J Supercomput (2007) 40: 1-28
DOI 10.1007/s11227-006-0006-3

A runtime resolution scheme for priority boost conflict
in implicit coscheduling

Jung-Lok Yu - Jin-Soo Kim - Seung-Ryoul Maeng

Published online: 9 March 2007
© Springer Science+Business Media, LLC 2007

Abstract High-performance parallel and scientific applications are composed of
multiple processes running on distinct CPUs that communicate frequently. Due to
the synchronization needs of such applications, performance is greatly hampered if
their processes are not scheduled simultaneously on the CPUs. Implicit coschedul-
ing (ICS) is a well-known technique to address this problem in multi-programmed
clusters, however, traditional ICS schemes do not incorporate steps to adequately
deal with priority boost conflicts, leading to significantly degraded performance.
In this paper, we propose the use of runtime difference in contention across nodes
to provide more sophisticated coscheduling decisions in response to the conflicts.
We also present a novel coscheduling scheme termed PROC (Process ReOrdering-
based Coscheduling) that adaptively regulates the scheduling sequence of conflicting
processes based on the rescheduling latency of their correspondents in remote nodes.
We perform extensive simulation-based experiments using both synthetic and realis-
tic workloads to analyze the performance of PROC compared to alternatives such as
local scheduling, a widely used batch scheduling, gang scheduling, and existing ICS
schemes. The results show that all ICS schemes commonly experience priority boost
conflicts, and that the proposed PROC significantly outperforms other ICS alterna-
tives (or batch scheduling) by up to 50.4% (or 72.5%) in the average job response

J.-L. Yu (X)) - J.-S. Kim - S.-R. Maeng

Division of Computer Science, Department of Electrical Engineering and Computer Science,
Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, South Korea
e-mail: jlyu@calab.kaist.ac.kr

J.-S. Kim
e-mail: jinsoo@cs kaist.ac.kr

S.-R. Maeng
e-mail: maeng @calab.kaist.ac.kr

@ Springer

2 J.-L. Yu et al.

time. This improvement is achieved by reducing wasted idle time and spinning time
without sacrificing fairness.

Keywords Clusters - Coscheduling - Priority boost conflict - Runtime contention -
Rescheduling latency - Process reordering - Performance comparison

1 Introduction

Cluster systems [2] have recently gained increased acceptance as general-purpose
multi-programmed computing servers for a variety of scientific and business applica-
tions [5, 31]. This trend makes the design of an efficient scheduler even more crucial
and challenging. The ultimate goal of such schedulers is to effectively utilize under-
lying system resources. Time-sharing approaches are particularly attractive because
they enable overlapped executions of processes with diverse demanding character-
istics for shared resources [3, 23]. The simplest approach to time-sharing a cluster
is to leave each node to schedule its own processes independently. Unfortunately,
this form of scheduling can be very inefficient when running parallel jobs that need
process synchronization, mainly due to the lack of coordination among local sched-
ulers [3, 7, 19].

Over the years, two main strategies for coordinating individual local schedulers
have been proposed: gang scheduling (GS) [21, 23] and implicit coscheduling (ICS)
[1,3,5,7,19,20,27,31]. GS uses explicit global synchronization to schedule all the
processes of a job simultaneously. While GS is efficient for fine-grained parallel jobs,
it can suffer from resource fragmentation when jobs are not well-balanced and/or do
not make use of all nodes [8, 29]. It also does not scale well with the system size
due to the global synchronization overhead [5, 31]. Recently, a full appreciation of
these practical limitations of GS has led to a myriad of ICS schemes such as DCS
[27], SB [7], PB [20, 31], and HYBRID [5]. These schemes use implicit communica-
tion events of parallel processes to approximately guide the local schedulers toward
coscheduled execution. For example, on a message arrival, the implication is that the
sender process is currently scheduled in a remote node. Thus, it will be of benefit to
schedule or to keep scheduled the receiver process to reduce synchronization delay.
Compared to GS, ICS schemes have better scalability and reliability, and have been
shown to be efficient in clusters [5, 19].

The major problem with existing ICS schemes is that they overlook the impor-
tance of priority boost conflicts, failing to properly handle such conflicts.! A boost
conflict is defined as a situation that involves two or more processes in a scheduling
queue that have pending messages (waiting to be coscheduled with its correspondents
in remote nodes) and a local scheduler has to schedule one of them at the next context
switch. This generally occurs when multiple incoming messages are destined to dis-
tinct processes during a short period of time. To select a candidate among conflicting
processes, existing ICS schemes mainly rely on local information such as message
arrival, local process state; however, such an inattentive decision can increase the

IThe terms, priority boost conflict and boost conflict, are used interchangeably in this paper.

@ Springer

Process ReOrdering-based Coscheduling (PROC) 3

likelihood of uncoordinated executions of parallel processes and lead to a significant
degradation of system utilization.

We emphasize that understanding the contention of remote nodes is critical to
achieve more beneficial decisions for the boost conflict. In an ICS context, a node
contention represents the number of different stringent processes, e.g., processes with
pending messages, which are disturbing the re-execution of the process that is cur-
rently running on the node. For example, let us assume that a process Q in a remote
node sent a message to its correspondent P in a local node, and Q is spinning or
blocks for a message from P. The process Q in the remote node has a greater like-
lihood of being rescheduled on new message arrivals (and thus, to be synchronized
with P) if the remote node has little effectively stringent work. Therefore, as long as
the remote node has low contention, scheduling process P first among all conflict-
ing processes is strongly recommended. Otherwise, process P might miss a golden
chance to be synchronized with its correspondent Q in the low-contended node. In
addition, the node will suffer from wasted spinning and idle time. If each local sched-
uler has the capacity to discriminate the difference in contention among remote nodes,
a new scheduling order of conflicting processes can be established so as to reduce
wasted time in the system.

In this paper, we propose a flexible ICS scheme termed Process ReOrdering-based
Coscheduling (PROC) that aims to efficiently resolve priority boost conflicts. Unlike
existing ICS schemes, PROC adaptively rearranges the scheduling sequence of con-
flicting processes by exploiting the runtime difference in contention across remote
nodes. To achieve this, each node measures its rescheduling latency—the expected
time when the current process is scheduled again on the node—as an index of con-
tention at runtime, and piggybacks the information with normal outgoing messages.
Based on the rescheduling latency information notified from remote nodes, PROC
grants more control over conflicting processes to the native scheduler so that it can
schedule the process to be first whose correspondents will be scheduled sooner in
remote nodes. This approach can minimize wasted CPU time in the system as well as
increase the opportunity of achieving synchronization among parallel processes, thus
improving overall system utilization.

The remainder of this paper is organized as follows. In Sect. 2, we briefly re-
view existing ICS schemes. Section 3 provides a detailed description of the proposed
PROC scheme, while Sect. 4 explains the simulation methodology used to evaluate
PROC. In Sect. 5, we analyze performance results that involve synthetic and realistic
workloads. Finally, we conclude with a summary in Sect. 6.

2 Background and related work

In this section, we summarize native local scheduling, gang scheduling [21, 23], and
all prior implicit coscheduling (ICS) [3, 19] techniques.

Local scheduling (LOCAL) is a baseline technique without the capacity to cosched-
ule communicating processes. A receiving process spins until any message arrives,
and is coscheduled with a sender process only if a message arrives while it is spin-
ning. While appealing in its simplicity, it yields unacceptable performance due to the
lack of coordination among local schedulers.

@ Springer

4 J.-L. Yu et al.

Table 1 Implicit coscheduling (ICS) schemes

Type Scheme Msg. waiting action Msg. handling action
Sender Receiver (Boost Policy)

Spinning- LOCAL Spin Spin Nothing

based DCS Spin Spin Interrupt & Boost
PB Spin Spin Periodic Boost

Blocking- 1B Spin Imme. Block Interrupt & Boost

based SB Spin Spin-Block Interrupt & Boost
HYBRID Imme. Block Imme. Block Boost & Restore

(only collective comm.)

On the other hand, gang scheduling (GS) ensures that the processes of a job,
called a gang, are scheduled and de-scheduled at the same time on different CPUs
for a given time quantum. To achieve this, GS uses global knowledge constructed
a priori, i.e., Ousterhout matrix [14, 21] and performs explicit global context switch.
GS is an efficient coscheduling algorithm for fine-grained parallel jobs. However, it
usually requires long time quanta to offset the high global synchronization overhead,
making the system less responsive for interactive and I/O-intensive jobs. Moreover,
GS can suffer from both external and internal fragmentation when jobs do not make
use of the entire nodes (i.e., all slots within the same row of the matrix) and are not
well-balanced in terms of communications, respectively [29, 31]. This situation leads
to low CPU utilization.

As intermediate approaches between LOCAL and GS, ICS schemes can be classi-
fied by two components [5, 19]: message waiting action taken by processes waiting
for a message and message handling action performed by the kernel when a message
arrives (Table 1).

Dynamic CoScheduling (DCS) [27] uses an incoming message as a hint that
the sender is currently scheduled on the remote node. In DCS, a receiving process
performs spinning. Upon the arrival of a message, network interface card (NIC)
checks whether the destination process of the message is the same as the process
currently running on its host CPU. If there is a mismatch, an interrupt is raised.
The interrupt service routine (ISR) boosts the priority of the destination process
to coschedule it with the sending process. Periodic Boost (PB) [20] is an al-
ternative scheme used to avoid expensive interrupt costs. In PB, the receiver is
busy-waiting, as with DCS; however, rather than raising an interrupt for each
incoming message, a kernel thread periodically checks message queues of each
process in a round-robin way and boosts the priority of one of the processes
with pending messages. There are several heuristics [31] used to decide which
process to boost at each thread invocation. These heuristics only consider the lo-
cal states of processes with pending messages in selecting a candidate for a priority
boost.

Unlike the former spinning-based schemes, the following three schemes are
blocking-based schemes that use blocks as a message waiting action. In Immedi-
ate Block (IB) [3], a receiver process blocks immediately if the expected message has
not yet arrived, and is woken by the kernel when the message arrives. Spin Block

@ Springer

Process ReOrdering-based Coscheduling (PROC) 5

(SB) [7] is a compromise between spinning and blocking at the receiver side. A re-
ceiving process spins on a message arrival for a fixed amount of time, referred to
as spin time, before blocking itself. The underlying concept of SB is that a process
waiting for a message should receive it within the spin time if the sender process is
also currently scheduled. Thus, if the message arrives within the spin time, the re-
ceiver process should hold onto the CPU to be coscheduled with the sender process.
Otherwise, it should block and stop wasting the CPU resource. On the arrival of
a subsequent message, NIC raises an interrupt that is serviced by the kernel to wake
up the process and give a priority boost to the awakened process. As a variant of
SB, HYBRID, recently proposed in [5], uses immediate-blocking for both senders
and receivers to optimize spinning time. In addition, HYBRID explicitly boosts the
priority of a process locally when it enters a collective communication phase (e.g.,
barrier, all-to-all), hoping that all other processes are also coscheduled, and restores
its priority at the end of the phase.

From the above description, it is apparent that existing ICS schemes do not
devote any attention to determining a suitable scheduling sequence of conflicting
processes for a priority boost conflict. In DCS, SB, and IB, priority boosts are sta-
tically given based on the order of message arrival, while in PB they are given in
a simple round-robin manner. HYBRID gives precedence to processes joining in col-
lective communication for the priority boost. Without understanding the conditions
of other remote nodes, such a simple scheduling decision can significantly degrade
system performance by generating wasted spinning and idle time within the system.
To overcome these limitations of existing ICS schemes, in the next section we in-
troduce a coscheduling scheme that regulates the scheduling sequence of conflicting
processes based on the rescheduling latency of their correspondents.

3 Process ReOrdering-based Coscheduling (PROC)
3.1 Motivation and basic idea

This work is motivated from the observation that undertaking a coscheduling decision
in each local scheduler can be significantly complicated by load imbalance. Load
imbalance commonly arises in multi-programmed clusters for the following reasons
[11,24]:

1. Application imbalance: uneven load (computation, I/O, and communication) dis-
tribution to equally powerful computing nodes. Each job requires a different num-
ber of nodes with different computation granularity, communication patterns, and
message size.

2. Heterogeneity in cluster hardware resources: e.g., different CPU speed, memory
hierarchy, or even different number of CPUs per node.

3. Multi-programming: the presence of local users and background jobs that interfere
with the execution of parallel jobs.

Even if all the parallel jobs are well-balanced with regular communication patterns,
they still reveal different scheduling characteristics due to the load imbalance caused
by points (2) and (3) above, thereby imposing irregular communication traffic on

@ Springer

6 J.-L. Yu et al.

Fig. 1 Example of a priority

boost conflict f 4‘ " >
N' PX' which process should be
my; scheduled first ?
HP—‘ w (priority boost conflict)
v Ea " | '
my
Ne—f Pa | :
k z time

>
Q/I\

the network. This leads to a dynamic change in the frequency of incoming and/or
outgoing messages in each node, and this in turn can introduce serious obstacles
to accurate coscheduling decisions. This problem is exacerbated in the real world,
as parallel jobs themselves typically do not exhibit regularity in node requirements,
communication patterns, etc., as indicated in point (1) above.

Priority boost conflicts normally occur on these multi-programmed clusters. Fig-
ure 1 depicts the occurrence of a boost conflict. Let P;; denote the process of a par-
allel job i running on node N;, while P;, represents all the processes that belong
to the same job i. m;; is a message destined to P;;. We assume that Py; and Py
enter their communication phases in N; and Ny, respectively. We also assume that
Py; is currently scheduled on N, and that both Py; and P;; are blocked, waiting for
a message. As depicted in the figure, the receipt of the new messages my; and m;
during a short period of Ad in N results in the destined processes being awakened
and boosted. However, at the next context switch (time ?), it is not clear whether Py;
or P;; should be scheduled first. Hence, the local scheduler has to make a choice be-
tween two or more candidate processes (Py; and P; in this figure) for coscheduling
with their correspondents—a boost conflict happens. The boost conflict’s probabil-
ity of occurring increases as the degree of multi-programming and/or the number of
communication-intensive jobs increase.

Scheduling conflicting processes should be carefully determined to optimize sys-
tem utilization. Nevertheless, as mentioned in Sect. 2, existing ICS schemes tend to
make a simple decision when faced with a boost conflict. To illustrate this point,
Fig. 2a shows an example of a scheduling sequence of conflicting processes in exist-
ing ICS schemes. Note that because of multiple incoming messages (m 1y, m3j, and
moy) to node Ni, Ny has conflicting processes { Py, Py} attime ¢ and { P, Py} att’.
Let us assume that N; is one of the nodes with many competing jobs (e.g., processes
with pending messages) at time ¢, while N, and N; have fewer jobs than N;. In
existing ICS schemes, the local scheduler of Ny can easily generate the scheduling
sequence of Py — Py — Psj for boost conflicts; however, this scheduling sequence
encounters two major problems:

1. N; already has numerous stringent processes with pending messages that are com-
peting for its CPU. Thus, although a new message arrives from Pj; earlier and
a priority boost is given to its destined process (P ;), it takes a long time for P
to be rescheduled in node N;. As a result, the probability of synchronization be-
tween Py and Py ; becomes low. In addition, the priority boost given to Py j causes
additional excessive contention on the CPU, and thereby potentially prevents other
boosted processes in N from being coordinated with their correspondents.

@ Springer

Process ReOrdering-based Coscheduling (PROC) 7

other boosted processes

v e

4
" A my;
myy J 1j

4 my /4

M3 /
N P2 B *—’
e

(a) existing ICS schemes

rescheduling latency

m3m< ”””””””””””
Nm 4{ P3m }7ﬁ P3m ‘
|
‘t 1“ time
(b) PROC

Fig. 2 An example scheduling sequence for conflicting processes

2. On the contrary, in the worst case scenario the node N,, has no available work that
can be run on its CPU (e.g., all processes are blocked or spinning while waiting for
a new message arrival). In this situation, if Ny does not schedule P3; immediately
at time ¢, N, continues with its idling (or unnecessary spinning) state. This leads
to low resource utilization.

The basic idea of PROC is to dynamically regulate the scheduling sequence of con-
flicting processes by estimating the time when their correspondents are rescheduled
in remote nodes. We call this rescheduling latency. Figure 2b provides a conceptual
depiction of PROC. Note that, as in Fig. 2a, N has conflicting processes at time ¢
and #’. As shown in Fig. 2b, if the local scheduler of Ny has information concerning
the status of its peer nodes, it can schedule P3; and Py at ¢ and ¢/, respectively, with
the intention of not wasting CPU resource in N, and N;. Similarly, with this informa-
tion, the local scheduler can delay the execution of Py to provide more time for N;
to schedule other boosted processes without intervention. In this way, by scheduling
in advance one of the conflicting processes whose correspondents will be scheduled
sooner in remote nodes, PROC can not only reduce unnecessarily wasted CPU time
within the system but also increase the chance of synchronization among processes.
This results in an overall improvement of system performance.

@ Springer

8 J.-L. Yu et al.

To put this idea into practice, two key questions must be answered: (1) how do
we measure and propagate the rescheduling latency information of each node with
low overhead and (2) how do we exploit and manage the information to arrive at
more accurate coscheduling decisions regarding the boost conflict. In the next two
subsections, we investigate these questions in detail.

3.2 Estimating rescheduling latency

PROC estimates rescheduling latency at runtime to attain better decisions when re-
solving conflicting processes. The question is then how to formally define and mea-
sure the rescheduling latency. The effectiveness of the PROC approach is strongly de-
pendent on the accuracy of the measured rescheduling latency information. In prac-
tice, however, it is too difficult to precisely measure the rescheduling latency and
their discrepancy across nodes without incurring significant overhead. To minimize
the overhead in a non-intrusive manner, the following heuristics are used.

We formally define the rescheduling latency of a node as the expected remaining
time until the current process is scheduled again on the node. The basic mechanism
used within ICS is to boost the priority of processes with pending messages, which
is critical to the contention introduced on the shared CPU resource. Hence, in an
ICS context, the rescheduling latency of a node N; at time T, resched_lat (N, T)
is mainly affected by the number of processes with unconsumed messages. Further-
more, the rescheduling latency also increases as the ratio of new processes whose
state changes to “ready” increases by new message arrivals and/or I/O completion.
As the rescheduling latency is on the time-domain, each node measures the following
two values:

e Execution Duration (ED) : the estimated average CPU time spent by each process
between consecutive context switches

e Expected Number of Processes (ENP) : the expected number of processes to be
run on the node before the current process can be rescheduled

Figure 3 shows the measurement of the rescheduling latency information in PROC.
Suppose that a node N; has a current process (CP;) that uses its CPU at time T'. At
each context switch, e.g., time ¢ in the figure, N; can calculate the average CPU time
spent per process based on the last and past execution durations, as the following
equation; ED (k) = w-EDy; + (1 —w)-ED;(k — 1), where k is the number of context

CP : Current Process
ED : the avg. CPU time spent by per-process

ENP : the Expected # of Processes until to reschedule CP ENP;

J

CNP: the Current # of Processes with pending messages o
ANP : the Additional # of Processes = *
CNP; ANP; (= \;* CNP;)

ED(k- 1)]

t rescheduling latency

Fig. 3 Estimation of the rescheduling latency information in each node

@ Springer

Process ReOrdering-based Coscheduling (PROC) 9

switches before time ¢, EDy; is the last execution duration known at time #, w (0 <
w < 1) is a weight factor, and ED ;(0) = 0. We have empirically found that w = 0.2
is enough good to detect well both the execution durations of different processes and
their rapid changes. ED; denotes the most up-to-dated ED; (k) value in N;.

In Fig. 3, ENP represents the expected number of processes that have potential for
being executed on the CPU when the current process is scheduled-out, and ENP;
is the most recently measured ENP value. ENP; is calculated by summing both
CNP; (Current Number of Processes) and ANP; (Additional Number of Processes).
CNP; is the number of processes with pending messages in N; at time ¢; it corre-
sponds to stringent processes to be executed immediately on the node for the cosched-
uled executions with their correspondents. ANP; corresponds to invisible processes
at time ¢ that can be additionally generated while executing processes during the time
interval ED; x CNP;.In PROC, ANP; is approximated by multiplying CNP; by the
rate A; at which new processes are placed in the highest-level ready queue (in the
case of the Solaris scheduler [28]) by I/O completion and new message arrival during
the time period ED ;. Consequently, the rescheduling latency of the node N at time
T is obtained from the following equation:

resched_lat(N;, T) = (ED; - ENP;) + (([ENP;1+1)- switching_cost).

In general, two values (ED; and ENP;) are updated at each context switch and
are piggybacked in every outgoing message as the rescheduling latency information
of the node. We assume that the cost of calculating ED; and A ; is negligible, as just
a few arithmetic and bit operations are required for those operations. The calcula-
tion of ENP; can induce a slight overhead because it is necessary to check whether
a process has pending messages. This cost is modeled in the simulator.

3.3 Process reordering

The basic rationale of PROC is that whenever a boost conflict is detected, the process
whose corresponding processes will be scheduled sooner in remote nodes should be
scheduled first. To accomplish this, we need to first upload and manage the piggy-
backed rescheduling latency information, and secondly find a candidate process for
the next context switch based on the available information.

As shown in Fig. 4, whenever a message arrives, the rescheduling latency informa-
tion (ED and ENP) extracted from the message and a time-stamp (zs) are uploaded

Node N; Node N
Kernel | Global Table (GT) Process Table (PT)
; ‘ m- ENP . for P
h context switch @ ENP
update at each context switcl '
@ EONEN V' [J L EDJENP]ts]y,
) mmaped area | /A i [ENRts
to NIC \ '

\ @ a

‘ _ Inh _~Z——" _3, lim

my, = [data, ED; , ENP;] at time ts from N;

NI

Fig. 4 Rescheduling latency information management

@ Springer

10 J.-L. Yu et al.

onto specific entries of two types of tables that can be accessed by the scheduling
layer: the Global Table (GT) and the Process Table (PT). For each remote node, GT
keeps the rescheduling latency information piggybacked with the last message sent
by the node. For each local process, PT keeps the rescheduling latency information of
its correspondents in remote nodes. In the case of a boost conflict, a candidate process
can be selected based on the minimum rescheduling latency in PTs. The reschedul-
ing latencies in PTs, however, are exposed to some staleness over time. Thus, we use
more up-to-dated information in GT to approximately adjust entries in the PTs.

Algorithm 1 PROC algorithm

1. Input: 7 (current time), Output: next_pid (process ID to run next)
2. function PROCESS_REORDERING

3. next_pid := NONE; mERL := infinite;

4. for each p € set of processes with pending message(s) do

5

i:=p.id;
/* for each message */
6. while msg # NULL do
7. S 1= msg.source;
/* maintain the obtained rescheduling latency information */

8. if (PT[i][s].T < GT[s].T)

9. PTIi][s].ENP := PTI[i][s].ENP - ((GT[s].T - PT[i][s].T) / GT[s].ED);
10. if (PT[i][s].ENP > GT[s].ENP)
11. PT[i][s].ENP := GT[s].ENP;
12. end if
13. PT[i][s].T := GT[s].T;
14. end if

/* find a local process with a minimum ERL value */

15. ERL := (GT[s].ED * PT[i][s].ENP) - (¢ - PT[i][s].T);
16. if (ERL < mERL)
17. mERL := ERL; next_pid :=1i;
18. end if
19. msg 1= msg.next;
20. end while
21. end for

22. return next_pid;

As each process with pending messages contains a list of the rescheduling la-
tency information of its correspondents, our process reordering function can establish
a new improved scheduling order among conflicting processes. Algorithm 1 shows
the pseudo code of the reordering function.

For any given message (msg), the Expected Rescheduling Latency (ERL) value
represents the expected remaining time until its corresponding process in a remote
node (s) is rescheduled. From lines 6 to 20, we see that one of the conflicting
processes whose correspondent has a minimum ERL is chosen. From lines 8 to 14,
for each msg, the function updates the related rescheduling latency information in
PT. As processes receiving messages from the same remote node (s) share the most
recent state of the node, PT entries are updated using the new and existing informa-
tion in GT and PT. The aim of these lines is to adjust the decline speed of the ERL

@ Springer

Process ReOrdering-based Coscheduling (PROC) 11

according to the change of the ED and ENP values of the same remote node. From
lines 15 to 19, the ERL of a given message is computed by extracting the elapsed time
from the total expected rescheduling latency; the candidate process (next_pid) with
the minimum Expected Rescheduling Latency (mERL) is thereby obtained. Conse-
quently, this reordering function enforces the native scheduler to adaptively select
the most urgent process that communicates with the correspondents with the shortest
rescheduling latency.

Note that PROC is a complementary approach to existing ICS algorithms in that
it only reorders the scheduling sequence of processes upon boost conflict. There-
fore, PROC can be easily integrated with existing schemes. We present two schemes
as examples to verify the effectiveness of the proposed approach: PROC-S (PROC-
Spinning) and PROC-B (PROC-Blocking). In PROC-S, processes are busy-waiting
both at senders and at receivers, and a periodically invoked kernel thread (similar
to PB) performs process reordering based on the minimal rescheduling latency. In
contrast, PROC-B uses immediate-blocking at both sides if communications are not
completed. In PROC-B, our reordering function is applied at each context switch.

4 Experimental environments

Here we evaluate the performance of the proposed PROC schemes and compare it
with those of a broad spectrum of scheduling alternatives, including a widely used
batch scheduling (BATCH), GS (based on the implementation of GangL.L [14] sched-
uler), LOCAL, and four representative ICS schemes (DCS, PB, SB, and HYBRID).
Before we present the detailed discussion of the results, we describe the simulation
platform, workloads, and the performance metrics used in this study.

4.1 Simulator

We implemented the proposed PROC schemes onto an extensible/unified simulation
framework termed ClusterSchedSim [30] built on CSIM19 [26] toolkit. Figure Sa
depicts the overall system model, which consists of an allocator and a set of nodes
connected by a fast network. An arriving job is allocated the required number of
nodes if available. Otherwise, the job is blocked in a waiting queue until there are
enough free nodes. The network module connects nodes. As this work mainly focuses
on scheduling, we use a simple linear model for the network that is parameterized by
the message size.

Each node comprises a network interface (NI), OS scheduler, and the user process.
On a message arrival from the network, NI delivers it to a user buffer and raises an
interrupt if required. Similarly, NI waits for outgoing messages and enqueues them
into the network. This is a typical form of operation in user-level communications
[6, 15]. Costs for these operations have been obtained from a microbenchmark on
a cluster of Pentium-4 1.8 GHz nodes connected by Myrinet [4]. The Scheduler mod-
ule emulates the Solaris scheduler [28] and manipulates a priority-based multi-level
feedback queue (60 queues) on which ready-to-run processes are placed. Each node
can handle a Multi-Programming Level (MPL) of user processes, whose executions
are expressed by a simple language that allows the specification of computations, I/O,

@ Springer

12 J.-L. Yu et al.

Parameters Value(s)
System size (# of nodes) 32,64
Aﬂr?\?al Ni Multi-Programming Level 2,3,5
Communication patterns NN, AA
i Message size 16 KB
One-way message latency 229.9 ps
Waiting Task skewness (v) 0%, 10%, 60%
Queue . Context switching ~ ICS 100 ps
J2 GS 1 ms
Gang scheduling quantum 0.1s
¢ Interrupt processing cost 50 ps
Check a process whether it 2 us
Allocator * has ding m
pending messages
Upload/download of 2 us/1 us
rescheduling latency info.
‘ Network ‘ Update&compare a PT entry 0.5 us

Move the position of a process 3 us

(a) simulation model of cluster system (b) simulation parameters and values

Fig. 5 Description of the simulation environment

and communications. We assume that the total memory requirement of user processes
in each node does not exceed the physical memory size of the node.

For supporting ICS schemes, each node has three additional modules: interrupt
service, periodic boost, and reordering. The interrupt service module is used in DCS,
SB, HYBRID, and PROC-B. It is invoked immediately after NI raises an interrupt. Af-
ter a certain amount of interrupt processing time, the scheduling queues are manipu-
lated to wake up (or to boost the priority of) the corresponding process. The periodic
boost module is used in PB and becomes active every one millisecond, as described
in [31], to boost the priority of the process with pending messages in a round-robin
manner. The reordering module implements our reordering function. It is activated
every millisecond in PROC-S, or at each context switch in PROC-B.

For SB, we set the spin time for a message to be the expected one-way latency.
For HYBRID, we differentiate between the computation and the collective communi-
cation (e.g., all-to-all, barrier) phases in a parallel process by setting/unsetting a flag.
When any process with the flag set is available, we give precedence to the process at
each context switch. In both PROC-S and PROC-B, costs for calculating ENP, down-
loading/uploading the rescheduling latency information to the NI/scheduling layer,
updating and comparing the ERL value in each PT entry, and changing the position
of a process in the scheduling queue are all modeled in the simulator. The key simu-
lation parameters used in the experiments are summarized in Fig. 5b.

4.2 Workloads and metrics

We consider two types of workloads: synthetic and realistic. Synthetic workloads are
generated from SDSC IBM SP2 traces [22], which are widely used in many schedul-
ing studies [9, 25]. During workload generation, job arrival time, execution time, and
size information are characterized to fit the accurate workload model in [12]. A job
can have different proportions in three components: computation, communication,

@ Springer

Process ReOrdering-based Coscheduling (PROC) 13

processes

Job type

Comp. Comm. 1/0

J1 85 (%) 15 -

2 50 50 -

I3 35 65 - L
J4 30 30 40 |

Workloads (with NN and AA)

wil asetofJ1
wi2 a set of J2
wi3 aset of J3
wi4 equal mix of J1, J2,J3
wlS equal mix of J1, J3, J4

Sal T

Il computation [] /O (optional)
[communication

(b) parallel job execution (a) synthetic workload characteristics

Fig. 6 Workload characteristics and parallel job execution

and I/O. For the evaluations, we identify four different job types with different pro-
portions of these components, while five different workloads, termed wil ~ wi5, are
used, as shown in Fig. 6a.

Each job requires a set of nodes ranging from 2 to 32, where each process iterates
a loop with local computation, I/O, and inter-process communication (see Fig. 6b).
We consider two communication patterns: Nearest Neighbor (NN) and All-to-All
(AA), as commonly used in many parallel applications. We assume that both pat-
terns use a fixed message size of 16 KB. By fixing the end-to-end one-way latency
of a message, the communication time per loop can be calculated under the assump-
tion that processes are perfectly balanced. Using this time and the proportions of
the other two components, we calculate the computation and I/O times per loop. In
addition, we model the task skew by multiplying the computation and I/O times by
a value uniformly selected in (1 4 unif(—v, v)) and by varying the skewness fac-
tor (v).

Our workloads are then completed by five realistic parallel applications, BT, MG,
FT, IS, and CG, which have been directly derived from the NAS Parallel Bench-
marks (NPB) suite [18]. The choice of above applications is based on their differ-
ent computation granularity, communication intensity, and pattern. In particular, the
applications have been obtained by translating their source codes in NPB into the
language accepted by the simulator, without changing their execution flow, com-
munication topology, and message sizes. We used 64 nodes configuration and de-
fault input files from rather big problem size, CLASS = B. The duration of se-
quential parts of each application is determined from a run of the corresponding
NPB application on our cluster. The characteristics of the five applications are listed
in Table 2.

We use several metrics to compare the performances of different schemes:

@ Springer

14 J.-L. Yu et al.

Table 2 Realistic workload characteristics (64 nodes, CLASS = B)

Comm. intensity # of msgs. Msg. size distribution: bytes(%)
(pattern) /process

BT Low (NN) 19200 6760(43.8%), 40560(43.8%),

90480~91520(12.4%)

MG Medium 5702 8~800(31.6%), 2048~9248(11.7%),
(NN,AA) 32768~69696(56.7%)

FT Medium (AA) 10080 24(50%), 49152(50%)

IS High (AA) 7560 4(33.3%), 4116(33.3%), 32768(33.3%)

CG High (NN) 37950 8(59.3%), 16(1.2%), 75000(39.5%)

e Average Job Response Time: the time difference between when a job completes
and when it arrives in the system averaged over all jobs.

o Wait Time: the average time spent by a job waiting in the arrival queue before it is
scheduled.

e Execution Time: the difference between Response and Wait times.

e Turnaround Time: the total running time of the entire workload. It describes the
reciprocal of the system throughput.

e Utilization: the percentage of time that the system actually spends in useful work.

e Slowdown: the ratio of the execution time to the time taken on a system dedicated
solely to this job.

e Fairness: the fairness to different job types (CPU, communication, or I/O inten-
sive) is evaluated by comparing the slowdown of the individual job types and its
coefficient of variation in a mixed workload. A smaller variation indicates a fairer
scheme.

e Boost Conflict Ratio (BCR): the number of times that more than two processes
have pending messages at the moment of context switch from the total number of
context switches (averages over all nodes).

e False Decision Ratio (FDR): the number of false decisions from the total number of
boost conflicts (averaged over all nodes). In this paper, a false decision represents
a situation where a newly scheduled process does not communicate with someone
in the lowest contended node.”

To better understand the results, we provide a Performance Profile, which
shows the percentage of time spent by a CPU on different components; compu-
tation, spinning, idling, context switches, and other overheads such as blocking,
interrupt-processing, reordering costs, etc. “Idling” is further classified into the
idle and the real-idle, which represents the idle time caused by inter-process com-
munication dependency and that caused by the absence of jobs executed, respec-
tively.

2The problem of maintaining current information regarding which node has the lowest contention is re-
solved by using Oracle, which has the latest rescheduling latency information of each node.

@ Springer

Process ReOrdering-based Coscheduling (PROC) 15

S Performance results
5.1 Performance comparisons of all scheduling schemes

Figure 7 and Fig. 8 compare the average job response times of nine different schedul-
ing schemes for the mixed workload (wl4) under light and heavy load,’ respectively.
For this experiment, we limited Multi-Programming Level (MPL) to 5 and fixed the
task skewness factor (v) to 10%.

As expected, the heavy-loaded system provides much longer average job response
time than the light-loaded system for all schemes. This is mainly due to the large
waiting times that jobs experience in the arrival queue (see Fig. 7a and Fig. 8a).
From Fig. 7b and Fig. 8b, it is apparent that the increment of system load does not
affect the percentage of time spent in computation in LOCAL, DCS, and BATCH. This
means that these schemes saturate in terms of utilization, even under moderately light
load. GS and BATCH suffer from external resource fragmentation as inferred from the
portion of real-idle component. This is because BATCH employs space sharing only
and GS requires free slots on the required number of CPUs within the same row of
the Ousterhout matrix. As a result, such restrictions enforce higher job waiting times
in GS and BATCH. Note that the fragmentation can be mitigated by other allocation
techniques, for example, backfilling [16].

We also observe that the blocking-based schemes (SB, HYBRID, and PROC-B)
outperform the spinning-based schemes (LOCAL, DCS, PB, and PROC-S) in all cases.
In general, in spinning-based schemes, a communicating process spends most of its
time spinning for a message, thus preventing other ready processes from making
progress. In blocking-based schemes, this wasted time is eliminated at a small cost of
blocking and wake-up, providing more chances for other processes.

The most striking observation from Fig. 7 and Fig. 8 is that PROC-S and PROC-B
achieve significant performance improvements over other spinning and blocking-
based alternatives, respectively. PROC schemes achieve more pronounced results as

g

| Boost Conflict

[Execution Time [
I False Decision

[Wait Time

-
=
n

wn
s§ &8 88

Performance profile (%)
¥ 88883388

Avg. job response time (x 10" sec)
w

-
=]

Boost conflict and false decision ratlo (%)

o &
(a) avg. job response time (b) performance profile (c) BCR and FDR

Fig. 7 Average job response times under light load (w/4, MPL =5, v = 10%)

3Fora light load, the average job inter-arrival time is about 2.48 x 103 sec, and for a heavy load, it is about
1.55 x 103 sec.

@ Springer

16 J.-L. Yu et al.
0 Exccuti 100 80] Boost Conflict
9 Hwan ﬂ:.: ™ 90 £ 10. M False Decision
= = —
i 2 £ o
=7 £10 H
2 2 2 50
g’ 5% E
PAEE [T S—— =50 2 40
H &
E. 4 Em "!; 304
£ E 320 3
2 2 20 E 1
g 1 10 310-
o 0-
g 83 3 ® 2 B 3 =
8 8 8 8 %
" o] -] E]
(a) avg. job response time (b) performance profile (¢) BCR and FDR

Fig. 8 Average job response times under heavy load (wl4, MPL =5, v = 10%)

the system load increases. In addition, PROC-B performs the best among all consid-
ered schemes. For example, PROC-B reduces the average job response time by up
to 42.3% (or 33.2%) compared to SB (or HYBRID), and PROC-S by up to 27.7%
compared to PB under heavy load. Although PROC-S alters the scheduling order
of conflicting processes, the time spent spinning considerably limits PROC-S from
attaining results that are competitive with those of PROC-B.

To understand why reordering-based schemes outperform other alternatives, we
measured BCR and FDR of spinning-based schemes (PB and PROC-S) and blocking-
based schemes (SB, HYBRID, and PROC-B), as shown in Fig. 7c and Fig. 8c. Even
though all schemes show common results concerning BCR, PROC schemes get
markedly low FDR values compared to existing ICS schemes. We note that the
BCR values in spinning-based schemes are much higher than those in blocking-based
ones. This is because a process’s spinning in spinning-based schemes results in other
processes slowly consuming already pending (or newly arriving) messages. We also
find that the FDR values in HYBRID are slightly lower than those in SB due to the
former’s use of immediate-blocking and explicit priority boosting at collective com-
munication phases. In contrast to other ICS schemes, PROC schemes rearrange the
scheduling sequence of conflicting processes according to the rescheduling latency
of their correspondents in remote nodes; therefore, the likelihood of false decisions
is substantially reduced. PROC-B (or PROC-S) achieves a 52.5% lower FDR com-
pared to SB (or 51.8% compared to PB). As a result, the beneficial decisions for the
boost conflict pave the way for a significant decrement in unnecessary idle and spin-
ning time (up to 44.6% under heavy load), and improve the overall system through-
put.

PROC schemes incur some additional overhead. This mainly arises from the sys-
tem times needed to update the rescheduling latency information in PTs for more
accurate coscheduling decisions; however, these addition costs do not outweigh the
achieved performance benefit. In the rest of this section, we set the inter-arrival time
of jobs to be 1554.42 seconds with a mean execution time 3228.05 seconds unless
otherwise mentioned.

@ Springer

Process ReOrdering-based Coscheduling (PROC) 17

5.2 Effect of communication intensity

Here, we investigate variations in the performance of different schemes under differ-
ent communication intensities of workloads. As indicated in Fig. 6a, wil, wi2, and
wi3 represent CPU-intensive, evenly-balanced, and communicat-ion-intensive work-
load, respectively. Figure 9 depicts the average job response times and corresponding
performance profiles for these workloads. Table 3 shows BCR and FDR of five ICS
schemes for each workload. For this experiment, we again fixed MPL to 5 and v
to 10%.

Table 3 BCR and FDR for five ICS schemes for wil, wi2, and wi3 (%)

wil wi2 wi3

BCR FDR BCR FDR BCR FDR
PB 34.65 72.07 70.41 71.32 75.82 72.78
PROC-S 34.43 35.18 71.65 35.05 78.91 36.21
SB 29.26 57.55 49.14 62.94 52.79 62.70
PROC-B 26.71 19.11 49.42 31.89 50.03 33.50
HYBRID 29.19 56.63 46.63 55.42 48.58 52.57

12 I Execution Time 9 Il Execution Time 9 I Execution Time
[Wait Time 1 Wait Time] Wait Time

©
©

o

~
~

4

Avg. job response time (x 10" sec)

o
o

@
)

w
w

N
N

Avg. job response time (x 10° sec)
»
Avg. job response time (x 10° sec)

© AN W A OO N O ©

(c) wls

7 7 87
] ° o
g 5o g
Q Q o
250 2 5 25
Q o o
S 40 5 4 S 40
13 £ £
E E E
£ 30 L3 £ 30
& & &

20 20

[CJcomp Il SPIN[_]IDLE
777 REAL IDLE I OVERHEAD
I SWITCHING

[C—JCOMP M SPIN [_]IDLE
Y7772 REAL IDLE [OVERHEAD
[T SWITCHING

[C—JCOMP Ml SPIN] IDLE
Y7772 REAL IDLE [OVERHEAD
(I SWITCHING

=)
-
=)

o
o

r O v v T I ® r O U v w T I [*d
gas3eiz s g83823%3 g
> o o A > o o 3 [} o
= o o © " o © O T &
(d) wit (e) wi2 (f) wis

Fig. 9 Impact of communication intensity (MPL =5, v = 10%)

18 J.-L. Yu et al.

In Fig. 9, LOCAL, DCS, and BATCH show poor response times compared to the
other schemes, mainly because of a longer waiting time. These inefficiencies are
amplified with increasing communication intensity. In general, GS has a higher re-
sponse time compared to the other five ICS schemes (PB, PROC-S, SB, HYBRID, and
PROC-B) in all three workloads. This is primarily due to the detrimental effect of task
skewness (even a v = 10%) and the restriction of resource allocation (i.e., allocating
CPUs to a job in GS requires those CPUs to be available during the same time quan-
tum). The skewness between the executing tasks of a job, however, gets lower with
a lower computation fraction (from wll to wi3), making the inefficiencies of GS less
important.

For the CPU-intensive workload (wll), there is no significant difference in the
resulting response times among PB, PROC-S, SB, HYBRID, and PROC-B, even if
the PROC schemes still achieve marginally better performance. Due to infrequent
communications in wll, five schemes have low BCR values compared to those for
other two workloads, wi2 and wi3, as shown in the first column in Table 3. Less
messages being exchanged among processes also imply a smaller number of context
switches due to infrequent priority boost. Therefore, when the computation portion
becomes large, the detrimental effect of false decisions is well-hidden.

On the other hand, when the communication intensity of jobs increases, there is
a markedly different outcome (see Fig. 9b, c, e, and f). The effectiveness of PROC
schemes in terms of response times is increasingly pronounced; this result empha-
sizes the urgent need for addressing false decisions on the boost conflict. For in-
stance, from Fig. 9c and Fig. 9f, we see that PROC-B substantially reduces the aver-
age job response time by 50.4% compared to SB, and by 72.5% compared to BATCH.
A higher communication intensity of jobs causes more messages to be exchanged
per unit time during executions, which increases the average number of processes
waiting for a priority boost in each node. Consequently, this increases the number of
both context switches and boost conflicts. This behavior can be easily gleaned by the
time spent in switching component in Fig. 9f and by the BCR values in the second
(or third) column in Table 3. In addition, a greater number of incoming messages
means that a greater number of processes join in a boost conflict and their higher
variation exists among nodes. Thus, the penalty of false decisions becomes higher
for a communication-intensive workload than that for a computation-intensive work-
load, as low-contended nodes are likely to remain in their idle or spinning state for
a longer time. Overall, existing ICS schemes, which determine the scheduling order
of conflicting processes blindly, suffer even more from wasted time for w3, as shown
in Fig. 9f; however, the PROC schemes still attain more accurate scheduling decisions
than existing schemes (see the FDR values in Table 3).

5.3 Effect of Multi-Programming Level (MPL)

Multi-Programming Level (MPL) is an important factor that has impacts on the sys-
tem utilization and responsiveness. Hence, it is worthwhile to study how different
scheduling schemes perform under varying MPL. In this experiment, we only con-
sider six schemes (PB, PROC-S, SB, PROC-B, HYBRID, and GS) because LOCAL
and DCS always show poorer performance than PB, and BATCH only supports space
sharing (i.e., MPL is always one).

@ Springer

Process ReOrdering-based Coscheduling (PROC) 19

I E ion Time
[__IWait Time

e tim
L

»
I

[C—JcomP EEM SPIN[_]IDLE

REAL IDLE [l OVERHEAD

(I SWITCHING

0 0
PB PROC-Ss SB PROC-BHYBRID GS

(a) avg. job response time (b) performance profile

Avg. job respons

© =2 N W
I

PB PROC-S SB PROC-B HYBRID GS

Fig. 10 Impact of MPL (wl4, MPL = 2(left-hand bars), 3(middle bars), and 5(right-hand bars); v = 10%)

Table 4 BCR and FDR for five ICS schemes for MPL =2, 3, and 5 (%)

MPL =2 MPL =3 MPL =5

BCR FDR BCR FDR BCR FDR
PB 13.13 4551 37.26 57.61 66.44 72.89
PROC-S 10.47 16.51 31.60 22.93 67.83 35.06
SB 15.39 55.26 29.64 58.25 45.90 62.71
PROC-B 14.69 16.93 29.15 23.12 42.73 29.81
HYBRID 15.43 49.49 28.17 50.85 42.95 56.19

Figure 10 shows the performance of six scheduling schemes for wl4 with MPL
values from 2 to 5, while Table 4 shows BCR and FDR of each ICS scheme for
the corresponding MPL level. First, it is apparent from Fig. 10a that an increase in
MPL leads to increasing numbers of jobs entering into competition; thus the average
job execution times of all schemes are uniformly stretched. However, because of
additional slots available in each node, a lager MPL also enables a larger number of
jobs to work in favor of lowering their waiting times within the system. Overall, in this
experiment the average job response time for each scheme decreases with increasing
MPL. The PROC schemes provide better performance than the other schemes at all
MPL levels.

Lower MPL limits the PROC schemes in terms of harnessing the gains that result
from better decisions regarding boost conflicts. The PROC schemes reduce the aver-
age job response time by the relatively small factor of up to 18.8% compared to the
other schemes when MPL is equal to two. As shown in Fig. 10b, the system is un-
derutilized for lower MPL, with more time spent in a real-idle component. Moreover,
as each node has at most two available processes, the opportunities to apply our re-
ordering function become limited, as indicated by the BCR values in the first column
in Table 4. Such small amounts of competition in each node also raises difficulties in
finding alternate processes when processes are blocked. Thus, the performance gap

between blocking-based and spinning-based schemes is less pronounced at a lower
MPL.

@ Springer

20 J.-L. Yu et al.

With a larger MPL, a larger number of jobs are simultaneously accommodated in
the system, which increases the likelihood of experiencing a boost conflict at each
context switch (see the BCR values when MPL goes up from 2 to 5 in Table 4). Thus,
a scheduling sequence of conflicting processes is frequently affected by the reorder-
ing function in each node under large MPL. In addition, for a given communication
intensity, a larger MPL increases the number of conflicting processes on average at
each boost conflict. This causes the chances for finding a successful candidate among
all conflicting processes to be limited in existing ICS schemes. Accordingly, when
MPL is increased, the PROC schemes with reordering technique provide the best
scalable improvement in the resulting response times among all schemes. This im-
provement and superior can be also inferred from the contrast in the time spent in
spinning and idle components at lower and larger MPLs (see Fig. 10b).

5.4 Effect of task skewness

Task skewness within a job can affect the amount of time that a receiving process
spins or blocks for a message. To clearly evaluate the effect of task skewness on job
execution time, we use turnaround time as a performance metric for this experiment.
Here, jobs are started simultaneously, and MPL is fixed to 5. Figure 11a, b, and ¢ show
the turnaround times, performance profiles, and the BCR and FDR values for different
scheduling schemes with two different skewness values (0% and 60%) for wi4.

A greater task skewness prolongs the turnaround time for all schemes, mainly
due to the increment of the spinning and idle time by a mismatch of send/receive
operations (see Fig. 11a and Fig. 11b). We also observe that GS and BATCH are
unable to tolerate this detrimental effect compared to the other ICS schemes because
of a lack of overlapped executions among local processes. PROC-S and PROC-B
remain robust even at high task skewness, reflecting a more efficient utilization of
CPU resources than the rest ICS schemes.

Note that even when jobs are completely balanced, uneven contention can exist
among nodes because each job has different node requirements, different commu-
nication intensities and patterns, as evident from the BCR and FDR values when
v = 0% in Fig. 11c. With a higher task skewness, incoming messages are more
dispersed on average over a period of time in each node; consequently this re-
duces the likelihood of boost conflicts. This is true for blocking-based schemes,
however, in spinning-based schemes, unnecessary spinning for a message (that
has not yet arrived) causes the BCR values to increase even further with increas-
ing task skewness (see the BCR values for PB and PROC-S when v = 60% in
Fig. 11c). For this reason, with a higher task skewness, PROC-S shows marginally
better performance improvement over PB than that at a lower degree of skewness,
while PROC-B shows slightly less improvement but provides the shortest turnaround
time.

5.5 Fairness

It is valid to question whether the PROC schemes hurt fairness to different types of
jobs in achieving performance gains. To investigate this issue, we ran workload wi5
where the jobs are classified as one of three different types: CPU (J1), communication

@ Springer

Process ReOrdering-based Coscheduling (PROC) 21

654 S S S
60 -
55 -
— 50
%]
& a5
-
2 40
x
o 35-
E30-
B 25-
E 204
IE 15
104 by @ a @ a @ e
54 [b > =
0. o o X
(a) turnaround time
100 MM MM
90 - i
80 4
£ 70
()
&= 60 - !i 'i
(]
50
o
c
S 40+
5 I:I COMP Ml SPIN [IDLE
= 30 REAL IDLE [l OVERHEAD
D ﬂ]]]]]]]]]]]] SWITCHING
20
o | o || = e B
(&} (&) [+
10 S 8 @ =
0 o x T 0
(b) performance profile
v=0% v =60%
BCR FDR BCR FDR
PB 65.98 72.76 66.30 73.43
PROC-S 66.89 35.12 68.63 36.09
SB 45.98 62.43 40.17 61.12
PROC-B 44.93 31.32 38.84 28.66
HYBRID 44.16 56.38 37.86 55.94

() BCR and FDR

Fig. 11 TImpact of task skewness (wl4, v = 0% (left-hand bars) and 60% (right-hand bars); MPL = 5)

(J3), and I/O-intensive (J4). In a similar way to that reported by [31], we calculated
the coefficient of variation in slowdown over three different types of jobs to examine
the degree of bias of each scheduling scheme based on the nature of jobs. A smaller

@ Springer

22 J.-L. Yu et al.

3.54
3.0 ! CPU-intensive jobs (J1)
: "] Communication-intensive jobs (J3)
g [WO-intensive jobs (J4) -
-g 2.5 Scheme Fairness
%20 LOCAL 1.0743
3_- DCS 0.5371
£1.51 PB 0.1369
'E PROC-S 0.1153
= 1.0 SB 0.1374
i PROC-B 0.0803
=054 HYBRID 0.1105
GS 0.0456
0.0~ (b) coefficient of variation
(a) normalized avg. job slowdown of slowdown

Fig. 12 Results from fairness experiments (wl5, MPL =5, v = 0%)

variation indicates a fairer scheme. Figure 12 shows the average job slowdown (nor-
malized with respect to the job type with the least slowdown) and the degree of fair-
ness for each scheme. First of all, we can see that GS is the most fair with the lowest
coefficient of variation (all three types of jobs experiencing almost equal slowdowns)
as expected. LOCAL runs counter to fairness in that communication-intensive jobs
have the largest slowdown compared to the other schemes. Of the other schemes,
PROC-B, HYBRID, and PROC-S provide better fairness, with a low variation of slow-
downs. PB and SB fall in the next category followed by DCS.

5.6 Realistic workload performance

The workloads evaluated thus far have been relatively simple and synthetic. For more
realistic workloads, therefore, we consider five parallel applications: BT, MG, FT, IS,
and CG. As outlined in Table 2, the chosen applications have different characteristics
in terms of computation granularity, communication pattern and topology, and mes-
sage size distribution. First, we examine the performance of all scheduling schemes
for each realistic application. In this experiment, each workload consists of hundreds
of identical jobs, where all jobs require 64 nodes and are started simultaneously. We
fixed MPL to 5, and v to 10%.

Figure 13a and Fig. 13b show the normalized turnaround times with respect to
BATCH and performance profiles of all considered schemes for the realistic work-
loads, respectively. From the figures, we clearly confirm that with the use of reorder-
ing technique, PROC-B and PROC-S always outperform other blocking-based and
spinning-based alternatives, respectively, for all cases of realistic workloads. Of these,
PROC-B performs the best across all workloads, and consistently shows superior
speedup to BATCH. LOCAL and DCS show much lower resource utilization than the
other schemes. Note that since all jobs in each realistic workload require entire nodes
in the system, GS gives comparable turnaround time with BATCH, without incurring
external resource fragmentation as shown in Fig. 13b. For applications with low com-
munication intensity (such as BT), the turnaround time difference between PROC
and other schemes is minimal. However, as the communication intensity increases

@ Springer

Process ReOrdering-based Coscheduling (PROC) 23

1.6
1.5
1.4
1.3
1.2
1.1
1.0+
0.9+
0.8
0.7
0.6
0.5
0.4+
0.3
0.2
0.1

BT MG CcG

Normalized turnaround time

0.0-

(a) normalized turnaround time with respect to BATCH

1104 |:|00MP-5P|N|:||DLE REAL IDLE [l OVERHEAD [SWITCHING |
BT MG
100 -
— 80
£
o 70 -
E 60 -
o
8 s0-
[
[}
£
30
a
20
ol gaEg82g0s g :
NEalE L 8 5

(b) performance profile
Fig. 13 Performance comparisons of all scheduling schemes for each realistic workload (MPL =5,

v=10%)

(BT < MG < FT < IS < CQ), the performance gain of the PROC schemes over other
schemes becomes more distinguished. PROC-B and PROC-S show speedup as high
as 25.6% and 13.5%, respectively, compared to BATCH. The results of this experiment
also reconfirm that blocking-based schemes (PROC-B, SB, and HYBRID) outperform
spinning-based schemes (DCS, PB, and PROC-S).

We conducted another set of experiments using job mixes from the above five ap-
plications. Here, we imitated the arrival pattern of jobs in a real system by randomly
generating several jobs with different computation granularity, communication inten-
sity, and pattern. We assumed that these jobs arrive at the cluster with exponentially
distributed inter-arrival times. For this experiment, we created a series of workloads
with different job-arrival rates by multiplying job arrival times by a constant.

Figure 14 shows the performance changes in different scheduling schemes for the
mixed workloads as the job-arrival rate increases. In this experiment, we exclude
LOCAL and DCS because there is no point to show their performance. As expected,

@ Springer

24 J.-L. Yu et al.
1 [comP BNl SPIN || IDLE [REAL IDLE
10 [OVERHEAD [[[]] SWITCHING
— (x10%)
§ 9 -arrival rate : 4.17 . job-arrival rate : 11.11
© 84

o o o~
T

(2]
!

2
g
g
£
£

90

80
7 b
60

50
40
30
20

Avg. job response time (x 1
Y

o 2 N
L

-
o
L

4 5 6 7 8 9 10 1
Job-arrival rate (x 107)
(a) avg. job response time (b) performance profile

75
—0— PB—0— PROC-S
704 SB—v—PROC-B | "
65 - HYBRID e

—o—PB —0—PROC-S
SB —v—PROC-B
HYBRID

False decision ratio (%)
SaSh8ns&EL8a3a

4 5 6 7 8 9 10 11 4 5 6 7 8 9 10 11

Job-arrival rate (x 10) Job-arrival rate (x 10")
(c) BCR (d) FDR

Fig. 14 Performance of all scheduling schemes for the mixed realistic workloads (MPL =5, v = 10%)

from Fig. 14a, we observe near-linear growth in response times with increasing ar-
rival rate for all schemes. Again, PROC-B shows the most competitive performance,
yielding much lower response times than other schemes, while PROC-S shows com-
parable performance with SB. With a lower job-arrival rate, a newly arrived job at the
cluster system can start almost immediately. This makes MPL as low as one or two,
which in turn allows less room to express the differences among seven schemes (PB,
PROC-S, SB, PROC-B, HYBRID, GS, and BATCH). However, as shown in Fig. 14c,
the increment of the job-arrival rate introduces more competition on the shared CPU
at each node and generally increases the probability of a boost conflict. In this sit-
uation, wasted spinning and idle time is significantly reduced by using the PROC
schemes that recommend the best candidate to the native scheduler (see Fig. 14b and
14d). For an arrival-rate equal to 11.11, for example, it is noticed that PROC-B shows
only about 10% false decisions over the total number of context switches. This so-

@ Springer

Process ReOrdering-based Coscheduling (PROC) 25

phisticated handling of conflicting processes enables more jobs to be pushed at earlier
times and leads to shorter average job response times.

6 Concluding remarks

Implicit coscheduling (ICS) has been demonstrated to be an effective technique in
enhancing the performance of parallel applications in multi-program-med clusters.
However, one major problem found in the existing ICS schemes is that they do not
incorporate any steps to attempt to properly handle the priority boost conflict. This
results in a harmful scheduling sequence of conflicting processes, thereby interfering
with effective utilization of underlying system resources.

In this paper, we proposed the exploitation of the runtime difference in contention
across remote nodes to address this problem. We also demonstrated an innovative
coscheduling scheme that adaptively regulates the scheduling sequence of conflicting
processes on the basis of the measured minimal rescheduling latency of their corre-
spondents. To the best of our knowledge, no previous study has exhaustively investi-
gated this issue in the context of ICS combined with contention on multi-programmed
clusters.

To verify the importance of resolving boost conflicts and analyze the performance
impacts of the proposed reordering technique, we performed a broad range of exper-
iments using several workloads. The results provide a number of interesting insights:

1. Priority boost conflict is common in multi-programmed clusters that deploy ICS
mechanisms, and should therefore be carefully handled to improve system uti-
lization. For example, spinning-based (or blocking-based) schemes experience as
high as about 78.9% (or 52.8%) boost conflicts over the total number of context
switches under communication-intensive workload.

2. Significant performance improvement is achieved with the proposed PROC
schemes. The main reason for this improvement is that PROC seeks to avoid un-
necessarily wasted spinning and idle time by attaining a marked reduction in false
decisions upon the boost conflict. This performance gain is even more pronounced
when a communication-intensive workload and/or a larger MPL are applied to the
system.

3. We recommend the use of blocking-based schemes (PROC-B, HYBRID, and SB)
rather than spinning-based schemes (DCS, PB, and PROC-S) since the former
techniques consistently outperform the later ones. There is little reason to use
BATCH, as other ICS schemes such as PROC-B, HYBRID, SB, and PROC-S pro-
vide better performance. In addition, to some extent, BATCH and GS can suffer
from both internal and external resource fragmentation, and they do not have much
scope for tolerating task imbalance as other ICS schemes.

4. The proposed PROC-B is the best performer among all considered schemes over
a range of different workloads in terms of response time and overall system
throughput, without compromising fairness. Our results show that PROC-B re-
duces the average job response time by up to 50.4% compared to SB and by up to
72.5% (or 66.8%) compared to BATCH (or GS) under communication-intensive
workload.

@ Springer

26 J.-L. Yu et al.

Given the excellent performance behavior of PROC schemes highlighted in the
present study, future work will be directed towards investigating other PROC heuris-
tics with minimal overhead and expanding upon our findings by employing memory-
aware and backfilling [16] allocators. We are currently working on developing a pro-
totype PROC in MPI [17] environments over Linux. Then, we also plan to conduct
performance comparisons of PROC with gang scheduling implementations such as
FCS [10] and Score-D [13] on large-scale and heterogeneous Linux cluster platforms.

References

1. Agarwal S, Choi GS, Das CR, Yoo A, Nagar S (2003) Coordinated coscheduling in clusters through
a generic framework. Clust Comput (Dec):84-91
2. Anderson TE, Culler DE, Patterson DA (1995) A case for now (networks of workstations). IEEE
Micro 15(1):54-64
3. Anglano C (2000) A comparative evaluation of implicit coscheduling strategies for networks of work-
stations. In: Proc of the 9th IEEE international symposium on high performance distributed comput-
ing, 2000, pp 221-228
4. Borden NJ, Cohen D, Felderman RE, Kulawik AE, Seitz CL, Seizovic JN, Su W (1995) Myrinet:
a gigabit-per-second local area network. IEEE Micro 15(1):29-36
5. Choi GS, Kim JH, Ersoz D, Yoo A, Das CR (2004) Coscheduling in clusters: is it a viable alternative?
In: Proc of the 2004 ACM/IEEE conference on supercomputing, Nov 2004.
6. Dunning D, Regnier G, McAlpine G, Cameron D, Shubert B, Berry F, Merritt AM, Gronke E, Dodd
C (1998) The virtual interface architecture. IEEE Micro 18(2):66-76
7. Dusseau A, Arpaci R, Culler D (1996) Effective distributed scheduling of parallel workloads. In: Proc
of ACM SIGMETRICS conference, May 1996, pp 25-36
8. Etsion Y, Feitelson DG (2001) User-level communication in a system with gang scheduling. In: Proc
of the international parallel and distributed processing symposium, 2001, p 58
9. Feitelson D (2003) Metric and workload effects on computer systems evaluation. IEEE Comput
36(9):18-25
10. Frachtenberg E, Feitelson DG, Petrini F, Fernandez J (2005) Adaptive parallel job scheduling with
flexible coscheduling. IEEE Trans Parallel Distrib Syst 16(11):1066-1077
11. Frachtenberg E, Feitelson DG, Petrini F, Fernandez J (2003) Flexible coscheduling: mitigating load
imbalance and improving utilization of heterogeneous resources. In: Proc of international parallel and
distributed processing symposium, 2003, pp 625-651
12. Franke H, Jann J, Moreira JE, Pattnaik P, Jette MA (1999) Evaluation of parallel job scheduling for
ASCI blue-pacific. In: Proc of the 1999 ACM/IEEE conference on supercomputing, Nov 1999, pp
679-691
13. Hori A, Tezuka H, Ishikawa Y (1998) Highly efficient gang scheduling implementation. In: Proc of
the ACM conference on supercomputing, Nov 1998, pp 1-14
14. Jette MA (1997) Performance characteristics of gang scheduling in multiprogrammed environments.
In: Proc of the ACM/IEEE conference on supercomputing, Nov 1997, pp 1-12
15. Kim JS, Kim KH, Jung SI, Ha SH (2003) Design and implementation of a user-level sockets layer
over virtual interface architecture. Concurr Comput: Pract Exp 15(7-8):727-749
16. Lawson B, Smirni E, Puiu D (2002) Self-adapting backfilling scheduling for parallel systems. In: Proc
of international conference on parallel processing, August 2002, pp 583-592
17. Myrinet Inc (2003) MPICH-GM software, Oct 2003. Available from http://www.myrinet.com
18. NAS division. The NAS parallel benchmarks. Available from http://www.nas.nasa.gov/Software/
NPB
19. Nagar S, Banerjee A, Sivasubramaniam A, Das CR (1999) Alternatives to coscheduling a network of
workstations. J Parallel Distrib Comput 59(2):302-327
20. Nagar S, Banerjee A, Sivasubramaniam A, Das CR (1999) A closer look at coscheduling approaches
for a network of workstations. In: Proc of ACM symposium parallel algorithms and architectures,
June 1999, pp 96-105
21. Ousterhout J (1982) Scheduling techniques for concurrent systems. In: Proc of the 3rd international
conference on distributed computing systems, 1982, pp 22-30

@ Springer

Process ReOrdering-based Coscheduling (PROC) 27

22. Parallel workloads archive. Available from http://www.cs.huji.ac.il/labs/parallel/workload

23. Petrini F, Feng W (2001) Improved resource utilization with buffered coscheduling. J Parallel Algo-
rithm Appl 16(2-3):123-144

24. Rencuzogullari U, Dwarkadas S (2001) Dynamic adaptation to available resources for parallel com-
puting in an autonomous network of workstations. In: Proc of ACM SIGPLAN symposium on prin-
ciples and practice of parallel programming, 2001, pp 72-81

25. Sabin G, Kettimuthu R, Rajan A, Sadayappan P (2003) Scheduling of parallel jobs in a heterogeneous
multi-site environment. In: Proc of job scheduling strategies for parallel processing, 2003, pp 87-104

26. Schwetman HD (2001) CSIM19: a powerful tool for building system models. In: Proc of the 2001
winter simulation conference, 2001, pp 250-255

27. Sobalvarro P, Pakin S, Weihl B, Chien AA (1998) Dynamic coscheduling on workstation clusters. In:
Proc of the international parallel processing symposium, March 1998, pp 231-256

28. SUN Microsystems Inc (1997) Solaris 2.6 Software Developer Collection. Available from http://www.
sum.com

29. Zhang Y, Franke H, Moreira JE, Sivasubramaniam A (2003) An integrated approach to paral-
lel scheduling using gang-scheduling, backfilling, and migration. IEEE Trans Parallel Distrib Syst
14(3):236-247

30. Zhang Y, Sivasubramaniam A (2004) ClusterSchedSim: a unifying simulation framework for cluster
scheduling strategies. In: SIMULATION: transactions of the society for modeling and simulation,
2004, pp 191-206

31. Zhang Y, Sivasubramaniam A, Moreira J, Franke H (2001) Impact of workload and system parameters
on next generation cluster scheduling. IEEE Trans Parallel Distrib Syst 12(9):967-985

Jung-Lok Yu received the B.S. degree from the Soong-Sil University, Korea, in 1999, and the M.S. and
Ph.D. degrees in computer science from Korea Advanced Institute of Science and Technology (KAIST),
in 2001 and 2007, respectively. He is currently with Samsung Electronics Co. Ltd., Korea. His research
interests include computer architecture, cluster computing, operating systems, embedded systems, and grid
computing.

Jin-Soo Kim received his B.S., M.S., and Ph.D. degrees in Computer Engineering from Seoul National
University, Korea, in 1991, 1993, and 1999, respectively. He was with the IBM T. J. Watson Research
Center as an academic visitor from 1998 to 1999. He is currently an associate professor of the department
of electrical engineering and computer science at Korea Advanced Institute of Science and Technology
(KAIST). Before joining KAIST, he was a senior member of research staff at Electronics and Telecommu-
nications Research Institute (ETRI) from 1999 to 2002. His research interests include flash memory-based
storage and operating systems.

@ Springer

28 J.-L. Yu et al.

Seung-Ryoul Maeng received the B.S. degree in electronics engineering from the Seoul National Uni-
versity, Seoul, Korea, in 1977, the M.S. and Ph.D. degrees in computer science from KAIST in 1979
and 1984, respectively. Since 1984 he has been a faculty member at KAIST. From 1988 to 1989, he was
with the University of Pennsylvania as a visiting scholar. His research interests include parallel computer
architecture, vision architecture, embedded systems, and cluster computing.

@ Springer

	A runtime resolution scheme for priority boost conflict in implicit coscheduling
	Abstract
	Introduction
	Background and related work
	Process ReOrdering-based Coscheduling (PROC)
	Motivation and basic idea
	Estimating rescheduling latency
	Process reordering

	Experimental environments
	Simulator
	Workloads and metrics

	Performance results
	Performance comparisons of all scheduling schemes
	Effect of communication intensity
	Effect of Multi-Programming Level (MPL)
	Effect of task skewness
	Fairness
	Realistic workload performance

	Concluding remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

