
Compression Support for Flash Translation Layer
 

Youngjo Park  and  Jin-Soo Kim 
 

Department of Embedded Software 

Sungkyunkwan University (SKKU), Suwon 440-746, South Korea 

{ thepark,  jinsookim } @ skku.edu 

 

 

ABSTRACT 

NAND flash memory has many advantageous features as a storage 

medium, such as superior performance, shock resistance, and low-

power consumption. However, the erase-before-write nature and 

the limited number of write/erase cycles are obstacles to the 

promising future of NAND flash memory. An intermediate 

software layer called Flash Translation Layer (FTL) is used to 

overcome these obstacles.  

In this paper, we present a flash translation layer called zFTL 

which has data compression support to reduce the amount of data 

written to flash memory. zFTL is based on page-level mapping, 

but it is extended to support on-line, transparent data compression 

and decompression. We implement zFTL on the MTD layer of the 

Linux kernel. Our experimental results with five workloads from 

Linux and Windows show that zFTL improves the write 

amplification factor by 27% ~ 92%. 

Categories and Subject Descriptors 

General Terms  

Design, Reliability, Performance, Experimentation 

Keywords  

Flash Memory, Flash Translation Layer (FTL), Storage Systems, 

Data Compression, Embedded System 

 

1. INTRODUCTION 
Recently, NAND flash memory has become a necessity not only 

in mobile devices but also in high-end laptops and desktop 

systems, thanks to its superior performance, shock resistance, and 

low-power consumption. With technology advancing, NAND 

flash memory’s capacity is getting larger and its price is getting 

lower.  

However, NAND flash memory has several limitations: 1) The 

previous data should be erased before a new data can be written in 

the same place. This is usually called erase-before-write 

characteristic. 2) Normal read/write operations are performed on a 

per-page basis, while erase operations on a per-block basis. The 

erase block size is larger than the page size by 64~128 times. In 

MLC (Multi-Level Cell) NAND flash memory, the typical page 

size is 4KB and each block consists of 128 pages. 3) Flash 

memory  has limited lifetime; MLC NAND flash memory wears 

out after 5K to 10K write/erase cycles. 

The aforementioned limitations are effectively hidden through the 

use of an intermediate software layer called Flash Translation 

Layer (FTL). Most FTLs employ address remapping, which  

writes an incoming data into one or more pre-erased pages and 

maintains the mapping information between the logical sector 

number and the physical page number. As the new data is written, 

the previous version is invalidated, and those obsolete pages are 

collected and then eventually converted to free pages via the 

procedure known as garbage collection. To cope with the limited 

write/erase cycles, FTLs also perform wear-leveling which 

distributes erase operations evenly across the entire flash memory 

blocks [1, 2]. 

Although garbage collection and wear-leveling improve the 

overall performance and lifetime, they cause additional writes. 

One way to quantify the added cost of an FTL is to measure the 

write amplification factor (WAF). The WAF is defined as the ratio 

of actual data written into NAND flash memory as compared to 

the actual data written by the host system. A lower WAF is a 

measure of efficient storage and housekeeping algorithms inside 

FTL, improving the overall life expectancy of NAND flash 

memory by lowering the total write/erase cycles required to 

manage the data stored in flash memory [3]. Basically, the WAF 

of hard disks is 1.0. The WAF can be as high as 10 on low-end 

SSDs, while Intel claims that its X25-M SSD keeps the WAF 

down to 1.1 [4]. 

In this paper, we present the design and implementation of  a flash 

translation layer called zFTL, which internally compresses or 

decompresses data. Data compression is an effective way to lower 

the WAF further down to below 1.0, thus improving FTL 

performance and lengthening flash lifetime. Specifically, this 

paper discusses and evaluates several design issues arise when we 

support on-line, transparent compression/decompression inside 

FTL. zFTL is based on page-level address remapping [5] and the 

compression unit size is set to 4KB. We focus on the management 

of the compressed data, assuming the actual compression/ 

decompression is done by dedicated hardware. We consider two 

compression algorithms, namely Zlib [6] and LZ77 [7]. 

We implement zFTL on the MTD layer of the Linux kernel 

2.6.32.4 and evaluate it on NANDSim [8], which emulates the 

behavior and timing of NAND flash memory with RAM. zFTL is 

evaluated with five realistic workloads from Linux and Windows 

 

This work was supported by Mid-career Researcher Program through 

NRF grant funded by the MEST (No. 2010-0000114). 

19



XP. Our results show that the use of data compression improves 

the WAF up to 92%. 

The rest of the paper is organized as follows. The next section 

discusses the related work. Section 3 introduces the overall 

architecture and design issues of zFTL. Section 4 presents the 

experimental results and Section 5 concludes the paper. 

2. RELATED WORK 
Data compression techniques have been studied in various layers 

in computer systems. JFFS2 [9] is a representative flash-aware file 

system inspired by the log-structured file system [10]. JFFS2 

provides an option to use zlib-based data compression. CramFS 

[11] and SquashFS [12] are compressed read-only file systems, 

mainly targeting the root file system in small embedded systems. 

Hyun et al. [13] proposed LeCramFS which modifies CramFS for 

NAND flash memory. These flash-aware file systems do not 

require FTL, as they work directly on NAND flash memory.  

Yim et al. [14] studied a flash compression layer for SmartMedia 

card system, proposing an internal packing scheme (IPS) to 

manage internal fragmentation. The IPS best-fit scheme can 

reduce the internal fragmentation effectively, but it may incur 

some read overhead as unrelated logical sectors are packed 

together to minimize internal fragmentation [14]. Chen et al. [15] 

proposed another internal packing scheme called IPS real-time. 

The IPS real-time scheme splits the compressed data and stores 

them into two consecutive flash pages, but it has no consideration 

for random reads; it needs to access two flash pages to read a 

sector which spans two pages. Both approaches focused only on 

reducing the internal fragmentation, without considering other 

issues such as mapping information management and garbage 

collection under the presence of compressed data. In addition, 

they are devised for old 512-byte flash page size, which has been 

outdated by new generations of flash memory chips. An SSD 

controller from SandForce Inc. is known to use real-time data 

compression and data deduplication to lower the WAF as low as 

0.5 [4]. However, its internal architecture has not been published 

in detail.  

Special hardware compressor/decompressor engines have been 

proposed in several literatures. IBM’s Memory Expansion 

Technology (MXT) [16] performs compression and 

decompression between the shared cache and the main memory, 

to expand the effective main memory size using hardware 

implementation of the LZ77 algorithm [17]. Benini et al. [18] 

investigated a hardware-assisted data compression for memory 

energy minimization. They describe the implementation of 

hardware compression algorithms including LZ-like one in detail 

and show no penalty in performance. Kjelso et al. [19] proposed 

the X-Match compression algorithm for main memory, which is 

easy to implement in hardware. X-Match is another variant of 

LZ77, differing in that phrases matching works in four bytes unit 

[20]. For brevity, we assume data compression/decompression is 

assisted by special hardware that is fast enough to hide its 

overhead.  

3. zFTL 

3.1 System Architecture 
Figure 1 shows the overall architecture of zFTL. File systems 

issue read/write requests to zFTL. The size of each request is a 

multiple of the disk sector size (512 bytes). For write requests, 

zFTL aggregates the requested data in the write temporary buffer, 

whose size is equal to the compression unit size. If the write 

temporary buffer is full, the data in the buffer is compressed and 

then appended into the flash write buffer. The size of the flash 

write buffer is a multiple of the flash page size (4KB in MLC 

NAND). A single flash page size may hold a number of 

compression units depending on the compression ratio.  

When the flash write buffer has not enough space for the 

incoming compressed data, the write buffer is flushed into flash 

memory. Before flushing data, the corresponding logical sectors 

are remapped to new physical pages by zFTL. In case the previous 

data is available in any of buffers, it is removed from the buffer, 

ensuring data consistency and preventing the invalidated data 

from being flushed into flash memory. If the number of free 

blocks is below a certain threshold, zFTL initiates garbage 

collection to reclaim erase blocks. We will discuss the garbage 

collection process of zFTL in detail in Section 3.5. 

For reads, zFTL first searches the requested data in the write 

temporary buffer as it has, if any, the most recent version of the 

data. When the search fails, zFTL looks up the data in the flash 

write buffer. If the data is found in the flash write buffer, the 

compressed data is decompressed and then loaded into the read 

temporary buffer. When the data is still not found in the flash 

write buffer, zFTL examines the read temporary buffer and the 

flash read buffer. Note that the two write buffers should be looked 

up before the two read buffers, as they may keep the up-to-date 

data. While the requested data is stored in any of these buffers, the 

read request can be satisfied without issuing any flash read 

operations. Otherwise, zFTL needs to decompress the requested 

data after reading the corresponding page from flash memory. The 

detailed read/write flows in zFTL are depicted in Figure 2. 

3.2 Compression Unit 
The unit of data compression is an important factor affecting the 

compression ratio and speed. In particular, dictionary-based 

algorithms such as LZ77 have the characteristic that the bigger 

compression unit tends to yield the better compression ratio. This 

is because these algorithms replace a repeated pattern of strings 

within the compression unit by a much shorter but uniquely 

identifiable string. 

We have considered two options related to the unit of 

compression. One is to compress the variable-sized data as a 

whole as it is delivered by a single write request from the file 

system. In Linux, the number of sectors written by a write request 

is usually a multiple of the file system block size and can be as 

large as 256 sectors (i.e., 128KB) for sequential writes. Thus, this 

scheme can improve the overall compression ratio and reduce the 

number of mapping entries. However, the use of the variable-sized 

compression unit presents a number of issues that need careful 

handling. For example, when a portion of the compressed data is 

read by a read request, the entire compressed data should be 

fetched from flash memory for decompression. An even worse 

scenario occurs when the compressed data is partly updated by a 

later write operation. In this case, the original data should be 

merged with the new data after decompression. Then, it can be 

either recompressed and stored into flash memory as a single 

compression unit, or split into two or three pieces each of which is 

separately compressed and stored. 

20



            

Figure 1. System architecture          Figure 2. Read/Write flows in zFTL 

 

Another option is to compress a fixed size of data at a time. In 

fact, any power of two multiple of the sector size, such as 512B, 

1KB, 2KB, 4KB, 8KB, etc., can be used as the compression unit 

size. As discussed before, the use of larger compression unit size 

is favored for better compression ratio. However, if the 

compression unit size becomes too large, the system suffers 

from unnecessary overhead when the compressed data is partly 

read or updated. Moreover, enlarging the compression unit size 

has a diminishing return in the compression ratio. Burrows et al. 

[21] and Yim et al. [14] have shown that there is no significant 

difference in the compression ratio for 2KB to 8KB compression 

unit sizes. 

For the above reasons, zFTL uses a fixed compression unit size 

of 4KB (simply called a block, for short). Since most file 

systems in Linux use 4KB as the file system block size, they 

rarely issue I/O operations smaller than this size and the 

read/write request sizes are usually a multiple of 4KB. In 

addition, the compression unit size of 4KB is large enough to 

achieve good compression ratio.  

3.3 Compression Algorithms 
The choice of compression algorithms is also one of the 

important design issues, because it determines the speed of 

compression/decompression, the compression ratio, and the 

complexity of hardware implementation. However, the 

efficiency of various compression algorithms is beyond the 

scope of this paper. We currently implement zFTL with Zlib [6] 

and LZ77 [7] algorithms. Both algorithms are very well known 

for their performance and reliability. Especially, efficient 

hardware implementations of LZ77 or variants have been 

proposed in several previous studies.  

3.4 Address Mapping 
zFTL is based on page-level mapping where a per-page mapping 

entry from the logical page number to the physical flash page 

number is maintained in the Page Mapping Table (PMT). 

Similar to other FTLs with page-level mapping, PMT is 

accessed by the logical page number. To support data 

compression, zFTL extends the structure of PMT slightly. Each 

32-bit mapping entry includes the incompressible block flag 

(FLAG) and the page index (IDX), as well as the physical page 

number (PPN) where the page is stored. FLAG indicates whether 

the corresponding logical page is compressed or not. Since a 

single flash page may accommodate compressed blocks from 

several logical pages in zFTL, IDX is used to represent the 

relative position of each logical page within the physical page. 

Figure 2 illustrates an example of PMT in zFTL. Note that PMT 

entries for the logical page number 100, 101, and 102 have the 

same value for the PPN field, representing that the data for those 

logical pages are compressed and stored in the same physical 

page number 100 in the order indicated by the IDX value. 

Some data are inherently incompressible as they come from 

multimedia files or compressed files. It is pointless to compress 

these data again inside zFTL as it will not save any space. zFTL 

identifies these incompressible blocks based on the resulting 

size after compression. If the size of a block after compression is 

not small enough, the block is stored in flash memory as is, 

setting the corresponding FLAG to 1 (cf. the PMT entry of the 

logical page number 103 in Figure 2).  

Depending on FLAG, the physical flash page has two different 

structures. For incompressible blocks (FLAG = 1), the entire page 

is devoted to the (uncompressed) original data block. When the 

page size is larger than the compression unit size, each data 

block is identified by IDX. On the other hand, when the value of 

FLAG is 0, the related physical page includes such information as 

the total number of compressed blocks in the page, a set of 

offsets for each compressed block, and a set of compressed 

blocks, as depicted in Figure 2. The offset indicates the last byte 

position of the corresponding compressed block in the page.  

3.5 Garbage Collection 
As in other FTLs, zFTL reserves a set of erase blocks (5% of the 

total erase blocks, by default) to absorb the incoming write 

requests. When zFTL runs out of available erase blocks, garbage 

collection is invoked to reclaim the space allocated to obsolete 

pages. zFTL uses the greedy policy to choose a victim erase 

block, i.e., the erase block which has the smallest number of 

valid pages is selected as a victim. During garbage collection, 

the remaining valid pages in the victim erase block are copied 

into another erase block and the victim erase block is cleared to 

be used later.  

Since each physical page normally contains the data from more 

than one logical page in zFTL, it can be partially invalidated by 

subsequent write operations. Therefore, zFTL should be able to 

identify the current status of each compressed data stored in the 

21



same physical page, in order to copy only the valid data during 

garbage collection. For this reason, zFTL maintains the Page 

Status Table (PST) in memory. Unlike PMT, PST is indexed by 

the physical page number, and each PST entry keeps track of the 

number of valid logical pages and the bitmap for each logical 

page stored in the given physical page number. The bitmap 

indicates whether the corresponding logical page is valid or not. 

 

 # of valid pages Bitmap for valid pages 

PPN 100 0 1 0 0 1 1 0 0 

 

Figure 3. An example PST (Page Status Table) entry 

 

Figure 3 shows an example 8-bit PST entry designed for 4KB 

physical pages. Figure 3 represents that two logical pages (the 

second and the third one) are currently valid in the physical page 

number 100. Under this PST structure, up to five logical pages 

can be packed into a 4KB physical page. Our experiments show 

that about three compressed logical pages are stored in a single 

4KB flash page on average for the most well-compressed 

workloads. Thus, we believe the 8-bit entry is sufficient for 4KB 

flash pages. If the page size is increased, we can add a few more 

bits to each PST entry.  

3.6 Internal Fragmentation 
The flash page size is fixed whereas the resulting data block size 

varies after compression. Unless we allow the compressed block 

to be stored in more than one page, internal fragmentation is 

unavoidable. The relative amount of internal fragmentation will 

be getting smaller as the page size becomes larger than the 

compression unit size. Considering the recent trend in NAND 

flash memory architecture where the page size grows 

progressively larger, the impact of internal fragmentation can be 

of minor significance, compared to the benefit of compression 

support. 

Currently, zFTL does not implement any special scheme to 

reduce internal fragmentation. zFTL simply packs the incoming 

data in the order they are issued from the upper layer. We leave 

a more comprehensive analysis and possible optimization on 

internal fragmentation for future work. 

3.7 Memory Requirement 
The memory requirement of zFTL is comparable to other FTLs 

with page-level mapping. The use of block-level mapping can 

decrease the memory requirement by a factor of 64~128, but the 

increasing number of SSDs are adopting page-level mapping 

due to its superior performance and higher flexibility. Since 

other page-mapping FTLs also keep page-level address mapping 

information in memory (i.e., PMT in zFTL), only the memory 

used by PST is the added cost in zFTL, which requires 512KB 

for 2GB flash memory with 4KB page size. 

If PMT and PST are too large to be accommodated in memory, 

zFTL may use the selective caching method used in DFTL [5], 

where the whole mapping table is stored in flash memory and 

only the needed part of the mapping table is loaded into memory. 

 

4. EVALUATION 

4.1 Experimental Setup 
We evaluate the performance of zFTL on an x86-based Linux 

system equipped with Intel Core2Duo E8400 3.0GHz CPU, 

4GB DDR2 DRAM, and 64-bit Ubuntu 9.04 distribution. zFTL 

is implemented as one of block devices in the MTD (Memory 

Technology Devices) layer of the Linux kernel 2.6.32.4, on top 

of which the ext4 file system is mounted. The compression 

support can be turned off anytime using the /proc interface. 

Instead of bare NAND flash chips, we use the MTD NANDSim 

module which emulates the behavior and timing of NAND flash 

memory with the host RAM. We configure the parameters of 

NANDSim to model a 2GB MLC NAND flash memory where 

the page size is 4KB and each erase block has 128 pages. The 

latency of read, write, and erase operation is set to 60usec, 

800usec, and 1.5ms, respectively [22]. 

 

Table 1. Workloads used in this paper 

Workload 
Write 

Requests 

Read 

Requests 

Sectors 

Written 

Sectors 

Read 

UNTAR 116,922 15,722 935,376 125,776 

COMPILE 112,775 32,739 902,200 261,912 

TEMP 145,388 7 1,163,104 56 

WINDOWS 45,788 4 366,304 32 

OFFICE 243,503 8,284 1,948,024 66,272 

 

Table 1 shows the basic information of five workloads used in 

this paper. UNTAR and COMPILE are the real workloads executed 

on ext4/zFTL, which untar and compile the source code of the 

Linux kernel 2.6.32.4, respectively. TEMP denotes the set of 

files downloaded from the Internet while the Firefox web 

browser visits such sites as Facebook, E-bay, Amazon, Yahoo, 

Youtube, etc. We periodically collect the files in the browser’s 

temporary directory and then copied them onto zFTL.  

WINDOWS and OFFICE workloads are mainly used to investigate 

the compression ratios of the files used in Windows XP. Since 

zFTL is implemented only on the Linux platform, we first 

extract file system access traces using the ProcessMonitor tool 

[23] while Excel, Word, and Powerpoint from Microsoft Office 

2007 are installed on Windows XP. Then, the installation 

process has been mimicked on Linux using the following steps: 

1) The trace is postprocessed to identify the existing Windows 

files which are touched during the installation. Those files are 

copied to zFTL (WINDOWS). 2) File access traces obtained from 

Windows are replayed (OFFICE). 

To model the aged file system, we initialize zFTL by running 

Postmark 1.51 [24] before each experiment. Postmark is 

configured with 25K files, 50K transactions, and file sizes 

ranging from 30KB to 80KB. The total amount of data written 

by Postmark is about 3GB. During this preconditioning phase, 

we turn off the compression support in zFTL.  

4.2 Average Compression Ratio 
Figure 4 shows the average compression ratios for each 

workload with Zlib and LZ77 algorithms. The compression ratio 

is defined as the ratio of the compressed block size to the 

22



uncompressed data block size (4KB) 1. The compression ratio 

varies from workload to workload, but Zlib shows slightly better 

compression ratios than LZ77 in general. Workloads which 

manipulate text-based files such as UNTAR and COMPILE exhibit 

fairly good compression ratios as low as 27% with Zlib. On the 

other hand, TEMP shows the worst compression ratio since most 

files are JPEG files and movie clips which have been already 

compressed. We found that Windows files touched during the 

installation of Microsoft Office also reveal good compression 

ratios. The compression ratio of OFFICE is higher than that of 

WINDOWS by 29% (Zlib) or 24% (LZ77). This is because 

OFFICE handles many CAB files which are in the Microsoft 

compressed archive format. 

 

Figure 4. Average compression ratio 

 

4.3 Write Amplification Factor (WAF) 
Figure 5 compares the WAF before and after the compression 

support is enabled. The WAF breaks down according to the 

source of writes; it is either for the actual data writes or for the 

writes issued during garbage collection. The upper bar indicates 

the amount of additional writes caused by garbage collection, 

which is as high as 3.29 (in COMPILE) when the compression is 

not enabled. 

   

Figure 5. Write amplification factor (4KB page size) 

                                                                 

1  The compressed block size includes the housekeeping information 

such as the number of compressed blocks and the offset of each 

compressed block, but does not include the wasted space in a page 

due to the internal fragmentation. 

UNTAR and COMPILE show very low WAFs under zFTL due to 

their low compression ratios. Since the amount of data written 

into NAND flash is reduced effectively, garbage collection 

hardly occurs. As a result, their WAFs are improved by 88% 

(UNTAR) and 92% (COMPILE) with the Zlib algorithm. The 

WAFs for TEMP, WINDOWS and OFFICE are also improved by 

36%, 46% and 62%, respectively, with Zlib. As expected, TEMP 

shows the least performance improvement. The LZ77 algorithm 

performs slightly worse than Zlib, resulting in improvements in 

WAFs by 27% (TEMP) ~ 89% (COMPILE).  

4.4 Garbage Collection Overhead 
Figure 6 presents the total time spent for garbage collection. It is 

estimated by multiplying the number of flash read, write, and 

erase operations during garbage collection by the respective 

operational latency of MLC NAND flash memory. The final 

results are normalized to the values obtained when the 

compression support is disabled.  

In UNTAR and COMPILE workloads, the garbage collection 

overhead is almost negligible because of good compression 

ratios. TEMP has the largest overhead, but it is still better than 

the case without any compression. We observe that the overall 

trend of Figure 6 is highly correlated to that of Figure 4. 

 Figure 6. Normalized G.C. overhead with 4KB page size 

 

4.5 Internal Fragmentation  

Figure 7.  Average percentage of wasted space in a page 

23



Figure 7 illustrates the average percentage of wasted space in a 

flash page. The amount of wasted space is measured when the 

contents of the flash write buffer is flushed into NAND flash 

memory. The overall tendency is that the percentage of wasted 

space gets smaller as the page size is increased from 4KB to 

32KB. The sudden increases in UNTAR and COMPILE for the 

32KB page size are due to the limit in the bitmap size of the 

PST entry. When the page size is 32KB, we expand the bitmap 

size to 32 bits so that each page can hold up to 32 compressed 

blocks. However, this was not sufficient for UNTAR and 

COMPILE. 

One way to improve space utilization is to use multiple flash 

write buffers. With more than one flash write buffer, the 

incoming compressed block is more likely to find a flash write 

buffer that can accommodate its data. However, according to our 

experiments, this scheme reduces the wasted space only by up to 

7% with the 4KB page size. The benefit gets even smaller as the 

page size becomes larger. Moreover, the use of multiple flash 

write buffers may harm the sequential read bandwidth since the 

sequentially-written data can reside in different flash pages.  

5. CONCLUSION AND FUTURE WORK 
Due to inherent characteristics of NAND flash memory which 

does not allow in-place update and wears out after repeated 

write/erase cycles, flash translation layers have been using a 

variety of techniques to enhance the overall performance and 

endurance. Many previous researches on flash translation layers 

have focused on efficient address mapping and garbage 

collection schemes. However, another orthogonal issue that can 

reduce the amount of data written into NAND flash memory is 

to support data compression inside the flash translation layer.  

In this paper, we present zFTL, a flash translation layer which 

supports on-line, transparent data compression. We have 

examined several design issues to support data compression in 

flash translation layer, including some required extensions in 

address mapping and garbage collection. We have implemented 

zFTL in the MTD layer of the Linux kernel. Through the use of 

real and emulated workloads, we confirm that zFTL improves 

the write amplification factor by up to 92%. 

Our future work includes the analysis of hardware 

compressor/decompressor engine in terms of cost, performance 

and energy consumption. We also plan to evaluate zFTL with 

more diverse workloads. 

6. REFERENCES 
[1] A. Kawaguchi, S. Nishioka, and H. Motoda, “A flash-memory 

based file system,” In Proc. of the USENIX Winter Technical 

Conference, pp. 155–164, 1995. 

[2] Intel Corporation, “Understanding the Flash Translation Layer 

(FTL) Specification,” Application Note AP-684, Dec, 1998. 

[3] Intel Corporation., http://www.intel.com/cd/channel/reseller/asmo-

na/eng/products/nand/feature/index.htm 

[4] AnandTech, http://www.anandtech.com/show/2899/3 

[5] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a flash translation 

layer employing demand-based selective 

caching of page-level address mappings,” In Proc. of the 

Architectural Support for Programming Languages and 

Operating Systems, pp. 229–240, 2009. 

[6] J-L Gailly and M. Adler, “Zlib Compression Library,” 

www.zlib.net. Accessed Jan, 2010. 

[7] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data 

Compression,” IEEE Transactions on Information Theory, vol. 23, 

no. 3, pp. 337–343, May, 1977. 

[8] NAND simulator, http://linux-mtd.infradead.org/faq/nand.html. 

[9] D. Woodhouse, “JFFS:The Journaling Flash File System,”  In Proc.  

of the Ottawa Linux Symposium(OLS), Red Hat, Inc., 2001. 

[10] M. Rosenblum, and J.K. Ousterhout, “The design and 

implementation of a log-structured file system,” ACM 

Transactions on Computer Systems, vol. 10(1), pp. 26–52,  Feb, 

1992. 

[11] CramFS Documents, 

http://lxr.linux.no/source/fs/cramfs/README 

[12] SquashFS Homepage, http://squashfs.sourceforge.net 

[13] S. Hyun, H. Bahn, and K. Koh,”LeCramFS: An Efficient 

Compressed File System for Flash-Based Portable Consumer 

Devices,” IEEE Transactions on Consumer Electronics, vol. 53, 

no. 2, pp. 481–488, May, 2007. 

[14] K.S. Yim, H. Bahn, and K. Koh, “A flash compression layer for 

SmartMedia card systems,” IEEE Transactions on Consumer 

Electronics, vol. 50, no.1, pp. 192–197, Feb, 2004. 

[15] C.H. Chen, C.T. Chen, and W.T. Huang, “The real-time 

compression layer for flash memory in mobile multimedia 

devices,” International Conference on Multimedia and 

Ubiquitous Engineering, pp. 171–176, Apr, 2007. 

[16] R.B. Tremaine, P.A. Franaszek, J.T. Robinson, C.O. Schulz, T.B. 

Smith, M.E. Wazlowski, and P.M. Bland, “IBM Memory 

Expansion Technology (MXT),” IBM Journal of Research and 

Development, 45(2):271–285, Mar, 2001. 

[17] P.A. Franaszek, J. Robinson, and J. Thomas, “Parallel 

Compression with Cooperative Dictionary Construction,” In Proc.  

of the Data Compression Conference, pp. 200–209, Mar/Apr, 

1996. 

[18] L. Benini, D. Bruni, A. Macii, and E. Macii, “Hardware-Assisted 

Data Compression for Energy Minimization in Systems with 

Embedded Processors,” In Proc.  of Design, Automation and Test 

in Europe Conference and Exhibition, pp. 449–453, 2002. 

[19] M. Kjelso, M. Gooch, and S. Jones, “Design and Performance of a 

Main Memory Hardware Data compressor,” In proc. of the 22nd 

EUROMICRO Conference, pp. 2–5, Sep, 1996. 

[20] C.D. Benveniste, P.A. Franaszek, and J.T. Robinson, “Cache-

memory interfaces in compressed memory systems,” IEEE 

Transactions on computers, vol. 50, no. 11, pp. 1106–1116, Nov, 

2001 

[21] M. Burrows, C. Jerian, B. Lampson, and T. Mann , “On-line data 

compression in a log-structured file system,” In Proc. of 

Architectural Support for Programming Languages and 

Operating System, pp. 2–9, 1992. 

[22] Samsung Elec., 2Gx8 Bit NAND Flash Memory,  

(K9GAG08U0M-P), 2006. 

[23] Windows Sysinternals, 

http://technet.microsoft.com/en-us/sysinternals/default.aspx 

[24] J. Katcher, “PostMark: a New Filesystem Benchmark,” Technical 

Report TR3022, Network Appliance, 1997. 

  

24


