
J Grid Computing (2009) 7:73–89
DOI 10.1007/s10723-008-9107-y

DynaGrid: An Adaptive, Scalable, and Reliable
Resource Provisioning Framework
for WSRF-Compliant Applications

Eun-Kyu Byun · Jin-Soo Kim

Received: 8 October 2007 / Accepted: 3 July 2008 / Published online: 9 August 2008
© Springer Science + Business Media B.V. 2008

Abstract The Web Services Resource Framework
(WSRF) is a set of specifications which define a
generic and open framework for modeling and ac-
cessing stateful resources using Web services. This
paper proposes DynaGrid, a new framework for
WSRF-compliant applications. Many new com-
ponents, such as ServiceDoor, Dynamic Service
Launcher, ClientProxy, and PartitionManager,
have been introduced to offer adaptive, scalable,
and reliable resource provisioning. All of these
components are implemented as standard WSRF-
compliant Web services, hence DynaGrid is
complementary to the existing GT4. Our exper-
imental evaluation shows that DynaGrid effec-
tively utilizes Grid resources by allocating only the
required number of resources adaptively accord-
ing to the amount of incoming requests, provid-
ing both the scalability and the reliability at the
same time.

E.-K. Byun
Division of Computer Science, Korea Advanced
Institute of Science and Technology (KAIST),
373-1 Guseong-dong, Yuseong-gu,
Daejeon 305-701, South Korea
e-mail: ekbyun@camars.kaist.ac.kr

J.-S. Kim (B)
Sungkyunkwan University,
300 Cheoncheon-dong, Jangan-gu, Suwon,
Gyeonggi-do 440-746, South Korea
e-mail: jinsoo@ca.kaist.ac.kr

Keywords WSRF · SOA · GT4 · Adaptive
resource provisioning · Distributed system

1 Introduction

Grid computing is the technology for building
Internet-wide computing environment integrating
distributed and heterogeneous resources [1]. Grid
computing has provided many scientific projects
with large computational power and storage ca-
pacity. In addition, Grid computing start to pro-
vide computational infrastructure for distributed
applications based on SOA(Service Oriented Ar-
chitecture). The recently proposed OGSA (Open
Grid Services Architecture) [2] and WSRF (Web
Services Resource Framework) [3] specifies the
base architecture and interfaces for Grid as the
infrastructure of SOA.

WSRF is a group of specifications which define
a generic and open framework for modeling and
accessing stateful resources using Web services. A
stateful resource (or a ServiceResource1) is a set
of data values that persist across, and evolve as a

1Note that the term resource used in WSRF should not be
confused with the resource in Grid computing, a general
term to denote a computational or storage resource. In the
rest of this paper, we use the term “ServiceResource” to
explicitly indicate the stateful resource defined in WSRF
specifications.

74 E.-K. Byun, J.-S. Kim

result of, Web service interactions. The execution
model of stateful Web services are explained in
Section 3.1.

In this paper, we argue that any Grid system
should meet the following requirements to pro-
vide enough resources to Grid applications effec-
tively and stably.

– Adaptability
A Grid system is composed of a large number
of heterogeneous resources on which diverse
applications are executed. Due to the dynamic
nature of the Grid, the amount of resources
demanded by each application may change
over time. Currently, businesses must acquire
more processing power and storage than they
need simply to cover peak times. For example,
Amazon.com and other web retailers must
ensure they can handle peak demand in hol-
iday season, while the IRS(Internal Revenue
Service) has a peak in demand in April. For
both entities, the hardware is under-utilized
the rest of the time [12].
Adaptive resource provisioning is necessary
to handle such a situation elegantly. New
resources should be allocated adaptively to
the application that requires more computing
power or storage. If the service request rate
decreases, deployed services can be removed
in order to save disk space or to reduce man-
agement costs. Unfortunately, most of the cur-
rent WSRF-based hosting environments do
not support adaptive resource provisioning
since each service needs to be deployed in ad-
vance on the statically-partitioned resources.

– Scalability
One of the most important mechanisms for
realizing adaptive resource provisioning is dy-
namic service deployment with which a new
service can be deployed on any resource in
the Grid without restarting of the container on
the target resource. Dynamic service deploy-
ment mechanisms would appear to necessitate
a service-specific centralized manager which
maintains the locations of currently deployed
ServiceResources and monitors the status of
Grid resources used by the service. Special
attention should be paid to design the Grid
system since such a centralized manager easily

becomes a performance bottleneck and poten-
tially harms the scalability of the system.

– Reliability
In the large-scale Grid system, the availability
of resources also tends to vary dynamically as
each resource may leave the system or crash
unpredictably at any time. In order to achieve
reliable services, the state of running services,
i.e. ServiceResources, should be kept avail-
able even when the current host leaves the
system or experiences unstability, overload, or
failure.

Globus Toolkit version 4 (GT4) [4] is a rep-
resentative Grid middleware supporting WSRF
in order to execute or access WSRF-compliant
Web services in a standard way. On GT4 Web
services can exploit heterogeneous Grid environ-
ments with platform-independent Web services
protocols and Java-based hosting environment.
However, since GT4 can’t support discussed re-
quirements, another complementary architecture
is required.

Therefore, this paper presents DynaGrid, a
new framework which offers adaptive, scalable,
and reliable resource provisioning for WSRF-
compliant applications. We develop a new dy-
namic service deployment mechanism to support
adaptive resource provisioning. To enhance the
scalability, our adaptive resource provisioning
mechanism does not rely on any centralized
manager. DynaGrid achieves this by providing
Client Proxy on the client side, a modified client
stub which transparently redirects the client’s re-
quest to the actual location of the corresponding
ServiceResource. DynaGrid also distributes the
cost of management and recovery by partition-
ing resources allocated for the service. For re-
liability, every ServiceResource in DynaGrid is
replicated to another resource and all the execu-
tion requests for the ServiceResource are logged
within the replica. In case the original resource
crashes, DynaGrid recovers the ServiceResource
by replaying logged requests on the replica.

We implemented DynaGrid framework as a
set of WSRF-compliant Web services so that they
are executed on GT4 container without any mod-
ification of GT4 container core. The experimen-
tal evaluations are performed on a real testbed

DynaGrid: an adaptive, scalable, and reliable resource... 75

with practical applications including the MapRe-
duce application [11]. The results indicate that
DynaGrid effectively utilizes Grid resources with
scalability and reliability.

The rest of the paper is organized as follows. In
Section 2, we briefly overview the related work.
Section 3 presents the execution model and the
overall architecture of DynaGrid. The proposed
mechanisms for adaptive resource provisioning
is explained in Section 4. DynaGrid’s architec-
ture for scalability and reliability are described in
Section 5 and Section 6, respectively. Section 7
presents the evaluation results. Finally, we con-
clude in Section 8.

2 Related Work

M. Welsh et al. proposed SEDA (staged event-
driven architecture) in [13]. SEDA enables In-
ternet services to be concurrently executed on
distributed resources and resource allocation and
load balancing are automatically handled. Hid-
ing complex resource management from client is
similar to DynaGrid. However, SEDA can sup-
port only specific application model named stages
which is a standard as Web service.

Djilali et al. investigated fault-tolerant envi-
ronment for RPC programming in Internet con-
nected Desktop Grid [14]. They exploit three-tier
architecture (client, coordinator, server), message
logging, hierarchical fault detection and passive
replication. These schemes were well known and
DynaGrid also exploits such schemes. DynaGrid
especially focuses on keeping ServiceResources
alive in WSRF environment under Grid resource
failure.

The latest version of GT4 provides remote and
dynamic service deployment mechanism called
HAND [5]. HAND adds an internal function
into the GT4 container which allows to reload
the deployed service list dynamically. However,
this approach is not generally applicable to other
hosting environments since this is only a GT4-
specific solution and requires administrative priv-
ilege to access the internal data structure of the
GT4 container.

DynaGrid is the first attempt to build adap-
tive resource provisioning framework for WSRF-

compliant applications with the emphasis on
scalability and reliability issues. Our dynamic
service deployment mechanism differs from
HAND in that our approach requires no modifi-
cation to the GT4 container. Moreover, Service-
Resource replication and recovery are unique to
DynaGrid and, to the best of our knowledge, any
similar mechanism has not been investigated for
WSRF in the previous work.

3 WSRF and DynaGrid Overview

3.1 Web Service Execution Model in WSRF

In this section, prior to explain the architecture
of DynaGrid, we will describe how stateful Web
services are executed on WSRF environment, how
Web services are accessed by clients and eventu-
ally how they construct distributed applications.
Web services require hosting environment called
Web service container, for example, Apache Tom-
cat and IBM Websphere, to be executed on a
network accessible host. GT4 container is one
of Java-based hosting environments for WSRF-
compliant Web services. GT4 container is exe-
cuted on each host and it allows Web services to
utilize the underlying resources of the host such
as CPU cycle, memory, and storage. A typical
step to run an application on a specific host is to
implement the application as a WSRF-compliant
service and deploy it into the container of the
host. Clients then access the container to execute
functions of Web service with SOAP and HTTP.

The most important feature of WSRF com-
pared to traditional Web service is that WSRF
defines standard interface for managing the state
of resources through Web services. According to
the WSRF specification, each client can create its
own ServiceResource and store the result data of
consequent Web service executions in its Service-
Resource to keep the client’s context on the Web
service. All information of Web service execution
of client is stored in ServiceResources and they
are completely independent from Web service
code. A Web service is accessed by client with an
endpoint reference containing a URI which points
both Web service code and the key representing a
specific ServiceResource.

76 E.-K. Byun, J.-S. Kim

Such separation of Web service code and
ServiceResource make it possible for client’s
context of the Web service to be resumed on
any hosting environment in which the corre-
sponding Web service code is deployed and
ServiceResource is located. DynaGrid realize
ServiceResources to be freely moved to any con-
tainer for adaptive and reliable execution of Web
service.

Such Web services can construct various types
of distributed applications. Firstly, Web service
itself can be a simple application which handles
requests from several clients as in traditional Web
servers. Secondly, Web service can be used in
a parallel application which performs the same
evaluation on diverse input data at the same time.
In this case, the core of evaluation is implemented
as Web service code and a special management
agent creates the necessary number of Service-
Resources and execute the Web service for dif-
ferent inputs. The execution may be handled in
distributed resources for the performance. Finally,
Web services can be components of a multi-tier
distributed application. In this case, one Web ser-
vice takes a role of the client of next tier’s Web
service. In each tier, plural ServiceResources may
be activated concurrently.

3.2 Overall Architecture of DynaGrid

In order to execute a Web service on GT4, Web
service have to be deploy on the GT4 container of
statically assigned Grid server so that all requests
from clients are handled in the pre-assigned con-
tainer. DynaGrid complements such limitation of
the existing WSRF-compliant Grid environment
especially GT4. DynaGrid enables Web services
to exploit any amount of Grid resource whenever
the amount of necessary computational resources
varies.

Figure 1 shows the overall architecture of
DynaGrid. DynaGrid is composed of four com-
ponents: ServiceDoor, Dynamic Service Launcher
(DSL), PartitionManager, and Client Proxy.
In DynaGrid framework, the components of
DynaGrid are independent Web services exe-
cuted on GT4 containers and DSL and Partition-
Manager are deployed on every container in
advance.

In order to be executed in DynaGrid, every
Web service has to deploy a specific Web service
named ServiceDoor on a trusted resource and
publish its address to clients. The ServiceDoor is
the entry point to access the Web service from
clients. Only through the ServiceDoor, clients can
create new ServiceResources. Clients feel that the
ServideDoor is the Web service itself and interact
as they access the standard Web service.

ServiceDoor customized for each Web services
is automatically created by DoorCreator which
DynaGrid provides. DoorCreator interprets
WSDL (Web Services Description Language),
WSDD (Web Services Deployment Descriptors),
and the corresponding Web service code.

Beyond ServiceDoor, Web service is actually
executed on the GT4 container of the dynam-
ically allocated Grid resource. Dynamic Service
Launcher (DSL) is a special Web service running
on every resource in DynaGrid. Through DSL,
DynaGrid can dynamically deploy new Web ser-
vices, create ServiceResources, and handle Web
service execution request on any GT4 container.
DSL also performs ServiceResource replication
and request logging.

DynaGrid groups DSLs which are allocated
to a specific Web service into several Service-
Partitions for the scalability reason. Grouping
DSLs is equivalent to grouping GT4 containers
since there is only one DSL on a GT4 con-
tainer. Each ServicePartition consists of at least
two DSLs and one PartitionManager. Partition-
Manager performs creation, replication, load
balancing, and recovery of ServiceResources.
In addition, it monitors the status of DSLs
and ServiceResources that belong to the same
ServiceParition.

ClientProxy is a modified client stub. It trans-
parently redirects the incoming service execution
request to the actual location of ServiceResource.
DynaGrid also provides a utility called Proxy-
Creator to automatically generate Client Proxy
code from WSDL of the target Web service.

In a service-oriented workflow system, a service
can be a client of other service. In such a case,
the client-side service should use Web service
interface to connect to the server-side service.
Therefore in DynaGrid framework, communica-
tion between component services of a workflow

DynaGrid: an adaptive, scalable, and reliable resource... 77

DSL

PartitionManager

Service A

ServiceDoor A

DSL Service A

DSL Service A

ServiceResource

Grid

Client Proxy

Client

DSL

ServicePartition

Replica: GT4
container

ServiceResource
creation

Service
invocation

ServiceResource
replication

PartitionManager DSL DSL

ServicePartition

DSL

PartitionManager

Service A

ServiceDoor A

DSL Service A

DSL Service A

ServiceResource

Grid

Client Proxy

Client

Client Proxy

Client

DSL

ServicePartition

Replica: GT4
container

ServiceResource
creation

Service
invocation

ServiceResource
replication

PartitionManager DSL DSL

ServicePartition

Fig. 1 The overall architecture of DynaGrid

system should pass the ServiceDoor of server-side
service.

In the following sections, we describe details
of these components and how they interact each
other to achieve adaptive, scalable, and reliable
resource provisioning.

4 Adaptive Resource Provisioning

The most distinctive feature of DynaGrid is that
Web services can be executed on any resource
whenever they want. To realize this, we developed
a new dynamic service deployment mechanism and
implemented it as the main function of DSL. Its
details will be discussed in Section 4.1.

DynaGrid dynamically allocates additional re-
sources when the current resources can’t prop-
erly support the increasing demand for Web
services and ServiceResources. Resource inade-
quacies happen in two situations. The first case
is when there are too many requests for Service-
Resource creation to accommodate them within
the allocated resources. The second case is when a
ServicePartition has no available resource to repli-
cate ServiceResources and replicas from failed re-
sources (cf. Section 6). In both cases, ServiceDoor
dynamically deploys the service into the DSL of a
new resource and inserts the DSL to the current
ServicePartition.

Because of the additional management step
caused by the existence of ServiceDoor, inter-
nal steps of ServiceResource creation and Web

service execution are modified. Section 4.2 and
Section 4.4 will explain the details.

4.1 Dynamic Service Deployment

Dynamic service deployment of DynaGrid is dis-
tinct from that of GT4. Typical Web service con-
tainers including the GT4 container launch the
service code directly when requests to a specific
Web service arrive. Each container maintains a
list of currently deployed services. Deploying a
new service requires adding a new entry into the
container’s deployed service list. Since the change
in the list is usually reflected only after the con-
tainer is restarted, the latest version of GT4 has
a special mechanism which accesses the internal
data structure of GT4 in order to reload the de-
ployed service list dynamically [5]. This is why the
dynamic service deployment mechanism in GT4
depends on the implementation of the GT4 con-
tainer. In DynaGrid, on the other hand, deploying
a new service does not require any interaction
with the underlying Web service container. Every
service deployment request is forwarded to an ap-
propriate DSL first. DSL then changes the execu-
tion environment to that of the target service and
launches the service code. In this way, DynaGrid’s
dynamic service deployment mechanism conforms
to WSRF specifications and thus can be used in
any WSRF-compliant hosting environments.

In order for DSL to manage dynamically de-
ployed services, a new type of ServiceResource

78 E.-K. Byun, J.-S. Kim

named Meta ServiceResource is introduced. Once
a new service is deployed, a new Meta Service-
Resource is created. It stores the information on
the deployed service including the service ID,
interface class, service options, and ClassLoader.
With the endpoint reference (EPR) of the Meta
ServiceResource, other components in DynaGrid
can decide the target Web service for Service-
Resource creations and service executions.

Typical steps of dynamic service deployment
in DynaGrid are as follows. (1) ServiceDoor
searches for an available resource using the in-
formation service of the Grid. (2) It transfers
the package file containing the service code and
ServiceResource class to the resource, and de-
ploys the service through DSL on the new re-
source. (3) DSL returns the EPR of the created
Meta ServiceResource. (4) Finally, the returned
EPR is inserted into a ServicePartition and the
PartitionManager begins to monitor the status of
the DSL.

4.2 ServiceResource Creation

The first step to invoke a Web service is to create a
ServiceResource and to obtain its EPR composed
of the key and the URI of the service. Clients ask
ServiceDoor to create a ServiceResource through
Web service interfaces. Addresses of all the cre-
ated ServiceResources are kept by ServiceDoor
so that clients can inquire the actual locations of
ServiceResources to ServiceDoor.

Figure 2 depicts typical steps to create a new
ServiceResource in DynaGrid. When Service-
Door receives the creation request, it assigns a

global key and select in which ServicePartition
new ServiceResource will be created. Service-
Door periodically gather state information from
every PartitionManagers to check how many
rooms each ServicePartition have to create new
ServiceResource. Based on that information,
ServiceDoor relays the creation request to the
PartitionManager of the most sufficient Service-
Partition.

PartitionManager then selects in which con-
tainer the new ServiceResource will be created.
Since PartitionManager also keeps the load in-
formation of each resources including CPU uti-
lization, amount of free memory and the number
of concurrent processes, it can easily select most
under-loaded resource. ServiceResource is cre-
ated through DSL in the selected resource and
the local EPR which specifies the actual location
of the newly created ServiceResource is returned
to ServiceDoor. ServiceDoor then inserts a global
key-to-local EPR mapping entry into the mapping
table. Note that the local EPR cannot be deliv-
ered to clients directly because DynaGrid may
dynamically relocate the ServiceResource if nec-
essary. Instead, ServiceDoor returns a new EPR
composed of the address of ServiceDoor and the
global key as a creation result to the client.

4.3 Web Service Execution

In general, clients use client stubs to invoke Web
services. A client stub translates Web service in-
vocation requests from the client to SOAP mes-
sages and sends them to remote Web service
engines (for example, the GT4 container). Since

ServiceDoor

DSL

Service A
ServiceResource

(Address of ServiceDoor, Global Key) DSL

Service A
Replica

ClusterMaster

1. Select a cluster
to create

2. Select DSLs
to create 3. Create ServiceResource and replica

4. Return EPR
Local EPR
(Address of DSL, key)

Client Proxy
Client

ServiceDoor

DSL

Service A
ServiceResource

(Address of ServiceDoor, Global Key) DSL

Service A
Replica

ClusterMaster

1. Select a cluster
to create

2. Select DSLs
to create 3. Create ServiceResource and replica

4. Return EPR
Local EPR
(Address of DSL, key)

Client Proxy
Client

Client Proxy
Client

Fig. 2 Steps for ServiceResource creation

DynaGrid: an adaptive, scalable, and reliable resource... 79

Resource1

Meta ServiceResource

for Service A

Container

DSL

EPR= DSL, ServiceA_Resource1

Resource 1

DSL ResourceHome

Meta ServiceResource

for Service B

Context - the configuration

is replaced for Service A

Resource 2

Resource 3

Resource 4

ServiceA_Resource1 execute

Container

Service A

EPR= ServiceA, Resource1

Resource 1

ResourceHome

Context of Service A

Resource 2

execute

Service B

(a) Service execution in GT4 (b) Service execution in DynaGrid

Users

ResourceHome

Resource 1

Users

Resource1

Meta ServiceResource

for Service A

Container

DSL

EPR= DSL, ServiceA_Resource1

Resource 1

DSL ResourceHome

Meta ServiceResource

for Service B

Context - the configuration

is replaced for Service A

Resource 2

Resource 3

Resource 4

ServiceA_Resource1 execute

Container

Service A

EPR= ServiceA, Resource1

Resource 1

ResourceHome

Context of Service A

Resource 2

execute

Service B

(a) Service execution in GT4 (b) Service execution in DynaGrid

Users

ResourceHome

Resource 1

Users

Fig. 3 The comparison of service execution mechanisms in GT4 and DynaGrid

DynaGrid has an enhanced service deployment
mechanism, Web service execution procedure is
slightly different compared to the traditional Web
service engines.

Figure 3a shows how a service is executed in
the GT4 container. When a container receives a
request from client, it parses the EPR composed
of the URI of the service and the ServiceResource
key. Then, it finds the corresponding service in the
deployed service list. ResourceHome of the ser-
vice retrieves the corresponding ServiceResource
according to the key. Finally, a thread called con-
text is started with the ServiceResource.

On the other hand, the service execution in
DSL proceeds as shown in Fig. 3b. When a con-
tainer receives a request, it starts a context to
execute with the key composed of both service
ID and a local ServiceResource key. DSLRe-
sourceHome parses the key to retrieve the Meta
ServiceResource related to the service ID and
the ServiceResource corresponding to the local
ServiceResource key. DSL changes the context’s
ClassLoader and service options according to the
information stored in the Meta ServiceResource
in order to configure the context compatible for
executing the service. Finally, DSL executes the
service with the ServiceResource and returns the
results to the client.

4.4 Discussion About Independent DSL

DLS can be said a service container on a host
service container and it seems inefficient. Frankly,
DSL can be implemented as a independent host
container such as GT4 container of Apathe
Tomcat instead of Web service. In such ap-
proach DSL’s core functionalities such as dy-
namic service deployment and ServiceResource
can be implemented more efficiently without us-
ing unnecessarily complex mechanisms such as
MetaServiceResource and ClassLoader reloca-
tion. The advantage of Web service form of DSL
is that DynaGrid can be easily applicable to VO
constructed with GT4 containers because deploy-
ing new Web service is much easier than deploy-
ing new container to all hosts. The contribution
of Web service implementation of DSL is that
it can complement the functionalities required
for DynaGrid without any modification of GT4
container.

5 Scalability in DynaGrid

Although ServiceDoor and dynamic service de-
ployment mechanism successfully enable adap-
tive resource provisioning, the presence of the

80 E.-K. Byun, J.-S. Kim

centralized ServiceDoor causes a long service
execution path and the possibility of being a
bottleneck. In this section, we describe two
clever designs to improve the scalability of
DynaGrid. First, distributed PartitionManagers
deal with most of complex management tasks such
as creation, replication, load balancing, and re-
covery on behalf of ServiceDoor. Second, Client-
Proxy allows to bypass ServiceDoor during Web
services invocations. The following subsections
elaborate upon the features provided by Partition-
Manager and ClientProxy.

5.1 ServicePartition

In DynaGrid, there must be a central manager
to handle ServiceResource creation and to con-
tinuously monitor the status of resources for
adaptive resource provisioning. If all these tasks
are performed in ServiceDoor, ServiceDoor can
be easily overloaded and DynaGrid cannot be
scalable as the demand for resources increases.
To prevent ServiceDoor from being overbur-
dened, DynaGrid delegates some management
tasks, such as ServiceResource creation, repli-
cation, recovery, and load balancing, to each
ServicePartition. ServicePartition is composed of
a PartitionManager and DSLs on which Web
services are deployed by the corresponding Ser-
viceDoor. Each PartitionManager independently
manages its own DSLs and ServiceResources.

When a PartitionManager receives the Service-
Resource creation request from ServiceDoor, it
first selects two most under-utilized DSLs in the
ServicePartition; one is for the original and the
other is for its replica. After successful creation of
the new ServiceResource and its replica on the se-
lected DSLs, the PartitionManager starts to keep

track of the local EPR and the replica location of
the new ServiceResource. The local EPR of the
newly created ServiceResource is returned to the
ServiceDoor.

PartitionManager periodically monitors DSLs
to see whether the resource is overloaded or
to collect the list of destroyed ServiceResources.
Those data are used to choose the best DSL when
PartitionManager tries to create new Service-
Resources or replicas. When it detects the failure
of DSL, the recovery mechanism is invoked (cf.
Section 6.2).

Along with the management of Service-
Partition, PartitionManager also reports its status
to ServiceDoor periodically. In order to prevent
PartitionManager from being a performance bot-
tleneck, the size of a ServicePartition is lim-
ited. When a ServicePartition is too overloaded,
ServiceDoor dynamically creates a new Service-
Partition to handle the increased service requests.
Through this hierarchical resource management
structure, we can improve the scalability of
DynaGrid.

5.2 Direct Web Service Invocation

In DynaGrid, ClientProxy generated by Proxy-
Creator replaces the client stub. Every Web ser-
vice client should load Client Proxy instance for
a specific ServiceResource. ClientProxy transpar-
ently redirects the request to the DSL where the
ServiceResource actually exists. Without Client-
Proxy, every service execution request should pass
through ServiceDoor, which will limit the scalabil-
ity of DynaGrid.

Figure 4 depicts steps for Web service invoca-
tion in DynaGrid. Every EPR known to clients is
composed of the address of the ServiceDoor and a

Client Proxy

Client

DSL

Service A

ServiceResource

DSL

Service A

Replica

Local EPR

(Address of DSL,

key)

1-1. Translate ERP

to local EPR
2-1. Execute2-2. Log request ClusterMaster

ServiceDoor

1-2. Query local EPR

If the cache is invalid

Local EPR

cache

Subscribe Local EPR change

Client Proxy

Client

DSL

Service A

ServiceResource

DSL

Service A

Replica

Local EPR

(Address of DSL,

key)

1-1. Translate ERP

to local EPR
2-1. Execute2-2. Log request ClusterMaster

ServiceDoor

1-2. Query local EPR

If the cache is invalid

Local EPR

cache

Subscribe Local EPR change

Fig. 4 Steps for Web service invocation

DynaGrid: an adaptive, scalable, and reliable resource... 81

global key as described in Section 4.2. On the first
access, ClientProxy obtains the local EPR accord-
ing to the global key from ServiceDoor and caches
the returned EPR internally. Thereafter, succes-
sive execution requests are delivered directly to
the ServiceResource bypassing ServiceDoor.

Since the location of the ServiceResource
may change, ClientProxy also obtains the EPR
of the PartitionManager from ServiceDoor and
subscribes to the PartitionManager to receive
the notification when the local EPR changes. If
the cached local EPR becomes invalid due to the
failure of the corresponding DSL, the up-to-date
EPR is immediately fetched from ServiceDoor.

6 Reliability in DynaGrid

The failure of a resource generally leads to total
loss of ServiceResources served on the resource. If
we know that a ServiceResource will be unacces-
sible, we can migrate it to another stable resource
for providing uninterrupted service. However, all
of the existing WSRF-compliant systems are de-
signed in such a way that each ServiceResource
is handled only on its birthplace since WSRF
specifications do not define any feature related
to ServiceResource relocation. DynaGrid resolves
this problem with the recovery mechanism cou-
pled with ServiceResource replication and request
logging.

We assume that ServiceDoor is executed on a
reliable host. Thus, DynaGrid provides no recov-
ery mechanism for ServiceDoor at this moment.
This assumption is acceptable since ServiceDoor
is designed not to be overloaded and it occupies
only one resource even if there are huge demands
for the service.

6.1 ServiceResource Replication

DynaGrid provides a mechanism for Service-
Resource replication. Every ServiceResource has
its own replica on another DSL in the same
ServicePartition. When a ServiceResource is cre-
ated, PartitionManager makes its replica on
another DSL by storing the first snapshot of the
ServiceResource. All the following execution re-
quests for the ServiceResource are logged within

the replica. By replaying logged requests on the
snapshot, ServiceResource can be recovered from
its replica. The new snapshot of a ServiceResource
is replicated whenever the specified number of re-
quests are logged. Eventually, each replica stores
the most recent snapshot and logs of requests is-
sued after the last snapshot. This policy can reduce
the time for replaying logged requests and save
the storage for logs. Making snapshot is also per-
formed if the execution request cause some side-
effect so that reply may break the consistency. We
add a field to the operation description in WSDL
to show whether the operation cause side-effect or
not. Unfortunately application developers should
check the field manually in the current version of
DynaGrid.

DSL provides a Web service method for trans-
ferring serialized ServiceResource object and
storing it in the corresponding replica. Before
making a snapshot of a ServiceResource, DSL
acquires the lock on the ServiceResource to make
sure the ServiceResource is not being modified by
any execution request. DynaGrid also provides a
group of APIs which help service developers to
easily implement their ServiceResources as Seri-
alizable objects.

A request logging is processed in the back-
ground during the request is executed. The result
is returned to the client only after both the logging
and the service execution finish successfully. Note
that a request logging may take more time than
the request execution since it requires one more
Web service invocation to the replica. Moreover,
if the DSL of the replica crashes, the logging
would be delayed further for the recovery of the
replica. In spite of such possibility of long delay,
our synchronous logging scheme is essential for
the reliability. Without synchronized logging, the
request log may be permanently lost since the
client may not be aware of the loss of the replica,
failing to re-issue the lost request. In this case,
ServiceResources can not be properly recovered.
In brief, all Web service requests from clients are
executed atomically.

We selected the number of replicas as just
one to minimize the overhead including network
traffic and storage. Section 7.4 verifies that the sin-
gle replica policy properly handles the reliability
of Web service. Nonetheless, DynaGrid can be

82 E.-K. Byun, J.-S. Kim

extended to manage multiple replicas to handle
the Grid environment composed of very volatile
resources and networks. In such cases, each Web
service execution may takes more time because it
waits until the log is stored in all replicas.

6.2 Recovery of DSL

In DynaGrid, the information on a Service-
Resource is distributed among DSL, Partition-
Manager, and ServiceDoor. DSL has all the
information on the original ServiceResources as
well as the snapshots and request logs of the repli-
cas. PartitionManager keeps a mapping table be-
tween the ServiceResource key and the addresses
of DSLs where the ServiceResources and their
replicas reside. ServiceDoor maintains the local
EPR of every ServiceResource.

The failure of a DSL can be detected in two
ways. First, since every DSL periodically notifies
its status to PartitionManager, PartitionManager
can notice that a DSL has failed if the notifica-
tion is not arrived for the configured time. In the
current DynaGrid, notifications are sent every 6 s
and the timeout value is 20 s. Second, the failure
of a DSL can be detected by ClientProxy when
it accesses the ServiceResource or by other DSLs

when they send request logs to the DSL. As soon
as Client Proxies or other DSLs see errors, they
ask PartitionManager to check the availability of
the ServiceResource or the replica. If Partition-
Manager observes the DSL failure, it starts to re-
cover all the ServiceResources and replicas based
on its mapping table. Some errors can be caused
by the incorrect location information in Client
Proxies or DSLs, in which case PartitionManager
returns the correct information and lets them
retry.

If a DSL fails, PartitionManager recovers all
the ServiceResources and replicas simultaneously.
Figure 5a illustrates the recovery steps for DSL
failure. To recover a replica, PartitionManager
creates a new replica on another DSL (step 2–2)
and immediately replicates the current snapshot
of the ServiceResource (step 3). PartitionManager
updates its ServiceResource mapping table (step
4) and informs the original DSL that the location
of the replica is changed. The recovery process
for a ServiceResource is similar, but Partition-
Manager first needs to order the DSL of the
replica to replay logged requests to make the up-
to-date ServiceResource (step 2–1). It then cre-
ates a new replica (step 2–2) and replicates the
snapshot of the ServiceResource from the replica

Replica B

ServiceResource B

(Replica : DSL#1)

(Replica : DSL#4)

DSL #1

ServiceResource A,

(Replica : DSL#2)

Replica B

PartitionManager

Replica A

ServiceResource A

(Replica : DSL#4)

Replica A

DSL #4

1. Detect and

notify the failure

Crashed!

DSL #2

DSL #32-2. Start

new replica

2-1. Recover

ServiceResource

3. Replicate

ServiceResource

Key Original Replica

A DSL #1 DSL #3

B DSL #2 DSL #1

A DSL #3 DSL #4

B DSL #2 DSL #4

4. Update mapping

(a) DSL recovery steps

Replica B

DSL #1

ServiceResource A,

(Replica : DSL#2)

Replica A

DSL #2

ServiceResource B,

(Replica : DSL#1)

PartutionManager_old

PartitionManager_new

Key Original Replica

A DSL #1 DSL #2

B DSL #2 DSL #1

5. Reconstruct mapping

ServiceDoor

Crashed!

DSL List :

DSL #1, DSL#2

(b) PartitionManager recovery steps

1. Detect and

notify the failure

Cluster #1 :

PartitionManager_new,

DSL #1, DSL#2

2. Start new PartitionManager instance

3. Send DSL list in the failed PartitionManager

4. Collect

information of

ServiceResource

and replica

Replica B

ServiceResource B

(Replica : DSL#1)

(Replica : DSL#4)

DSL #1

ServiceResource A,

(Replica : DSL#2)

Replica B

PartitionManager

Replica A

ServiceResource A

(Replica : DSL#4)

Replica A

DSL #4

1. Detect and

notify the failure

Crashed!

DSL #2

DSL #32-2. Start

new replica

2-1. Recover

ServiceResource

3. Replicate

ServiceResource

Key ReplicaKey Replica

A DSL #1 DSL #3A DSL #1 DSL #3

B DSL #2 DSL #1B DSL #2 DSL #1

A DSL #3 DSL #4A DSL #3 DSL #4

B DSL #2 DSL #4B DSL #2 DSL #4

4. Update mapping

(a) DSL recovery steps

Replica B

DSL #1

ServiceResource A,

(Replica : DSL#2)

Replica A

DSL #2

ServiceResource B,

(Replica : DSL#1)

PartitionManager_old

PartitionManager_new

Key ReplicaKey Replica

A DSL #1 DSL #2A DSL #1 DSL #2

B DSL #2 DSL #1B DSL #2 DSL #1

5. Reconstruct mapping

ServiceDoor

Crashed!

DSL List :

DSL #1, DSL#2

(b) PartitionManager recovery steps

1. Detect and

notify the failure

Cluster #1 :

PartitionManager_new,

DSL #1, DSL#2

2. Start new PartitionManager instance

3. Send DSL list in the failed PartitionManager

4. Collect

information of

ServiceResource

and replica

Fig. 5 The recovery process in DynaGrid

DynaGrid: an adaptive, scalable, and reliable resource... 83

(step 3). Finally, the mapping table is updated
(step 4).

PartitionManager can misjudge the failure of
DSL due to the network problem. Moreover, DSL
looks alive from client while it looks failed from
PartitionManager or ServiceDoor. In such cases,
requests already issued to the misjudged DSL are
properly finished and next requests are executed
on new DSL since PartitionManager notifies the
address of new DSL to ClientProxy of the client.
The misjudged DSL is removed from the allocated
DSL list of PartitionManager. After the network
problem is resolved, the DSL may be allocated to
the same Web service.

Client are also able to crash. If some clients be-
come unavailable, their ServiceResource remains
uncontrolled. These orphan ServiceResources are
swept according to the WS-Lifetime, one of
the WSRF standard specification. Every Service-
Resource has its own lifetime. In DynaGrid, DSLs
and PartitionManagers automatically remove old
ServiceResources and its replica and all logged
requests.

6.3 Recovery of PartitionManager

ServiceDoor can detect the failure of Partition-
Manager when the notification from Partition-
Manager times out. ServiceDoor can also sense
the failure if a creation request on the Partition-
Manager throws an error.

PartitionManager has a list of Service-
Resources in the ServicePartition and the
mapping table which maintains the locations of
ServiceResources and their replicas based on
the ServiceResource keys. This information is
duplicated in ServiceDoor and DSLs so that
DynaGrid can reconstruct them even though a
PartitionManager fails. Recall that ServiceDoor
knows the list of DSLs for all ServicePartitions
and each DSL keeps the locations of replicas of
all the ServiceResources it has.

The recovery steps for PartitionManager fail-
ure are depicted in Fig. 5b. When ServiceDoor
observes the failure of PartitionManager (step 1),
ServiceDoor spawns a new PartitionManager
(step 2) and sends the list of DSLs which were
managed by the failed PartitionManager (step 3).

The new PartitionManager contacts all the DSLs
to gather the list of ServiceResources and repli-
cas (step 4). Based on the collected information,
the new PartitionManager rebuilds the mapping
table (step 5). After the mapping table is rebuilt,
PartitionManager searches for ServiceResources
and replicas that were failed during the recovery
of PartitionManager, and recovers them if any.
Finally, it starts to manage the ServicePartition.

6.4 Load Balancing

Although PartitionManager always tries to
dispatch ServiceResource creation requests to
lightly-loaded DSLs, the imbalance in resource
utilization between DSLs is unavoidable since the
usage pattern of ServiceResources changes over
time. To cope with such a situation, DynaGrid
provides a load balancing mechanism using
ServiceResource replication.

All DSLs in each ServicePartition periodically
notify their resource status to their Partition-
Manager. If the status violates the configured load
balancing threshold, the PartitionManager starts
a load balancing mechanism. In the current im-
plementation of DynaGrid, the service provider
can set the various load balancing threshold based
on CPU utilization, the occupied memory size,
and the number of concurrent ServiceResources
serviced per DSL.

If the load balancing mechanism is activated,
PartitionManager selects one third of Service-
Resources in the busy DSL. The ratio ’one third’
is selected to balance between the overhead of
ServiceResource migration and the obtainable
room in the busy DSL. Of course, the optimal
ratio can vary according to the resource demand
change of the Web service. The current selec-
tion criterion is the load of the DSL on which
the replica is located. In other words, Service-
Resources whose replicas reside in lightly-loaded
DSLs are selected. Once a ServiceResource is
selected for load balancing, it is moved from the
overloaded DSL to another DSL in the same way
as the ServiceResource is failed. If the Service-
Resource cannot be accommodated in the exist-
ing DSLs, PartitionManager asks ServiceDoor to
allocate additional DSLs.

84 E.-K. Byun, J.-S. Kim

7 Evaluation

7.1 Environment and Benchmarks

We construct a testbed with 22 servers connected
by 100Mbps Ethernet. Table 1 summarizes the list
of servers used for our testbed. On each server,
Linux 2.4.20 and JDK 1.4.2 are installed and the
container of Globus Toolkit version 4.0.1 is used
as the hosting environment.

For our evaluation, we implemented three
practical applications as WSRF-compliant Web
services. Ray tracing service is a Web service
implementation of RAJA [7], an open source
ray tracer. Its ServiceResource maintains a result
buffer and a request queue on which scene data
and the required quality operations are placed.
Streaming buffer service exploits the server’s phys-
ical memory to buffer streaming data similar to
RBNB (Ring Buffered Network Bus) [8]. RBNB
has been used in many Grid systems includ-
ing NEESGrid [9] for data aggregation, stream-
ing, and synchronization. The ServiceResource
of streaming buffer service includes the buffered
data received from a source channel. Finally,
in order to evaluate the overall effectiveness of
DynaGrid, we developed a MapReduce [11] sys-
tem called GridMR on DynaGrid and executed
Apache Nutch [10], an open source search engine
written in Java, on GridMR.

As a microbenchmark, we also implemented
Add Web service, which simply performs add op-
eration and keeps the result of the calculation as
ServiceResource. The Add Web service is used to
analyze the overheads of DynaGrid.

7.2 Adaptive Resource Provisioning

We carried out two experiments to show that
DynaGrid adaptively manages its resources even
when the request rate from clients sharply in-
creases. In these experiments, DSLs are deployed
only on Pentium-4 servers in our testbed.

Table 1 List of servers in our testbed

Count CPU RAM SMP

8 Pentium-4 2.8 GHz 1 GB 2-Way
6 Pentium-4 2.8 GHz 512 MB No
8 Pentium-3 850 MHz 1.5 GB 2-Way

0

0.2

0.4

0.6

0.8

1

1.2

0 4 10 12
The number of concurrent clients

C
om

pl
et

io
n

ra
te

 (
re

qu
es

ts
/m

in
)

Static (5 DSLs)

Adaptive (upto 11 DSLs)

2 6 8

Fig. 6 The comparison of the request completion rate in
the ray tracing service

First, we compare the request completion rate
in the ray tracing service when the number of
clients increases from 1 to 12 as shown in Fig. 6.
We use total 11 DSLs in this experiment. For
static provisioning, we allocate only five DSLs
assuming the initial administrative decision sug-
gests that five resources are enough. For adaptive
provisioning, we allow DynaGrid to use all the
DSLs and each DSL is limited to serve only one
tracing request at a time so that the superfluous
requests can be directed to other DSLs. Each
client repeats the same request which takes about
10 min. After the number of clients reaches five
in Fig. 6, static provisioning does not appear re-
silient enough to support the unexpected resource
demand. However, adaptive provisioning makes
use of all the resources, effectively handling the
increased request rate.

Second, we measure the amount of occupied
memory by the streaming buffer service. Figure 7
depicts the change in the aggregated buffer size

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250

Elapsed time from start of buffering (sec)

A
gg

re
ga

te
d

bu
ffe

r s
iz

e
(1

00
M

B
) Static (4 DLSs)

Adaptive (upto 8 DSLs)

Fig. 7 The comparison of the aggregated buffer size in the
streaming buffer service

DynaGrid: an adaptive, scalable, and reliable resource... 85

of 24 streaming channels on which data are gen-
erated at 200 KB/s from sources. In the case of
adaptive provisioning, the service is initially de-
ployed on two DSLs and all channels are cre-
ated on them. On each DSL, the total memory
capacity allocated to buffers is limited to 100 MB.
When the total size of buffers reaches 100MB
in each DSL, the load balancing mechanism of
DynaGrid is triggered to relocate one third of
buffers. DynaGrid may allocate additional DSLs
(up to eight DSLs) to the streaming buffer service
to obtain more memory. In the static provisioning
case, the channels are evenly distributed over four
DSLs. Figure 7 presents that, with the adaptive
provisioning scheme, the aggregated buffer size
is constantly expanded until the streaming buffer
service fully occupies the configured memory of
every DSL. Meanwhile, the total buffer size is
limited to 400 MB in the static provisioning case.
Adaptive provisioning shows the slightly slower
growth rate because the streaming buffer service
is temporarily blocked during the relocation of
ServiceResources.

Although DynaGrid enables flexible resource
management, it introduces extra overhead com-
pared to normal Web services. Table 2 presents
the overhead of dynamic service deployment mea-
sured during the experiment shown in Fig. 6. Ini-
tializing a ServicePartition takes 1,009 ms where
starting PartitionManager instance and adding
two DSLs into the ServicePartition require 530
and 479 ms, respectively. We can observe that
most of the time during dynamic service deploy-
ment is spent to transfer the service code, whose
size is 1,890 KB for the ray tracing service. Even
if the overhead seems to be high, this overhead
can be amortized considering that dynamic ser-
vice deployment does not happen frequently. Two
previous experiments confirms this as the overall

Table 2 Overhead of dynamic service deployment in the
ray tracing service

Operation Time (ms)

Initializing a ServicePartition 1,009
Starting PartitionManager instance 530
Adding two DSLs into ServicePartition 479

Dynamic service deployment 2,050
Transferring service code (1,890 KB) 1,699

throughput is not seriously affected by dynamic
service deployment.

7.3 Scalability

7.3.1 Overhead of Service Execution in DynaGrid

Table 3 summarizes the ServiceResource cre-
ation and execution time compared to the nor-
mal Web service deployed on the GT4 container.
The ServiceResource creation time on DynaGrid
requires 654 ms on average which is almost five
times longer than the direct creation. This over-
head is mainly caused by the additional network
steps required for contacting ServiceDoor and
PartitionManager, creating a replica, and transfer-
ring the first snapshot. Again, this overhead can
be amortized since the ServiceResource creation
occurs only once.

A Web service invocation takes 174 ms includ-
ing the request logging in the replica. Note that,
without ServiceResource replication, DynaGrid
shows the same performance as direct execution
due to ClientProxy. If ClientProxy has an invalid
local EPR, DynaGrid requires additional 104 ms
to query ServiceDoor. The logging overhead of
70 ms can be hidden for time-consuming Web
services since the logging is a simple Web service
call to the replica DSL and it is performed concur-
rently with the actual Web service execution.

7.3.2 Improvement by ServicePartition

This experiment is to show the effectiveness
of PartitionManager in the ServiceResource

Table 3 Overhead of ServiceResource creation and exe-
cution on DynaGrid

Operation Time (ms) Ratio

Direct creation on GT4 130 1
Creation in DynaGrid 654 5.03

ServiceDoor/P.Manager latency 193 1.48
Replica creation 127 0.97
Copying the first snapshot 204 1.57
ServiceResource creation 130 1

Direct execution on GT4 105 1
Execution in DynaGrid 174 1.65

Request logging 70 0.67
Via ServiceDoor 275 2.62

Query ServiceDoor 104 0.99

86 E.-K. Byun, J.-S. Kim

creation. ServiceDoor and PartitionManagers
run on Pentium-4 servers, and DSLs on eight
Pentium-III servers. We compare the ServiceRe-
source creation throughput using one Partition-
Manager and four PartitionManagers. Figure 8
shows that four PartitionManagers achieve the
better throughput than a single PartitionManager.
The result is because, even though all Service-
Resource creation requests should pass Service-
Door inevitably, PartitionManager takes most
part of the creation procedure and these are
distributed among four PartitionManagers. The
figure also shows the maximum throughput of
ServiceDoor for Resource creation. Assuming
there is no overhead spent in PartitionManager
and DSL during creation, in our testbed 15
ServiceResources can be created in each second.

ServicePartition also makes DynaGrid scalable
by sharing the monitoring overhead. Partition-
Manager constantly collects monitoring messages
from DSLs in the ServicePartition to check the
status and the availability of each DSL. Assum-
ing that ServiceDoor directly monitors all the
DSLs, ServiceDoor can be easily overloaded by
a number of DSLs. In Fig. 9, we measure the
average CPU load of PartitionManager caused
by handling notification messages from DSLs. As
shown in Fig. 9, the monitoring overhead is not
negligible when there are hundreds of DSLs and
beyond. Using several ServicePartitions, however,
DynaGrid avoids a situation that one Service-
Partition becomes overloaded by too many DSLs.

0

3

6

9

12

15

100
Creation request rate (requests/sec)

T
hr

ou
gh

pu
t (

cr
ea

tio
ns

/s
ec

)

1 PartitionManager

4 PartitionManagers

No latency in
PartitionManager

0

3

6

9

12

15

1 10
Creation request rate (requests/sec)

T
hr

ou
gh

pu
t (

cr
ea

tio
ns

/s
ec

)

1 PartitionManager

4 PartitionManagers

No latency in DSL
& PartitionManager

Fig. 8 The comparison of the ServiceResource creation
throughput

0

10

20

30

40

50

0 100 200 300 400
The number of DSLs monitored

M
o

n
ito

ri
n

g
 o

ve
rh

e
a

d
(C

P
U

 lo
a

d
, %

)

Fig. 9 The overhead of monitoring according to the num-
ber of monitored DSLs (each DSL sends a notification
every 5 s)

7.3.3 Improvement by ClientProxy

As described in Section 5.2, ClientProxy caches
the local EPR of ServiceResource and sends
the requests to the ServiceResource directly.
In this subsection, we measure the scalability
improvement by the direct service invocation
quantitatively.

Figure 10 illustrates the throughput achieved
with the simple Add service in various set
of worker pool composed of Pentium-4 and
Pentium-3 servers. We use Pentium-4 servers for
ServiceDoor and PartitionManager. In the first
three cases, every request from client passes
through ServiceDoor. And the rest of the cases
use the direct Web service invocation using
ClientProxy.

The result presents that, without direct Web
service invocation, DynaGrid can not use the

0

20

40

60

80

100

120

T
h

ro
u

g
h

p
u

t
(e

x
e

c
u

ti
o

n
s
/s

e
c
)

5 DSLs(P4) - via ServiceDoor
11 DSLs(P4) - via ServiceDoor
19 DSLs(P4x11, P3x8) - via ServiceDoor
5 DSLs(P4SMP)
6 DSLs(P4)
8 DSLs(P3)
11 DSLs(P4x6, P4 SMPx5)
19 DSLs(P4x11, P3x8)

Fig. 10 The effect of ClientProxy for the scalability
through the comparison of aggregated throughput

DynaGrid: an adaptive, scalable, and reliable resource... 87

whole resources effectively since ServiceDoor be-
comes a bottleneck. Even when DynaGrid uses
the same number of DSLs, we can see much
higher throughput using the direct Web service in-
vocation technique. The result also shows that the
throughput with ClientProxy is scalable according
to the number of DSLs hosting the service.

7.4 Reliability

Table 4 shows the recovery costs due to the fail-
ure of PartitionManager or DSL under various
conditions. The time to recover a DSL which has
two ServiceResources and two replicas is only 358
ms. For a ServicePartition which hosts 36 Service-
Resources and 36 replicas on 18 DSLs, Partition-
Manager can be recovered from the failure in
2,039 ms. From Table 4, we can see that most
recovery can be completed in a couple of seconds.

DSLs may remain unrecovered until Partition-
Manager detects the failure of DSL or until
ServiceDoor detects the failure of Partition-
Manager. In the current configuration, Service-
Door and PartitionManager check the availability
of PartitionManager and DSLs, respectively,
every 20 s. In case both PartitionManager and
DSLs in the same ServicePartition fail at the same
time, few more seconds are necessary for the re-
covery of PartitionManager. Therefore, the time a
ServiceResource remains down can be more than
20 s in the worst case.

Latencies experienced by client due to the re-
covery of nodes keeping ServiceResource and
replica are 1085 ms and 631 ms respectively.
These latencies contain the time for checking the
failure through PartitionManager and the delay
caused by the recovery process. Since Service-

Table 4 Summary of recovery costs (SRs: Service-
Resources, reps: replicas)

Target Size Time (ms)

DSL 2SRs, 2reps 358
16SRs, 16reps 1,886
20SRs, 20reps 2,474

PartitionManager 4DSLs, 4SRs, 4reps 657
4DSLs, 40SRs, 40reps 825
18DSLs, 36SRs, 36reps 2,039

Resource recovery process contains checkpoint-
ing and replication of ServiceResource snapshot,
the recovery time mainly depends on the size of
ServiceResource.

Generally the size of ServiceResource hardly
exceeds tens of megabytes and consequently re-
covery time is smaller than 10 s. Moreover, the
failures do not happen frequently, the overhead
is acceptably small compared to the overall execu-
tion time.

The survival duration of resources participating
in the Grid can be inferred from the previous
study on peer-to-peer systems. From the observa-
tions on Kazaa and Gnutella, Saroiu et al. found
that the average session duration in peer-to-peer
system was about 60 min [6]. Notice that, for the
Grid system composed of under-utilized resources
of universities or research institutions, the average
survival duration would be much longer. More-
over, if a resource leaves the Grid system not by
the accident but by intention, the resource can ask
its PartitionManager to relocate ServiceResources
safely. Therefore, we can say that 60 min for the
average survival duration is a very cautious value
in the Grid environment.

In DynaGrid, a ServiceResource is lost when
the DSL of its replica crashes during the recovery
of the original ServiceResource, and vice versa.
Assume that the recovery of a ServiceResource
takes at most 30 s and the failure event follows the
poisson distribution with the average survival time
of 60 min as discussed in the previous paragraph.
Under these assumptions, the probability for loss
of ServiceResource is estimated to only 0.8%.
Remember that those parameter values repre-
sent a very unstable environment. If the average
lifetime of resource is extended to 12 hours, the
ServiceResource loss ratio is lowered to 0.07%
and DynaGrid can provide 99.93% of the Service-
Resource availability.

7.5 MapReduce on DynaGrid

We select Apache Nutch [10] to evaluate the ef-
fectiveness of DynaGrid in practical areas. Nutch
generates indexes of web sites crawled from input
URLs. The pseudo-code for Nutch is as follows.

88 E.-K. Byun, J.-S. Kim

Inject initial URLs into fetch list;
loop for depths

Filter fetch list to remove recently
fetched web pages;

Fetch web pages in fetch list;
Update fetch list with outgoing links in
fetched web pages;

end loop;
Generate indexes from fetched web pages;

The latest version of Nutch exploits MapRe-
duce [11] proposed by Google Inc. MapReduce
is a programming model for processing large data
sets in distributed environment. In MapReduce, a
set of key/value pairs are generated from another
set of key/value pairs in two step data processing:
Map and Reduce. Each Map and Reduce function
can be executed on distributed servers in parallel.

We develop GridMR, a distributed applica-
tion constructed with WSRF-based Web services
which implements the Map and Reduce function
and a GridMR library which is a central manager
implemented as attachable Java-library. GridMR
library created the necessary number of Service-
Resources named MRWorkers according to the
size of input data and start the execution. Each
MRWorker represent intermediate data of a Map
or Reduce function. Eventually a GridMR library
and several MRWorkers construct a distinctive
MapReduce application. Nutch then can inject the
input into or obtain the output from GridMR
through GridMR library.

MRWorker
for Map

Nutch

MRWorker
for Map

MRWorker
for Reduce

MRWorker
for Reduce

GridMR library

DSL

DSL

DSL

DSL

1

2

3

4

5
Input data Output data

Intermediate
Data

MRWorker
for Map

Nutch

MRWorker
for Map

MRWorker
for Reduce

MRWorker
for Reduce

GridMR library

DSLDSL

DSLDSL

DSLDSL

DSLDSL

1

2

3

4

5
Input data Output data

Intermediate
Data

Fig. 11 The execution of GridMR on DynaGrid

Table 5 The execution time (seconds) of Nutch with
GridMR on DynaGrid

Environment Input 1 Input 2 Input 3

Original (Single server) 591 1,435 2,862
GridMR (5 DSLs) 630 1,386 2,497
GridMR (11 DSLs) 383 997 1,832
GridMR (11 DSLs,1 failure) 407 1,059 1,906

Figure 11 describes the detail execution step
of GridMR on DynaGrid. Receiving the input
data from Nutch (step 1), GridMR library splits
the input data and transfers them to a set of
MRWorkers in charge of Map function (step 2).
They then execute Map function for the input
data and transfer the result, called the intermediate
data [11], to MRWorkers responsible for Reduce
function (step 3). After all Reduce MRWorkers
finish data processing, GridMR library collects the
output data from them (step 4) and returns to
Nutch (step 6).

In Table 5, we measured the execution times
of Nutch with GridMR for three different inputs
and compared them to the performance of the
original Nutch on a single server. For GridMR,
the number of MRWorkers for Map or Reduce
function is configured to be equal to the number
of DSLs. Table 5 reports that the performance of
Nutch improves as the number of DSLs increases.
However, the performance benefit of GridMR is
not significant compared to the original Nutch.
This is because GridMR uses the time-consuming
Web services protocols and the large amount of
data are transferred over the network. Notice that
GridMR successfully finishes the data processing
only with the negligible performance degradation
even though a failure occurs in one of DSLs.

8 Conclusions

In this paper, we propose DynaGrid, a new frame-
work which offers adaptive, scalable, and reliable
resource provisioning for WSRF-compliant ap-
plications. Adaptive resource provisioning is re-
alized by our new dynamic service deployment
mechanism and ServiceDoor. ClientProxy and
distributed PartitionManagers enhance the scal-
ability of DynaGrid. ServiceResource replication

DynaGrid: an adaptive, scalable, and reliable resource... 89

and recovery improve the reliability of DynaGrid.
DynaGrid is complementary to the existing Grid
middleware such as GT4, and can be used
with any Java-based WSRF-compliant hosting
environments.

Currently, DynaGrid doesn’t provide any ad-
ditional security mechanism. We assumed that
all containers in the same VO are trusted each
other and that only certified users can access the
host container by other security mechanism in
the other layer. We only focused on adaptability,
scalability and reliability of WSRF services and
ServiceResources. Security issues will be treated
in the future version of DynaGrid.

In the current version of DynaGrid, Service-
Door is assumed to reside in a reliable node.
However, practically centralized ServiceDoor can
affect the stability of Web service. As future work,
we will enhance the DynaGrid to be resilient
against the ServiceDoor failure. For example, du-
plicating ServiceDoor in one or more back-up
nodes can be a solution. We plan to release the
source code of DynaGrid into the public domain
in the near future.

Acknowledgement This work was supported by the
Korea Science and Engineering Foundation (KOSEF)
grant funded by the Korea government (MEST) (No. R01-
2007-000-11832-0).

References

1. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of
the Grid: enabling scalable virtual organizations. Lec-

ture Notes in Computer Science 2150. Springer-Verlag
(2001)

2. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The
Physiology of the Grid: An Open Grid Services
Architecture for Distributed. Globus Project, www.
globus.org/research/papers/ogsa.pdf (2002)

3. WSRF: OASIS, Web Services Resource Framework
(WSRF) TC, http://www.oasis-open.org/committees/
wsrf/

4. Foster, I.: Globus toolkit version 4: software for
service-oriented systems. Lecture Notes in Computer
Science, vol. 3779, pp. 2–13. Springer-Verlag (2005)

5. Qi, L., Jin, H., Foster, I., Gawor, J.: HAND:
highly available dynamic deployment infrastructure for
globus toolkit 4. 15th EUROMICRO International
Conference on Parallel, Distributed and Network-
Based Processing (2007)

6. Saroiu, S., Gummadi, P., Gribble, S.: A measurement
study of peer-to-peer file sharing systems. Proceedings
of Multimedia Computing and Networking (2002)

7. The Raja Project: http://raja.sourceforge.net (2007)
8. Creare Inc.: Ring buffered network bus, http://rbnb.

creare.com/RBNB (2007)
9. The NEESGrid Project: http://it.nees.org/ (2007)

10. Apache Nutch Project: http://nutch.apache.org/nutch
(2007)

11. Dean, J., Ghemawat, S.: MapReduce: simplified data
processing on large clusters. In: Proceedings of the 6th
Symposium on Operating Systems Design and Imple-
mentation (OSDI), pp. 137–150 (2004)

12. Beckett, J.: Scaling IT for the Planet, http://www.
hpl.hp.com/news/2001/oct-dec/planetary.html January
(2002)

13. Welsh, M., Culler, D., Brewer, E.: SEDA: an architec-
ture for well-conditioned, scalable internet services. In:
Proceedings of the Eighteenth Symposium on Operat-
ing Systems Principles (SOSP-18) (2001)

14. Djilali, S., Herault, T., Lodygensky, O., Morlier, T.,
Fedak, G., Cappello, F.: RPC-V: toward fault-tolerant
RPC for internet connected desktop Grids with volatile
nodes. In: Proceedings of the 2004 ACM/IEEE confer-
ence on Supercomputing (2004)

http://www.globus.org/research/papers/ogsa.pdf
http://www.globus.org/research/papers/ogsa.pdf
http://www.oasis-open.org/committees/wsrf/
http://www.oasis-open.org/committees/wsrf/
http://raja.sourceforge.net
http://rbnb.creare.com/RBNB
http://rbnb.creare.com/RBNB
http://it.nees.org/
http://nutch.apache.org/nutch
http://www.hpl.hp.com/news/2001/oct-dec/planetary.html
http://www.hpl.hp.com/news/2001/oct-dec/planetary.html

	DynaGrid: An Adaptive, Scalable, and Reliable Resource Provisioning Framework for WSRF-Compliant Applications
	Abstract
	Introduction
	Related Work
	WSRF and DynaGrid Overview
	Web Service Execution Model in WSRF
	Overall Architecture of DynaGrid

	Adaptive Resource Provisioning
	Dynamic Service Deployment
	ServiceResource Creation
	Web Service Execution
	Discussion About Independent DSL

	Scalability in DynaGrid
	ServicePartition
	Direct Web Service Invocation

	Reliability in DynaGrid
	ServiceResource Replication
	Recovery of DSL
	Recovery of PartitionManager
	Load Balancing

	Evaluation
	Environment and Benchmarks
	Adaptive Resource Provisioning
	Scalability
	Overhead of Service Execution in DynaGrid
	Improvement by ServicePartition
	Improvement by ClientProxy

	Reliability
	MapReduce on DynaGrid

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

