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Recently, NAND flash-based solid state drives (SSDs) have emerged as revolution-
ary storage media. Numerous studies have been carried out to employ SSDs in database
systems and storage systems, motivated by SSD’s attractive features such as decreased
drive weight, increased shock resistance, low power consumption, and no seek latency.
However, low-end SSDs targeting desktop and notebook environments show problem-
atic random write performance which is only comparable to or lower than that of HDDs

This paper proposes a novel software layer called ReSSD whose purpose is to im-
prove the small random write performance of low-end SSDs with low memory usage.
ReSSD works as a virtual block device on top of SSD which requires no modification
neither in the operating systems nor in the applications. By inspecting all incoming re-
quests, ReSSD identifies small random writes which have potential to degrade SSD’s
performance significantly and transforms them into sequential and ordered-sequential
writes which are more favorable to SSDs. Our evaluation results through Postmark and
OLTP benchmarks show that the proposed approach accomplishes noticeable perform-
ance improvement on low-end SSDs under all workloads.

Keywords: solid state drives (SSDs), NAND flash memory, small random write, virtual
block device, operating system

1. INTRODUCTION

Currently, NAND flash-based solid state drives (SSDs) have drawn considerable at-
tention in both industry and academia. Many studies have been carried out to replace
hard disk drives (HDDs) with SSDs in database systems or storage systems [1-3]. Several
hybrid approaches are also under investigation which insert SSDs as a cache component
into existing HDD-only storage systems [4-7].

Most of the previous studies have been motivated by attractive properties of SSDs.
Since there is no mechanical part in SSDs, they are lighter, more robust, and more en-
ergy-efficient than HDDs. In particular, since there is no seek time which has been a key
bottleneck in HDD’s performance, SSDs can provide fairly good random access per-
formance as well as high sequential access performance. SSDs targeted at enterprise
server environments (called high-end SSDs) present more than 30 times higher band-
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widths in random reads and writes compared to HDDs [2, §].

However, the random write performance of low-end SSDs aimed at desktop environ-
ments (PCs, notebooks, and netbooks) is somewhat disappointing, particularly in small
size, due to stringent cost constraint. In fact, the bandwidth of small random writes is
merely around 1 MB/s in low-end SSDs. This is only comparable to or sometimes lower
than that of HDDs, although the random read bandwidth is still much higher as in high-
end SSDs [2, 8]. For example, the 4KB random write bandwidths of SSDs from Samsung
and SuperTalent are 0.42 MB/s and 0.018 MB/s, respectively, while their 4KB random
read bandwidths are more than 8§ MB/s.

This basically originates from the nature of NAND flash memory. In NAND flash
memory, the previous data should be erased first to write another data in the same loca-
tion and the erase unit is larger than the read and write unit. These unique characteristics
of NAND flash memory are usually handled transparently by the SSD’s firmware called
Flash Translation Layer (FTL). Yet, small random writes increase the FTL overhead in
managing NAND flash memory, which potentially leads to significantly lower band-
width. In case of high-end SSDs, the FTL overhead is mitigated through various hard-
ware enhancements to SSD’s internal architectures. However, since the hardware en-
hancements inevitably increase the manufacturing cost, low-end SSDs are not usually
equipped with such enhancements. As a result, low-end SSDs show very poor small ran-
dom write performance which offsets many of their benefits.

A software company called EasyCo LLC has recently proposed a performance en-
hancement solution called Managed Flash Technology (MFT) to improve the small ran-
dom write performance of SSDs [9]. Although the detailed architecture of MFT is still
not known exactly, it appears to work as a virtual block device on SSDs and handle all
write requests in a sequential fashion as in LFS [10], so that the underlying SSD never
encounters random writes. Under a workload including many small random writes, the
use of MFT may show the write bandwidth comparable to the sequential write bandwidth.
However, MFT has a serious drawback that the amount of mapping information needed
to keep track of physical locations becomes very huge. It is known that MFT on a 128
GB SSD typically requires about 150 MB of kernel memory. Considering the current
trend of ever increasing SSD storage capacity, the MFT approach is not practical espe-
cially for systems with a modest amount of memory such as notebooks or netbooks.

In this paper, we propose a novel software approach called ReSSD' which aims at
resuscitating low-end SSDs from their poor small random write performance with low
memory usage. ReSSD divides the underlying SSD into two areas, the normal area and
the reserved area, and shows only the normal area to the upper layer (such as page cache
or file systems) as a single virtual block device. Unlike MFT which manages the entire
SSD space in a log-structured manner, ReSSD identifies small random write requests and
records those requests sequentially in the reserved area. If the amount of free space in the
reserved area becomes lower than a certain threshold, data written to the reserved area
are eventually moved to its original locations in the normal area in an ordered-sequential
write fashion. Since the small random writes are transformed into sequential and or-
dered-sequential writes which are favorable to low-end SSDs, the overall performance of
low-end SSDs is improved. Note that the ordered-sequential write denotes the write pat-
tern where the accessed logical blocks are arranged in increasing order of LBAs (Logical
Block Addresses) [12].

+ This paper is the extended version of the poster paper [11] presented in the 25th ACM Symposium on Applied
Computing (ACM SAC 2010).
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In ReSSD, the reserved area size is smaller than the normal area size by an order of
magnitude. Thus, the amount of in-memory mapping information is also very small. Ac-
cording to our evaluation results using Postmark [13], ReSSD improves the overall per-
formance by 43% with using only 5.2% of the workload size as the reserved area. In this
configuration, the mapping information occupies only 1.7 MB of kernel memory. In ad-
dition, ReSSD is completely transparent to applications and other components of the op-
erating system kernel. We have implemented ReSSD as a kernel module which can be
plugged into the kernel without any kernel modifications. Since ReSSD supports the
standard interface of the general block device, page cache or I/O scheduler considers it as
a usual block device.

The rest of this paper is organized as follows. Section 2 describes the target SSDs of
this paper and summarizes related work. In section 3, we describe the design and imple-
mentation details of ReSSD. Experimental evaluation results are shown in section 4. Fi-
nally, section 5 concludes this paper.

2. BACKGROUND

2.1 High-end vs. Low-end SSDs

A typical SSD is composed of a number of NAND flash memory chips connected
by multiple channels, a DRAM buffer, a host interface, a controller, and other logic in-
cluding ECC (error correction codes) hardware. Each NAND flash memory chip has a
number of blocks and each block, in turn, consists of 32-128 pages. A page is the unit of
read and written operations, while a block is the unit of erase operations.

SSDs have some unique characteristics which make them distinct from HDDs.
These characteristics are essentially rooted in the nature of NAND flash memory. The
most remarkable one is the absence of mechanical parts which brings many technical
advantages compared to HDDs such as decreased drive weight, increased shock resis-
tance, low power consumption, and no seek latency. These advantages have stimulated
considerable research which aims to integrate SSDs into the storage hierarchy effec-
tively.

Another notable difference of SSDs is the use of sophisticated firmware called FTL
[14-17] inside the SSD controller. The most important role of FTL is to provide the tradi-
tional block device interface over NAND flash memory by hiding the presence of erase
operations. Since the overwritten is not allowed in NAND flash memory, SSDs are usu-
ally over-provisioned with a certain amount of extra blocks. FTL redirects the incoming
write requests to empty pages of extra blocks and maintains the mapping information
between their logical addresses and the physical addresses of the NAND pages. Those
pages containing the previous version of data are invalidated by FTL and reclaimed later
by the procedure known as garbage collection. When a block is reclaimed, valid pages in
the block should be migrated to other empty pages before the block is erased.

Small random writes on SSDs have potential to increase the FTL’s overhead sig-
nificantly in reclaiming invalidated pages. Since small random writes update contents
across a wide range of the logical address space, invalidated pages will be scattered over
numerous blocks. In order to reclaim a certain amount of invalidated pages, FTL should
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erase a large number of blocks which involves significant overhead in migrating valid
pages.

To address this problem, high-end SSDs developed for enterprise server environ-
ments are equipped with hardware enhancements such as rich DRAM buffer and fat pro-
visioning [2, 8, 18]. Rich DRAM buffer absorbs bursts of small random writes effec-
tively, reducing the number of physical writes on flash memory. Fat provisioning, which
keeps much more extra clean blocks, is useful for minimizing the average latency of
small random writes through avoiding extra write and erase operations. The high-end
SSDs with such enhancements show very good performance in small random writes.
Chen et al. presented that 4 KB random write bandwidth of a high-end SSD is about 50
MB/s, more than 30 times higher than that of HDDs [8]. Also, Lee et al. showed that an
enterprise-class SSD outperforms HDDs by more than 5 times in the random write
throughput of 8 KB-sized data [2].

On the other hand, low-end SSDs targeting desktop and notebook environments are
equipped with relatively small DRAM buffer and thin provisioning to save manufactur-
ing cost. According to Chen et al. [8], the price of low-end SSDs is only one fifth of that
of high-end SSDs. Consequently, low-end SSDs show significantly low small random
write bandwidth around 1 MB/s, which is just comparable to or worse than that of HDDs
[2, 8, 19]. Yet, low-end SSDs present very good performance in random reads and se-
quential reads/writes as high-end SSDs do.

In this paper, we focus on improving the small random write performance of such
low-end SSDs. ReSSD is a relatively cheap solution which requires a little amount of
main memory and CPU power of the host. Since our solution is a software-only approach,
it can be applied to existing SSDs unlike the costly hardware enhancement requiring
modifications of SSD’s internals.

2.2 Related Work

Rajimwale et al. listed several “unwritten contracts” in the software stack of storage
systems and explained how each of them fails when applied to SSDs, resulting in poor
performance and lifetime [19]. In particular, they noted some of the tested SSDs have
random-write performance that is worse than HDDs due to write amplification, i.e., the
overhead of FTL.

Chen et al. conducted intensive experiments and measurements on different types of
state-of-the-art SSDs, from low-end to high-end SSDs, to gain insight into the unique
performance characteristics of SSDs [8]. They measured latencies of read and write op-
erations whose access patterns are sequential, random, and strided, and analyzed the re-
sults based on the internal knowledge of each type of SSDs. They found that a low-end
SSD has a much lower random write bandwidth of 1.14 MB/sec, which is only compara-
ble to the HDD (1.49 MB/sec), even though its sequential write bandwidth is 88 MB/sec.

Several previous studies have attempted to address the issue of poor small random
write performance in low-end SSDs. Dumitru proposed MFT which works as a virtual
block device on SSDs [9]. While ReSSD tries to identify only the small random writes
which are expected to degrade the performance of SSDs significantly, MFT stores all the
write requests in a sequential fashion as in LFS [10]. In MFT, the underlying SSD re-
ceives sequential writes only, never suffering from random writes. Thus, under the work-
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load including many small random writes, MFT can show the write bandwidth compara-
ble to the sequential write bandwidth. However, MFT needs to keep /track of the logical-
to-physical mapping information for every 4 KB logical block, whose size can be sub-
stantial for large-capacity SSDs. About 150 MB of kernel memory is known to be re-
quired to apply MFT on a 128 GB SSD. As the capacity of SSD is getting larger, MFT’s
high memory footprint can be a limiting factor. In addition, the detailed architecture of
MFT has not been available to the public, including how the garbage collection is per-
formed when there is no more free space in SSD to handle the incoming data.

Unlike MFT, the memory overhead of ReSSD is fairly moderate. In ReSSD, only
the requests identified as small random writes are handled in a sequential manner, and
they are eventually moved to their original locations due to the limited size of the re-
served area. Therefore, the amount of mapping information is much smaller than MFT
and bounded by the reserved area size, as it is sufficient for ReSSD to keep track of map-
ping information only for those data currently stored in the reserved area. ReSSD is able
to achieve significant performance improvement with dedicating only a few percent of
the workload size as the reserved area.

Kim et al. presented FlashLite which is a user-level library to support the standard
file system interface [20]. Its goal is to eliminate random writes generated when down-
loading a huge file through P2P protocols. When downloading a file, it transforms all
writes to the file into sequential writes and maintains mapping information for their
original locations in memory, like MFT [9] and LFS [10]. After downloading the file
completely, its contents are rewritten to their original locations so that they can be ac-
cessed without the special FlashLite interface. According to their experiment results,
random writes are almost eliminated and the authors insist that the durability of SSD is
improved significantly. Unlike ReSSD, they focused on the durability of SSD and did not
present evaluations about the performance improvement. Also, since FlashLite is a user-
level library, applications have to be modified and linked with the FlashLite library,
while ReSSD doesn’t require modification neither in applications nor in other parts of the
operating system.

3. RESSD

In this section, we present the overall architecture of ReSSD and how ReSSD re-
shapes the write pattern to improve the small random write performance for low-end
SSDs.

3.1 Overall Architecture

The primary design goal of ReSSD is convenience and ease of deployment. In com-
pliance with this goal, we have designed ReSSD as a virtual block device which works
on an SSD. The virtual block device supports the standard interface of the general block
device as illustrated in Fig. 1.

The upper layer components, such as page cache and virtual file system (VFS), view
it as a single block device. They issue ordinary block I/O requests or build file systems
on top of ReSSD. The I/O scheduler at the lower layer also considers it as a single device.
ReSSD delivers common disk I/O requests to the scheduler as other block devices do.
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Fig. 1. The architecture of ReSSD.

In addition, ReSSD is implemented as a kernel module which can be inserted by a
simple command without any kernel modifications. Thus, other parts of the operating
system need not be changed in order to use ReSSD.

3.2 Basic Components

As Fig. 1 depicts, ReSSD consists of three major components: the router, the mover,
and the RB-tree (red-black tree). The underlying SSD is divided into two regions, the
normal area and the reserved area. The normal area is visible to the upper layer as a
single block device. On the other hand, the upper layer is not aware of the reserved area.
All I/O requests towards the reserved area are issued only by ReSSD.

The router handles all the incoming requests from the upper layer. The upper layer
issues I/O requests as if ReSSD were a normal block device. All of those requests are
first transferred to the router. In case of write requests, the request pattern identifier
(RPI) inside the router checks whether the request is a small random write or not. If the
request is identified as a small random write, its data is sequentially written into the re-
served area. Otherwise, the request is forwarded to the normal area. When the router re-
ceives read requests, it first looks up the RB-tree which maintains the mapping informa-
tion (described below) to see whether the data is in the reserved area or in the normal
area. If there is no corresponding mapping information in the RB-tree, it means that the
requested data is resident in the normal area and the request is served directly from the
normal area. Otherwise, the request is redirected to the reserved area with its sector ad-
dresses being modified to the ones in the reserved area as designated by the RB-tree.

The main role of the mover is to reclaim free space in the reserved area by moving
some of data to the normal area. The mover usually remains inactive until the router
wakes it up as the amount of free space falls below a certain threshold. The default value
of the threshold is half the reserved area size. The operations of the router and the mover
will be described in more detail in section 3.3.

The RB-tree contains the mapping information needed to track the original locations
of data, which is sequentially written to the reserved area. It keeps the current locations
in the reserved area and original locations in the normal area where they were supposed
to be written. The size of the mapping unit is set to 4 KB, which is the same as the I/O
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unit of page cache. All nodes of the RB-tree are always kept in memory and their mem-
ory usage is about 1 MB per 100 MB of the reserved area.

3.3 Improving Small Random Writes

This subsection provides details about how the router and the mover transform
small random writes into sequential and ordered-sequential writes.

The logical sector number and the size of every incoming I/O request are inspected
by the RPI module. A write request is considered as a small random write if its logical
sector numbers (LSNs) do not immediately follow the previous write request and the size
of the request is not larger than 8 KB, as this type of write request has potential to de-
grade SSD’s performance significantly. The router redirects such identified small random
writes to the reserved area and their data are written sequentially. In case the reserved
area already has some data for the requested sector numbers, the previous versions of
data are invalidated by the router. Note that the router issues an additional write request
to the reserved area to update the mapping information on the underlying SSD. In this
way, ReSSD’s in-memory mapping information is protected against potential loss that
may occur from sudden power failure.

As soon as the mover becomes active by the router, it moves a certain amount of
data from the reserved area to the normal area. The amount of data moved at a time is
configurable and is currently set to 512 KB by default. The mover reads valid data from
the reserved area in the ascending order of its original LSNs and writes it into the normal
area in an ordered-sequential write fashion. Most of the requests handled by the reserved
area are 4 KB or 8 KB in size. While they are staying in the reserved area, they have high
chance of being merged with other write requests directed to the nearby locations. As a
result of this, many of the ordered-sequential writes issued by the mover show the re-
quest size larger than or equal to 12 KB.

By filtering out small random writes, the underlying SSD does not suffer from ran-
dom writes whose size is less than or equal to 8 KB. Instead, the underlying SSD only
encounters sequential writes given by the router and ordered-sequential writes issued by
the mover. Fig. 2 compares the bandwidth of random, ordered-sequential, and sequential
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Fig. 2. Bandwidth of the random, sequential, and ordered-sequential write.
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write for three commercial SSDs used in the evaluation of this paper. SSD-A and SSD-B
are typical low-end SSDs available in the market whose 4 KB random write bandwidth is
lower than 1 MB/s. SSD-C’s random write performance is higher than typical low-end
SSDs. The detailed information of each SSD used in this paper is summarized in Table 2.
In Fig. 2, the number in parentheses for each write pattern represents the request size
used. The increment value [12] of ordered-sequential writes, which denotes the distance
between two successive ordered-sequential write requests, is set to 128 KB.

First of all, we can see that the sequential write outperforms the random write in all
SSDs. In particular, the sequential write bandwidth of SSD-B is about 4,300 times higher
than the random write bandwidth. The ordered-sequential write also outperforms the
random write by at least a factor of 12 in SSD-A and by at least a factor of 86 in SSD-B.
The bandwidth of ordered-sequential write grows as the request size increases. In SSD-C,
the ordered-sequential write only doubles the bandwidth compared to the random write.
We believe that this is because SSD-C is equipped with some hardware enhancements
for effective handling of small random writes, which low-end SSDs do not have.

Since sequential and ordered-sequential writes show higher performance than small
random writes in low-end SSDs, ReSSD can improve the overall performance signifi-
cantly. Moreover, when the data in the reserved area is invalidated by the subsequent
write requests, no additional ordered-sequential write is necessary to move them to the
normal area. In this case, small random writes are completely replaced with sequential
writes, which enables ReSSD to attain maximum improvement in write performance.
Therefore, ReSSD is especially beneficial for those workloads that exhibit high temporal
locality of reference among small random writes, as most of them are converted to se-
quential writes without generating additional ordered-sequential writes.

3.4 Implementation

We have implemented ReSSD using the device-mapper [21], one of Linux kernel
components for logical volume management. The device-mapper provides a framework
to group a number of logical block devices into a single virtual block device and to redi-
rect incoming block I/O requests to one of the devices. Through this framework, various
storage subsystems such as RAID and an encrypted block device can be implemented
without any hardware supports [22].

ReSSD is implemented as a kernel module linked to the device-mapper framework
and this module does not require any kernel modifications. The router is based on a map
function of the framework which hooks all the block I/O requests towards the virtual
block device created by the framework. The RB-tree uses a red-black-tree library of the
Linux kernel and the mover is implemented as a kernel thread. After inserting the ReSSD
module into the kernel, users can create a virtual block device by a user-space tool called
dmsetup and build any file systems on top of it.

3.5 Analytical Model

In this subsection, through analytical modeling of the time taken to handle small
random writes, we derive a condition that needs to be satisfied to realize the performance
improvement when the proposed technique is used. Table 1 defines symbols used in this
analysis.
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Table 1. Symbols and descriptions.

Symbol Description
Sw sequential write bandwidth
RW,xs nKB random write bandwidth
RR, x5 nKB random read bandwidth
OW,xz nKB ordered-sequential write bandwidth
B,xs the number of bytes moved by nKB ordered-sequential writes
a the ration of invalidated data in the reserved area

Let us assume that a workload writes the total N bytes using a series of 4 KB ran-
dom writes. Eq. (1) presents the time needed to perform such random writes on an SSD.

Tssp :L M)
RW

The time taken to handle the 4KB random writes on ReSSD can be given by Eq. (2).

N (-a)N
—
SW RR4KB

ResSD = Zi:4,s,...03%WhereZi:4,s,...BiKB =(1-a)N @
iKB

Tssp consists of the following three terms. The first term denotes the time taken to
record all the 4 KB random writes sequentially in the reserved area. The second one in-
dicates the time used by the mover to read all the valid data from the reserved area. The
amount of the valid data is (1 — @)N bytes, where « represents the average ratio of data
invalidated by subsequent writes in the reserved area. The mover reads the valid data in
increasing order of their original LSNs via 4 KB random reads. The last term denotes the
time for the mover to write the valid data into the original location in the normal area
using ordered-sequential writes larger than or equal to 4 KB in size.

If Tressp < Tssp, the use of ReSSD can improve the performance of 4 KB random
writes in SSDs. However, « and B,gp are dependent on the temporal locality of the
workload and the reserved area size. We eliminate these variables as follows in order to
derive a condition independent of the workload and the reserved area size.

Since OWxp < OWigp for Vi > 4,

- . B, _ B
Tressp < i"' U-a)N + z’:4‘8"" K5 _ i+ (1-a)N + d a)N‘ 3)
SW  RR,; OW, .z SW  RR,,, ow,,,

Because « is between 0 and 1,

N N N @

T, =t
P SW RR4KB OVV:&KB

ReSSD

<T;

R

T’ ressp < Tssp obviously means Tgessp < Tssp. Therefore, Eq. (5) is a sufficient con-
dition for ReSSD to improve the 4 KB random wrote performance of SSDs. Note that we
can easily derive a sufficient condition to improve the performance of 8 KB random
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writes in a similar way.

1 1 1 1 (5)
+ + <
SW RR,.;, OW,.,, RW

4KB

In SSDs, sequential writes and 4 KB random reads are usually much faster than 4
KB random writes. Therefore, Eq. (5) is satisfied if the 4 KB ordered sequential write
performance (OWykp) is better than the 4 KB random write performance (RR4gp), i.e., if
the 4 KB ordered sequential write is fast enough to compensate the overhead of extra
write operations needed to move the valid data in the reserved area to the normal area. In
general, the ordered-sequential write bandwidth of low-end SSDs is higher than the small
random write bandwidth by several times. In Fig. 2, the ordered-sequential write per-
formance of SSD-A and SSD-B is more than ten times higher than the small random
write performance. Therefore, we can see that typical low-end SSDs such as SSD-A and
SSD-B satisfy the condition shown in Eq. (5). In case of SSD-C whose ordered-sequen-
tial write performance shows only marginal improvement over the small random write
performance, we expect that ReSSD can improve the overall performance only when « is
large due to the high temporal locality in the workload and/or the large reserved area size.

4. EVALUATION

In this section, we show that ReSSD improves the overall performance of low-end
SSDs effectively for the workloads with many small random writes.

4.1 Environments

We have evaluated ReSSD on a machine equipped with 2.20 GHz Intel Core2Duo
CPU and 4 GB of main memory, running the Debian Linux kernel 2.6.29.4. The memory
size available to the kernel is limited to 384 MB in order to minimize the effect of page
cache. We have used the ext4 file system with default configurations and the default
CFQ scheduler.

Table 2. Characteristics of SSDs used in the evaluation.

SSD-A SSD-B SSD-C
Manufacturer Samsung Super Talent 0CZ
Model MCCOE64G5MPP FTM60GK25H OCZSSD2-1VTX60G

Capacity 64 GB 60 GB 60 GB
Sequential Read BW 110 MB/s 117 MB/s 220 MB/s
Sequential Write BW 85 MB/s 79 MB/s 129 MB/s
Random Read BW 16.3 MB/s 8.51 MB/s 20.2 MB/s
Random Write BW 0.421 MB/s 0.018 MB/s 6.54 MB/s

Each bandwidth is measured by IOmeter using an access specification of its 4KB request.

The characteristics of three SSDs used in our evaluation are described in Table 2.
SSD-A and SSD-B are typical low-end SSDs which satisfy Eq. (5). As discussed in sec-
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tion 3.4, SSD-C does not meet the sufficient condition in Eq. (5). All SSDs have two
partitions, one is 51.2 GB in size and the other 8 GB. In all experiments, ReSSD employs
the first partition as the normal area and part of the second one as the reserved area.
When the performance is measured on SSD alone (without using ReSSD), the second
partition has not been used.

4.2 IOmeter

First, we have evaluated the sequential read/write and random read/write perform-
ance of each SSD using IOmeter. IOmeter is a widely-used benchmark tool for I/O sub-
system measurement and characterization [23]. After creating a single 4 GB file, [Ometer
generates one set of 1/O requests to the file for five minutes and reports the average
bandwidth and latency. The size of each request is either 4 KB or 8§ KB. In ReSSD, the
size of the reserved area is configured to 512 MB, which corresponds to 12.5% of the file
size. In order to reflect the overhead associated with the mapping information lookup, we
have generated enough small random writes to fill the RB-tree with about 60,000 nodes
before the actual execution of IOmeter. During this warm-up period, almost half the re-
served area is occupied with data, consuming 3,334 KB of kernel memory for maintain-
ing the mapping information.

Figs. 3 and 4 illustrate the bandwidth and latency of each SSD for the request size of
4 KB and 8 KB, respectively. The results of ReSSD are normalized to those obtained
with SSD alone. Observing that SSD and ReSSD show almost the same performance for
sequential/random reads and sequential writes we can see that the overhead of ReSSD is
very small.

On SSD-A and SSD-B, the random write performance of ReSSD is higher than the
case without ReSSD. The bandwidth of the 4 KB random write is doubled at SSD-A and
more than quintupled at SSD-B due to the use of ReSSD. Accordingly, the latency of the
random write has been improved on both SSDs. However, the bandwidth of random writes
is not improved on SSD-C since, unlike other SSDs, its ordered-sequential write perfor-
mance is not superior enough to the random write performance as can be seen in Fig. 2.

Note that during the random write test shown in Figs. 3 and 4, all write requests re-
ceived by ReSSD are treated as small random writes as the request size is either 4 KB or
8 KB. Therefore, they are all written to the reserved area. From the performance point of
view, this can be considered the worst case scenario to ReSSD as the mover is always
active and busy in moving valid data from the reserved area to the normal area. Only on
SSDs which satisfy the sufficient condition shown in Eq. (5), ReSSD can expect some
performance improvement. On SSD-A and SSD-B whose random write performance is
much lower than the ordered-sequential write, ReSSD can be effective in improving
small random writes even with the small reserved area.

4.3 Postmark

Postmark [13] is a representative file system benchmark which aims at measuring
the performance of handling many small files by simulating email server workloads.
Once executed, Postmark first creates a number of directories and a set of small files
inside each directory. The file size is chosen from the uniform distribution between 500
B and 20 KB. Then, Postmark conducts a number of transactions consisting of file crea-
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tion, deletion, read, and append operations. After the transactions are completed, all files
and directories are deleted and Postmark reports the elapsed time.

We have measured the elapsed time of Postmark for three different workload con-
figurations with and without the use of ReSSD. The number of directories, initial files,
and transactions of each workload configuration is summarized in Table 3. In ReSSD, we
vary the reserved area size from 0.125 GB to 0.75 GB. Since the initial file set size of
each Postmark configuration ranges from 0.8 GB to 2.4 GB, the reserved area size cor-
responds to 5.2%-93.75% of the amount of small files created by Postmark before initi-

ating transactions.

SSD alone
ReSSD

o B N W A~ O O

Seq Random Seq Random
read read write rite

(a) Bandwidth (SSD-A).

SSD alone
ReSSD

o B N W A~ 0O

Seq Random Seq Random
read

read

(b) Bandwidth (SSD-B).

write write

SSD alone m—
ReSSD E 3

o B N W A OO O

Seq Random Seq Random
read read write write

(c) Bandwidth (SSD-C).
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35
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(d) Latency (SSD-A). (e) Latency (SSD-B). (f) Latency (SSD-C).
Fig. 3. Normalized bandwidth and latency of the 4KB request.
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Fig. 4. Normalized bandwidth and latency of the 8KB request.
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Table 3. Postmark configurations.

Initial file set size | Initial files Directories Transactions
PM-A 0.8 GB 80000 10000 30000
PM-B 1.6 GB 160000 20000 60000
PM-C 2.4GB 240000 30000 90000

Table 4. The ratio of write requests identified as small random writes of each Postmark
configuration.

PM-A PM-B PM-C
Ratio 11.24 % 21.61 % 25.75 %
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Fig. 5. Postmark elapsed time of each configuration on SSD alone and ReSSD.

Fig. 5 presents the elapsed time to execute each Postmark configuration. The num-
ber in parentheses for ReSSD indicates the reserved area size. The infinite size represents
the case where the reserved area is large enough to make the mover remain inactive dur-
ing the entire Postmark run. The performance of ReSSD with the infinite reserved area
demonstrates the upper bound ReSSD can attain, as all the identified small random
writes are stored in the reserved area sequentially, being never moved to the normal area.
Table 4 shows the ratio of write requests which are identified as small random writes for
each Postmark workload configuration. We can see that as the initial file set size be-
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comes larger, the ratio of small random writes also grows.

On SSD-A and SSD-B, ReSSD outperforms the case with SSD alone in all work-
load configurations. With the larger reserved area size, ReSSD accomplishes more per-
formance improvement. In case of PM-C on SSD-B, ReSSD improves the elapsed time
by 43% (with 0.125 GB)-71% (with 0.75 GB) depending on the reserved area size. This
improvement is close to the upper bound of 85% when the reserved area size is infinite.

As we move the workload configuration from PM-A to PM-C, ReSSD results in
more significant improvement in the elapsed time. That is because the performance of
SSD degrades more rapidly than that of ReSSD as the amount of small random writes
increases. When the reserved area size is 0.25 GB, ReSSD shows the performance im-
provement over the SSD alone case by 27.8% in SSD-A and by 7.7% in SSD-B under the
PM-A configuration. However, with the same reserved area size, the improvement is
increased to 36.3% in SSD-A and 43.7% in SSD-B under the PM-C configuration, even
though the relative ratio of the reserved area size to the initial file set size is dropped
from 31% (for PM-A) to 10% (for PM-C).

On SSD-C, ReSSD does not improve the elapsed time with the reserved area size
smaller than or equal to 0.25 GB. As mentioned in the previous subsection, this is due to
that the ordered-sequential write performance is not fast enough to offset the overhead of
additional writes caused by the mover. However, when the reserved area size is larger
than 0.25 GB, there is more than 20% of performance improvement as in other SSDs.
Since there is still much room for improvement even in SSD-C, we will pursue a further
enhancement of ReSSD in future work.

4.4 Sysbench-OLTP Benchmark

OLTP (OnLine Transaction Processing) refers to a class of systems that facilitate
and manage transaction-oriented applications, typically for data entry and retrieval trans-
action processing. A workload given to the storage system of such OLTP systems is
known to contain lots of small random accesses. OLTP benchmarks are widely used not
only for evaluating database performances, but also for estimating small random access
performance of storage systems. Usually, the performance metric of this benchmark is
TPS (Transactions Per Second), which refers to the average number of transactions that
can be handled within one second. In this subsection, we evaluate how much the pro-
posed approach can improve the performance of OLTP systems.

In order to measure the performance of the OLTP workload, we have used Mysq]l
5.0 DBMS and the OLTP test mode of Sysbench [24] for benchmarking real database
performance. The OLTP test mode first creates a single table in the specified DBMS and
fills it with a certain number of rows. Then, multiple threads are invoked and they con-
duct a specified number of transactions consisting of conventional SQL statements such
as SELECT, UPDATE, DELETE, and INSERT queries. After all threads finish the tran-
sactions, Sysbench reports a TPS value and deletes the table.

We have measured TPS values for three different configurations. The number of
rows of the table and its data size are summarized in Table 5. In all configurations, the
number of threads is set to 16 and they conduct evenly 70,000 transactions. As the pre-
vious evaluation using Postmark, we vary the reserved area size from 0.125 GB to 0.75
GB in ReSSD, which corresponds to 0.73%-12.93% of the table size.
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Table 5. The number of rows in the table of each configuration.

OLTP-A OLTP-B OLTP-C
Rows 20,000,000 40,000,000 60,000,000
Initial table size 5.8 GB 11 GB 17 GB

Table 6. The ratio of write requests identified as small random writes of each OLTP
workload configuration.
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Fig. 6. Transaction per second of each configuration on SSD alone and ReSSD.

OLTP-A

Table 6 shows the ratio of write requests which are identified as small random writes
for each workload configuration. As mentioned above, more than 85% of write requests
are identified as small random writes and the ratio increases as the table size grows.

Fig. 6 illustrates the TPS value of each workload configuration. Overall trends of
evaluation results are similar to those of Postmark described in section 5.3. On SSD-A
and SSD-B, ReSSD outperforms the case with SSD alone in all configurations. Also,
with the larger reserved area size, ReSSD attains more performance improvement. In
case of OLTP-C on SSDA, TPS values are increased by about 29% (with 0.125 GB)-
80% (with 0.75 GB) depending on the reserved area size. In particular, ReSSD on SSD-B
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in the same workload configuration makes TPS about 5 times higher when the reserved
area size is 0.75 GB which is only 4.41% of the table size.

Like Postmark, as the table size becomes larger, ReSSD results in more significant
improvement. This tendency is especially noticeable on SSD-B whose performance is
dramatically decreased as the table size grows. When the reserved area size is 0.25 GB,
the TPS value of ReSSD on SSD-B is about 1.5 times higher than that of the SSD alone
case in the OLTP-A configuration. However, with the same reserved area size, the TPS
value is trebled with ReSSD on SSD-B in the OLTP-C configuration.

On SSD-C, only when the reserved area size is larger than 0.125 GB, ReSSD shows
performance improvements over the SSD alone case. As mentioned in the previous sub-
section, this is because the ordered-sequential write performance of SSD-C is not fast
enough compared to its random write performance. However, with the reserved area size
of 0.75 GB, which is only 4.41% of the table size in case of OLTP-C, ReSSD improves
TPS by more than 44% as in other SSDs.

4.5 Write Request Patterns

In this subsection, we investigate the difference in write request patterns arrived at
the underlying SSD using block I/O traces. Block 1/O traces are obtained by blktrace,
which is a block layer I/O tracing tool included in the Linux kernel.

Figs. 7 and 8 depict the write request traffic received by the underlying SSD when
we run Postmark and Sysbench OLTP mode, respectively, (a) on SSD alone and (b) on
ReSSD. The Postmark workload configuration of PM-B is used for this experiment. The
normal area size is 4 GB and the reserved area size is 0.125 GB, which corresponds to
about 7.8% of the initial file set size. The OLTP workload configuration for this experi-
ment is OLTP-C. The normal area size is 51.2 GB and the reserved area size is 0.125 GB,
which is about 0.73% of the table size. Each point (x, y) in Figs. 7 and 8 represents the
LSN (v) of a single write request arrived at time x.

In Fig. 7 (a), we can see that write requests are randomly scattered across the wide
range of LSNs when Postmark is performing various file system transactions. In Fig. 7
(b), however, we can confirm visually that ReSSD eliminates most of such small random
writes. The number of scattered random writes has been significantly reduced, while
many of them are converted to sequential and ordered-sequential writes. Similarly, Fig. 8
(b) shows that most of small random writes are diminished by ReSSD while, in Fig. 8 (a),
there are many write requests randomly scattered across the wide range of LSNs when
Sysbench is generating lots of transactions.

The points labeled with (1) in Figs. 7 (b) and 8 (b) illustrate sequential write requests
generated as some of requests are identified as small random writes and they are written
sequentially to the reserved area. At about 200 seconds in Postmark and at about 650 sec-
onds in Sysbench OLTP, half of the reserved area is filled and the mover begins to move
valid data from the reserved area to the normal area via ordered-sequential writes labeled
with (2). The points marked with (3) represent ordered-sequential writes issued by the
mover for another half of the reserved area. Note that sequential writes labeled with (4) in
Fig. 7 (b) are generated when in-memory mapping information is written sequentially to
the end of the reserved area to prevent potential data loss due to sudden power failures. In
Fig. 8 (b), since the y-axis unit is too large, those write requests are not invisible.
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As mentioned in section 3.3, the request sizes of ordered-sequential writes can be
larger than 8 KB since several small random writes can be merged into one ordered-se-
quential write. In Fig. 7, about 13% of the ordered-sequential writes are larger than or
equal to 12 KB in size. They are responsible for 39% of valid data moved from the re-
served area to the normal area. The rest of them are moved by 4 KB-sized or 8 KB-sized
ordered-sequential writes. In Fig. 8, the ratio of the ordered-sequential writes whose size
is larger than or equal to 12 KB is about 6% and they are in charge of moving 21% of
valid data from the reserved area to the normal area.

As the reserved area size becomes larger, small random writes stay longer in the re-
served area and the chance of getting larger ordered-sequential writes also increases.
When we execute the same Postmark configuration with the 0.25 GB of the reserved area,
the percentage of ordered-sequential writes whose sizes are larger than 8 KB is increased
to 15.6% and they occupy 44% of valid data moved to the normal area. In case of Sys-
bench OLTP with the same reserved area size, about 8% of the ordered-sequential writes
are larger than or equal to 12 KB in size and 27% of valid data is moved from the re-
served area to the normal area by these writes.
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5. CONCLUSION

In this paper, we propose ReSSD to improve small random write performance of low-
end SSDs with low memory usage. ReSSD works as a virtual block device on top of SSD,
which does not require any modifications of the operating system kernel and applications.
Through monitoring the logical sector number and the size of incoming write requests,
ReSSD identifies small random writes and converts them into sequential and ordered-
sequential writes, which are more favorable to SSDs. Since the underlying SSD does not
suffer from small random writes, the overall performance of SSD is improved with low
memory usage under the workload including many small random writes. Through ana-
lytical modeling, we also induce a sufficient condition which would be needed to achieve
performance improvement by making use of ReSSD. Our evaluation results present that
the proposed approach accomplishes noticeable performance improvement on low-end
SSDs under all workloads.

As future work, we plan to enhance ReSSD further to achieve more improvements,
especially on SSDs with relatively good random write performance. In addition, to ex-
tend the current simple policy of identifying small random writes, it is necessary to de-
velop more accurate analytical models which describe the relation between the transfor-
mation of small random writes into sequential writes and the amount of resulting per-
formance improvement. Finally, as SSDs are gaining momentum in the enterprise system,
we will study how to apply our approach to larger storage systems based on the RAID
technology.
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