data. Note that a process
need not perform the reaping phase right after the posting phase every time because
multiple completed descriptors can be removed from the work queue in a single reap-
ing phase.

Completion queue. A completion queue (CQ) allows a process to coalesce noti-
fications of the completed descriptors from multiple work queues in a single location.
When a VI is created, each work queue of the VI can be associated with a CQ. Once
this association is established, notifications of the completed requests are automati-
cally directed to the CQ.
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Memory registration. All the memory regions used for communication should
be registered to NIC before NIC uses them. NIC reads and writes data directly from
and to the registered memory regions without the help of the virtual memory. When
a memory region is no longer needed for communication, it should be explicitly de-
registered, whereupon the corresponding physical pages are released and made avail-
able for swapping out.

3.2 Data receiving

A typical scenario to receive data with VIPL is as follows. A user process posts
a descriptor, which contains a pointer to the user buffer, into the receive queue. When
a packet arrives, NIC stores payload data to the user buffer specified in the descriptor
at the head of the receive queue, and marks a DONE bit in the descriptor. And then
the user process reaps the completed descriptor and accesses the received data in the
user buffer. Basically, all the approaches follow the above steps to receive data, but
details are slightly different.

LANEVI. LANEVI performs the following steps in order to receive data. First,
LANEVI prepares a set of receive descriptors and temporary buffers when it is loaded
into the kernel. The memory regions where the descriptors and buffers reside are
registered to NIC in advance so that NIC can access them directly. Second, when a
packet arrives, an interrupt is raised which enables LANEVI to reap the descriptor.
And then LANEVI copies the received data specified in the reaped descriptor to a
socket buffer (sk_buff). Third, the socket buffer is passed on to the upper layer and
processed by the TCP/IP protocol stack. Fourth, when the user requests data through
recv(), data in the socket buffer is copied to the user buffer. Finally, for the next
incoming packets, LANEVI posts other descriptors into the receive queue. Note that
there are two copies during these steps; one is between temporary buffers and socket
buffers, and the other between socket buffers and user buffers.

SOVIA. While LANEVI supports the sockets interface with the help of the
TCP/IP protocol stack, SOVIA implements it directly at the user space using VIPL.
SOVIA prepares a set of descriptors and temporary buffers when it is initialized.
Whenever an application calls socket(), SOVIA creates a new VI and connects
its receive queue to a single completion queue. When a packet arrives, NIC transfers
payload data to the temporary buffers specified in the descriptor, and SOVIA needs
to check the completion queue in order to see if a packet arrives. There are two meth-
ods to check the completion queue. One is to use separate user-level handler thread
which checks the completion queue all the time. If the handler thread detects any
completed descriptors (i.e., new packet arrivals), the handler thread reaps them from
the receive queue. The other is to emulate the handler thread without having a sepa-
rate thread. In this case, every sockets-related function such as send() or recv()
checks the completion queue to see if a new packet arrives. When it is detected, the
application thread reaps the completed descriptors. While the first method is easy to
implement, it has relatively high synchronization overhead between the application
thread and the handler thread. Thus, SOVIA chooses the second method by default.
After these steps, if the user process calls recv(), SOVIA copies the data from
temporary buffers to user buffers.
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KSOVIA. Initial steps to receive data in KSOVIA are similar to those in
LANEVI. First, KSOVIA prepares a pool of descriptors and temporary buffers when
it is loaded into the kernel. KSOVIA also creates a completion queue used in the han-
dler routine which is responsible for checking new packet arrivals. Note that KSOVIA
maintains only a single completion queue in the entire system, while SOVIA creates
a completion queue for each process who wants to use sockets interface. Second, if
a user process creates a socket, KSOVIA creates a VI and associates its receive queue
with the completion queue. Third, when NIC receives a packet, it transfers payload
data to the temporary buffer specified in the descriptor and raises an interrupt which
schedules the handler routine in the bottom half of the Linux kernel. Fourth, when
the kernel allows the handler routine to run, the handler routine checks completed
descriptors and moves them to the queue of the corresponding socket. Finally, when
the user process calls recv(), KSOVIA copies data in the temporary buffer to the
user buffer. Used descriptors are recycled and KSOVIA posts them to the receive
queue again for the next incoming packets.

We have applied an optimization to the receiving operation of KSOVIA in order to
increase the bandwidth. A whole receiving operation of KSOVIA can be divided into
two distinct phases. One is a system-initiated phase and the other is a user-initiated
phase. The system-initiated phase begins with an interrupt notifying new data ar-
rivals and ends with moving the completed descriptors to the corresponding sockets.
The user-initiated phase begins with a request of the user through recv() and ends
with copying data from temporary buffers in the kernel to user buffers. While the
system-initiated phase is responsible for checking completed descriptors, we insert a
routine which also checks the completed descriptors at the end of the user-initiated
phase. This optimization increases the number of chances where the arrived data is
extracted from the completion queue and shows higher bandwidth especially when
there is burst communication traffic of small data.

One of the key issues in the data receiving is how to deal with VIA’s pre-posting
constraint. VIA requires that the receiver pre-posts a descriptor to the receive queue
before a packet arrives. Unless a descriptor is posted in advance, the transferred
packet is dropped at the receiving side without any notice. As we have seen previ-
ously, all the approaches rely on temporary buffers to satisfy the pre-posting con-
straint. As long as we use temporary buffers, at least one data copy from temporary
buffers to user buffers is unavoidable. Notice that LANEVI experiences one more
copy due to the intermediate socket buffers as described previously.

3.3 Data sending

LANEVI. Similar to the preparation step of the data receiving, LANEVI pre-
pares a set of send descriptors and temporary buffers, and registers the corresponding
memory regions in advance. When a user process calls send(), data in the user
buffer is copied into the kernel space. And then the data is encapsulated in the socket
buffers with TCP and IP headers. Those socket buffers are passed to LANEVI. Since
the memory regions of socket buffers are not registered to NIC, LANEVI copies the
contents of socket buffers to temporary buffers. After copying, LANEVI posts the de-
scriptors associated with those temporary buffers into the send queue of the VI. After
NIC actually sends the data, LANEVI reaps send descriptors from the send queue.
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SOVIA. SOVIA provides two sending modes because NIC can send data only in
the registered memory region. One is to copy user data to temporary buffers registered
in advance and the other is to register memory region of the user data on the fly. Since
the second mode does not copy data, it is faster than the first mode for relatively
large data size. In the second mode, however, user process should not modify the
data before the entire send operation finishes. In any case, SOVIA posts a descriptor
specifying the pointer to the prepared memory region and reaps the posted descriptors
after NIC sends the data completely.

KSOVIA. The send operation of KSOVIA is simple and straightforward. If a user
process calls send(), data in the user buffer is copied to temporary buffers pre-
registered in the kernel. And then the descriptor associated with the temporary buffers
is posted into the send queue. Similar to SOVIA, KSOVIA reaps it after NIC sends
the data completely. All these steps are occurred together at every send() request.

We have also applied an optimization to the sending operation of KSOVIA to
increase the bandwidth. The sending operation of KSOVIA can be divided into two
phases; the posting phase and the reaping phase. During the experiments, we observe
that the reaping phase takes relatively long time waiting for the completion of the
descriptor just posted. Since KSOVIA exploits several send descriptors, KSOVIA
need not reap the send descriptor right after posting it. Thus, KSOVIA postpones the
reaping task until there are no available send descriptors to post. This reduces the
time for processing the send operation. This optimization can be used in SOVIA if
SOVIA copies data using temporary buffers and uses multiple descriptors for send
operations. During our experiments, however, we used a version of SOVIA where
this optimization is not applied.

3.4 Connection management

LANEVI. The LAN emulation layer need not take care of connections. Instead,
the connection is managed by the upper layer such as TCP. Since VIA adopts
a connection-oriented model, however, communication between two nodes can not
be done without making a VI connection between them. In the cLAN network, when
a new node joins, it is notified to every other node. If LANEVI discovers the node
insertion event, it creates a VI and automatically establishes a VI connection with
a new node even before any data transfer request is passed from the IP layer. When
a user process creates a socket and tries to open a connection to the other process in
the remote site, special TCP packets are exchanged through the VI connection which
is already established in advance. Thus, a socket communication between two user
processes through LANEVI requires two connections. One is between two VIs at
LANEVI and the other is between two TCPs. This mechanism is inefficient, but it is
inevitable to emulate connectionless LAN over the connection-oriented VIA.

SOVIA. Contrary to LANEVI, SOVIA makes a VI connection only after an ap-
plication tries to connect to the remote site. SOVIA maintains two user-level POSIX
threads for connection management. One is the close thread which processes incom-
ing packets after partial close of the connection. The other is the connection thread
spawned as a result of listen(). Due to the slight semantic differences in connec-
tion models between sockets and VIA, the connection thread is necessary to accept
an incoming VI connection request behind the application thread [15].
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Table 1 A comparison of the design and implementation issues among LANEVI, SOVIA, and KSOVIA

Comparison items LANEVI SOVIA KSOVIA

The number of data
copies during data
receiving

Two (one from
temporary buffers to
socket buffers, the
other from socket
buffers to user
buffers)

One (from temporary
buffers to user
buffers)

One (from temporary
buffers to user
buffers)

The number of data
copies during data
sending

Two (one from user
buffers to socket
buffers, the other from
socket buffers to
temporary buffers)

Zero or one (no data
copy or possibly one
from user buffers to
temporary buffers)

One (from user
buffers to temporary
buffers)

System call overhead Exist Exist when blocking
VIPL APIs are used

Exist

TCP/IP protocol
processing overhead

Exist Not exist Not exist

Connection
management

Handled by the kernel
(automatically
establish a connection
with a new node even
if it is not used)

Use two POSIX
threads (the close
thread and the
connection thread)

Use one kernel thread
for connection
establishment

Flow control Resort to TCP Use a customized
credit-based flow
control

Same as in SOVIA

KSOVIA. Similar to SOVIA, KSOVIA also makes a VI connection only after
a user process tries to connect to the remote site. However, KSOVIA does not need
a close thread since the kernel is able to receive any incoming packets without resort
to the user process. Instead, KSOVIA employs a kernel thread to deal with VI connec-
tion requests and replies. As in SOVIA, this kernel thread is created after listen()
is invoked.

3.5 Flow control

LANEVI has no concern for flow control because flow is mostly managed by the up-
per TCP layer. Although TCP has many complex flow control mechanisms, some
of these mechanisms, such as congestion control, are not necessary in the reli-
able networks such as cluster interconnects. Thus, it is required to devise a light-
weight flow control mechanism for SOVIA and KSOVIA. Note that since flow con-
trol affects the socket performance substantially, we adopt the same flow control
mechanism of SOVIA to KSOVIA for the unbiased comparison of their perfor-
mance.
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The flow control mechanism used in SOVIA mainly focuses on increasing the
bandwidth. SOVIA supports a credit-based flow control which is similar to the TCP’s
sliding window protocol. It has a notion of window size ω, which denotes the maxi-
mum number of data packets the sender is allowed to transmit without waiting for an
acknowledgment. When a socket is created, ω receive descriptors are pre-posted in
the receive queue. Whenever the sender transmits a data packet, it decreases ω by one
to denote that one of the receive descriptors has been consumed. If ω reaches zero,
the sender stops to transmit data packets until ω becomes a positive number. Window
size ω is increased by one if an acknowledgment is delivered to the sender. In order
to enhance the bandwidth further, acknowledgments can be delayed and piggybacked
to data packets.

We summarize the design and implementation differences among LANEVI, SO-
VIA, and KSOVIA in Table 1.

4 Performance comparison

We perform various tests to quantitatively analyze the impact of different design and
implementation decisions on the performance.

4.1 Experimental environments

We have measured the performance of LANEVI, SOVIA, and KSOVIA with the
Linux kernel 2.4.18 and cLAN driver version 2.0.1. The hardware platform used
is two Linux workstations, each consisting of 1.6 GHz Intel Pentium 4 processor,
512 KB L2 cache, and 768 MB of main memory. Two cLAN1000 network adapters
are attached to a 32-bit 33 MHz PCI slot of each workstation, and we connect them
without any intermediate switches.

We carry out microbenchmarks which measure the one-way latency and the uni-
directional bandwidth. The one-way latency is measured by a half of the round-trip
time from several tens of thousands of ping-pong tests. The unidirectional bandwidth
is obtained by measuring the average time spent for sending 100,000 packets repeat-
edly. In addition, we use FTP server and client programs to verify the functionality
and to evaluate the performance of real socket applications.

Communication mechanisms evaluated in this paper are presented in Table 2. All
the measurement results are taken from the results of the socket-based microbench-
marks except VIPL and VIPL_POLL. The results of VIPL and VIPL_POLL are de-
rived from the microbenchmarks written in VIPL APIs and they are considered as the
baseline for the performance of the other results. SOVIA is tested using both non-
blocking APIs (SOVIA_POLL) and blocking APIs (SOVIA). Note that a process
using blocking APIs is blocked until the end of each I/O operation in the kernel
space, while a process using non-blocking APIs polls the completion of each I/O op-
eration in the user space. We use a SOVIA version which uses temporary buffers in
both sending and receiving data. KSOVIA does not use non-blocking APIs because
polling is not allowed inside the kernel.

Figure 3 illustrates various stacks involved in each communication mechanisms.
All the communication with LANEVI, KSOVIA, VIPL, and SOVIA pass through the
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Table 2 Evaluated communication mechanisms

Communication
mechanisms

Description

VIPL_POLL Use pure VIPL with non-blocking APIs in the user space

VIPL Use pure VIPL with blocking APIs in the user space

LANEVI Use the traditional TCP/IP using the LANEVI driver

SOVIA_POLL Use a user-level sockets layer over VIA with non-blocking APIs

SOVIA Use a user-level sockets layer over VIA with blocking APIs

KSOVIA Use a kernel-level sockets layer over VIA

Fig. 3 Various stacks involved in each communication mechanism

kernel space, which accompanies various overheads resulted from context switching,
interrupt handling, and process scheduling. We denote those kernel overheads as ker-
nel services collectively. Even if SOVIA and VIPL are user-level communication
mechanisms, they rely on kernel services since a process goes into the kernel when it
is blocked in send() or recv().

4.2 One-way latency

Figure 4 shows the one-way latency when the data size varies from 4 bytes to 32
bytes. The results of VIPL_POLL and SOVIA_POLL, which use non-blocking APIs,
show the shortest latency for all data sizes. Unlike the other communication mech-
anisms, VIPL_POLL and SOVIA_POLL are not blocked in the kernel to wait for
the completion of sending or receiving operation, but continuously poll it in the user
space. When a process is blocked in the kernel, the use of kernel services is un-
avoidable in order to wake up and reschedule the blocked process, and this overhead
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Fig. 4 One-way latency

increases the latency. In our experiments, the results which use non-blocking APIs
show about the half of the latency of the ones using blocking APIs (9.2 µsec versus
18.8 µsec for VIPL and 10.5 µsec versus 20.0 µsec for SOVIA). In general, however,
network applications can not use polling with non-blocking APIs because it wastes
most of CPU times on busy waiting. Thus, the use of polling requires careful design
consideration depending on the workload.

From Fig. 4, we can see that SOVIA shows the constantly higher latency than
VIPL by about 1.3 µsec. It is mainly due to the increased complexity in the SOVIA
layer to support the sockets interface as shown in Fig. 3.

Figure 4 also illustrates that the latency of KSOVIA is higher than that of SOVIA
by about 1.7 µsec. As we have designed KSOVIA to behave similar to SOVIA as
much as possible, we believe that the kernel-level implementation adds the latency.
Compared to SOVIA, KSOVIA uses the bottom half of the Linux kernel in receiving
data and multiplexes received data to the corresponding socket. These additional tasks
from the kernel-level implementation require extra time.

LANEVI has the additional TCP/IP overhead compared to KSOVIA, exhibit-
ing the worst latency in Fig. 4. From the latency difference between LANEVI and
KSOVIA, we can conclude that TCP/IP protocol processing increases the latency of
LANEVI by about 5.5 µsec.

We summarize various overheads from the latency results in Table 3.

4.3 Unidirectional bandwidth

4.3.1 Bandwidth comparison among several approaches

Figure 5 shows the unidirectional bandwidth of each communication mechanism
studied in this paper. First, we can see that LANEVI shows the higher bandwidth
than any other mechanisms when the data size is less than 2 Kbytes. This is because
TCP combines small data together before a packet is transmitted, which is known as
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Table 3 Various overheads in communication path

Overheads Calculated from Time
(µsec)

Socket implementation (SOVIA–VIPL) 1.3

Use of kernel services (VIPL–VIPL_POLL) 9.6

Kernel-level implementation (KSOVIA–SOVIA) 1.7

TCP/IP protocol processing (LANEVI–KSOVIA) 5.5

Fig. 5 Unidirectional bandwidth

Nagle algorithm. The bandwidth of LANEVI is saturated at 760 Mbps for 512-byte
data size and becomes the smallest when the data size is larger than 16 Kbytes. When
we enable similar algorithm in SOVIA and KSOVIA, we achieve better bandwidth
compared to LANEVI as shown in Fig. 6. In this result, SOVIA and KSOVIA try to
combine small data within 32-Kbytes buffer during up to 100 ms.

As SOVIA is made on top of VIPL, the performance of SOVIA and SOVIA_POLL
are bound to that of VIPL and VIPL_POLL, respectively. The minor difference be-
tween SOVIA and VIPL is due to the protocol maintenance overhead in SOVIA,
which has also increased the latency of SOVIA.

The result of KSOVIA resides between the results of SOVIA_POLL and SOVIA,
while the latency of KSOVIA is slightly higher than that of SOVIA. This is because
of the difference in data transfer mechanisms between SOVIA and KSOVIA. SOVIA
handles the communication without having a separate thread. Thus, every socket-
related routine has to do additional tasks as well as its own task. For instance, during
the unidirectional bandwidth test, each send() in SOVIA has to check new data
arrivals even though there is nothing in the completion queue. These redundant tasks
increase the processing time slightly. However, this redundancy is inevitable to make
SOVIA a single-threaded application in order to avoid thread synchronization over-
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Fig. 6 Unidirectional bandwidth when SOVIA and KSOVIA combine small data

head [15]. On the contrary, KSOVIA does not require such a complex design allowing
it to achieve higher bandwidth. In KSOVIA, the handler routine is located in the ker-
nel and runs only if there is something to process in the completion queue, which is
notified by an interrupt.

4.3.2 Bandwidth optimizations in KSOVIA

In order to overcome disadvantages that KSOVIA resides in the kernel, we apply
two optimizations in receiving and sending operation, respectively. Details of those
optimization techniques are already presented in Sects. 3.2 and 3.3. We illustrate the
impact of these optimizations in Fig. 7.

The improvement of the receiving optimization decreases as the data size grows.
When the size of data moving through the network link increases, pending interrupts
are decreased and the chance to process them at the end of recv() also diminishes.
Thus, the relative gain over the non-optimized version is dropped and this optimiza-
tion imposes more overhead for large data.

On the contrary, the improvement of the sending optimization outperforms the
non-optimized version continuously. The peak bandwidth reaches 848.2 Mbps for
32 Kbytes data which is even greater than that of SOVIA_POLL. Although KSOVIA
uses blocking APIs, KSOVIA exhibits the best performance, which shows that the use
of the multiple send descriptors is more useful than the use of non-blocking APIs.

4.4 Throughput analysis

In this subsection, we present a throughput model of KSOVIA and SOVIA for the-
oretical analysis of the previous bandwidth results. Basically, when the sender trans-
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Fig. 7 Effect of the bandwidth optimizations

mits N packets of length L, the total throughput is given by

BW(L) = N · L
Telapsed

, (1)

where Telapsed represents the elapsed time to transmit all the packets.
Our model is not based on the loss rate contrary to most throughput models of

TCP because LAN is reliable and packet drop hardly occurs. Rather, it is character-
ized mostly by the sending rate as shown in Fig. 8. An individual horizontal bar in
Fig. 8 illustrates the elapsed time for transmitting a single packet from the sender to
the receiver, where Tsend, Tprop, and Trecv denote the time spent for send operation in
the sender, the propagation time over the physical link, and the time for receive op-
eration in the receiver, respectively. As the latency of Tprop + Trecv can be hidden by
the transmission of the subsequent packets, Tsend effectively determines the overall
throughput1. Hence, Telapsed can be calculated as

Telapsed = Tsend · (N − 1) + (Tsend + Tprop + Trecv). (2)

Fig. 8 Timing model

1Although both KSOVIA and SOVIA employ a credit-based flow control mechanism, our measurement
results show that the packet transmission is not delayed due to the lack of available window size, since the
acknowledgments are delivered to the sender sufficiently fast during unidirectional bandwidth tests.



Comparison of the approaches to supporting sockets over ULC 221

If N is sufficiently large, Eq. 2 becomes

Telapsed ≈ Tsend · N. (3)

Equations 1 and 3 make

BW(L) = L

Tsend
. (4)

In KSOVIA, Tsend can be represented as the summation of several components as
follows.

Tsend,KSOVIA = Tsyscall + Tmemcpy + Tpost + TDMA + Toverhead. (5)

In Eq. 5, Tsyscall, Tmemcpy, and Tpost denote the time to issue a send system call,
the time to copy user-space data into the kernel space, and the time to post a send
descriptor, respectively. TDMA is the time to DMA data in the kernel memory into the
SDRAM of cLAN NIC. Since we use 32-bit 33 MHz PCI bus, the maximum DMA
bandwidth is limited to 132 MB/s. Finally, Toverhead describes the additional overhead
that constantly exists in the communication path. It includes, for example, the time to
execute user applications and internal protocol processing codes. Note that in Eq. 5,
Tsyscall, Tpost, and Toverhead are independent of the packet size, while Tmemcpy and
TDMA are directly proportional to the packet size.

On our evaluation platform, Tsyscall, Tpost, and Toverhead are found to be 1.2 µsec,
0.4 µsec, and 5.0 µsec, respectively. We model Tmemcpy as

Tmemcpy = ρ · L + c, (6)

where ρ = 0.00182 µsec/byte and c = 0.08 µsec, by interpolating actual measurement
results using memcpy() on the same platform. If we let δ be the DMA bandwidth,
TDMA can be expressed as

TDMA = L/δ, (7)

where δ = 132 MB/s in our platform.
Using Eqs. 4–7, the throughput model of KSOVIA is given by

BWKSOVIA(L) = L

α · L + β
, (8)

where α = (ρ + 1/δ) = 0.0094 µsec/byte and β = Tsyscall + Tpost + Toverhead + c =
6.68 µsec.

Figure 9 compares the throughput predicted by the performance model in Eq. 8
with the actual values obtained from our experiments shown in Fig. 5. It can be seen
that our model successfully approximates the actual KSOVIA throughput.

For SOVIA, Tsend does not include any system call overhead, hence the throughput
is given by

BWSOVIA(L) = L

Tsend,SOVIA
(9)
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Fig. 9 KSOVIA throughput comparison of actual values vs. modeled values

Fig. 10 SOVIA throughput comparison of actual values vs. modeled values

= L

Tmemcpy + Tpost + TDMA + Toverhead
(10)
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= L

α · L + β ′ (11)

with the value of α is the same as that of KSOVIA and β ′ = 5.48 µsec. Figure 10
compares the predicted and the actual throughput for SOVIA. We can observe that
our simple throughput model approximates the actual throughput reasonably well
both for KSOVIA and for SOVIA.

4.5 FTP performance

We run an FTP server (linux-ftpd-0.17) and client (netkit-ftp-0.17) over LANEVI,
SOVIA, and KSOVIA, in order to verify their functional validity and to measure
the performance of real socket applications. Two files are transferred from the server
to the client; one is small (12.75 MB) and the other is rather big (161.1 MB). We
have arranged that all the files reside in RAM disks to avoid the influence of the disk
subsystems.

Table 4 summarizes the performance of file transfers. Since the bandwidth of lo-
cal copy using cp command is large enough exceeding 1 Gbps, FTP performance is
not bounded by the RAM disks performance. Table 4 shows that LANEVI achieves
91.2% (for small file) and 89.6% (for big file) of the bandwidth of KSOVIA. These
results are analogous to those obtained from unidirectional bandwidth microbench-
marks. As described in the previous section, KSOVIA shows a little higher bandwidth
than SOVIA owing to the bandwidth optimizations described in Sects. 3.2 and 3.3.

Table 4 FTP bandwidth

File A File B

13,374,187 bytes 168,919,040 bytes

Fast Ethernet 1.14 sec 89.51 Mbps 14.4 sec 89.50 Mbps

LANEVI 0.137 sec 744.80 Mbps 1.74 sec 740.60 Mbps

SOVIA 0.134 sec 778.91 Mbps 1.8 sec 762.57 Mbps

KSOVIA 0.125 sec 816.30 Mbps 1.56 sec 826.12 Mbps

Local copy 0.063 sec 1619.63 Mbps 1.255 sec 1026.89 Mbps

5 Related work

The most popular communication interfaces used in cluster environments are MPI
(Message Passing Interface) and Berkeley sockets interface [17]. Since sockets in-
terface provides more general communication interface, many researches have been
performed to support the sockets API on VIA platform. VIsocket [14] is similar to
KSOVIA in that it provides socket functionality below the STREAMS module in
Solaris by collapsing internal TCP/IP layer. However, the design and performance
details of VIsocket have not been published yet.
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InfiniBand Architecture (IBA) [13] has been standardized by the industry to de-
velop the next-generation high-performance interconnection network. As IBA adopts
many features from VIA, its software layer is very similar to VIPL. Currently, there
are many ongoing research projects to build new convenient layers on top of IBA,
such as IPoIB [12] and SDP [12]. IPoIB provides the standardized IP encapsula-
tion over IBA fabrics, whose role is identical to that of LANEVI in a conceptual
viewpoint. Sockets Direct Protocol (SDP) defines a standard wire protocol to sup-
port stream sockets over IBA bypassing the traditional TCP/IP protocol stack. SDP
is essentially a kernel-level sockets layer over IBA and its purpose is the same as that
of KSOVIA. Even though some implementations of SDP are available [1, 12, 19],
there is few publicly available documentation of internal implementation and com-
parison among several design choices we focus on. Due to many similarities between
VIA and IBA, we believe that the results obtained in this paper are also useful in
developing such layers as IPoIB and SDP.

6 Concluding remarks

In this paper, we compare the three different approaches to supporting the sockets
interface over VIA. LANEVI emulates LAN over VIA, while SOVIA and KSOVIA
stand for a user-level sockets layer over VIA and a kernel-level sockets layer over
VIA, respectively. Since there is currently no reference implementation for kernel-
level sockets layers, we have designed and implemented KSOVIA which is our own
kernel-level sockets layer over VIA.

Through the performance measurements in our platform, we find out the fol-
lowings. First, as we expected, TCP/IP protocol processing is the main source
of significant overheads; about 20.1% of the whole latency of LANEVI is con-
sumed in processing TCP/IP protocol. Second, the use of kernel services incurs
more serious overhead than TCP/IP protocol processing. About 47.8% of SOVIA
latency and about 35.1% of LANEVI latency are spent on the use of kernel ser-
vices. Third, a single-threaded design of SOVIA results in relatively lower band-
width compared to KSOVIA. Extra tasks due to the single-threaded design prevent
SOVIA from achieving a higher bandwidth. Lastly, the use of multiple send descrip-
tors in KSOVIA is noticeably effective, even outperforming than SOVIA with non-
blocking APIs.

We conclude that there is no reason to use LANEVI for socket-based applica-
tions. It shows the worst performance in terms of latency and bandwidth as well as
the additional overhead in connection management. On the other hand, SOVIA and
KSOVIA have their own pros and cons. Even though SOVIA presents a little lower
bandwidth than KSOVIA, it is useful when applications are latency sensitive and
do not use exec() or fork(). KSOVIA can be used effectively for applications
which require high bandwidth or the full compatibility with the legacy socket-based
applications.

We are going to observe the behavior of various cluster and Grid applications to
see the impact of the different approaches on the real-world applications. Addition-
ally, we plan to extend our work onto InfiniBand Architecture by investigating such
layers as IPoIB and SDP.
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