
HeteroDrive: Reshaping the Storage Access Pattern of
OLTP Workload Using SSD∗

Sang-Hoon Kim∗ Dawoon Jung† Jin-Soo Kim‡ Seungryoul Maeng§

Department of Computer Science
KAIST

Daejeon 305-701, South Korea
{sanghoon∗,dwjung†,maeng§ }@calab.kaist.ac.kr

School of Info. & Comm. Eng.
Sungkyunkwan University

Suwon 440-746, South Korea
jinsookim@skku.edu‡

ABSTRACT
The on-line transaction processing (OLTP) workload is known to
produce intense random accesses with high ratio of write. Cop-
ing with the random access pattern has been a challenging issue to
the underlying storage system. Although SSDs are considered as a
breakthrough in storage systems, their random write performance
still falls far behind the sequential performance.

In this paper, we propose a hybrid storage architecture, Hetero-
Drive. HeteroDrive actively reshapes random writes to sequential
writes. Random writes are routed to SSD and written sequentially.
The large capacity of SSD is used as a cache while the contents are
flushed to HDD sequentially. According to our evaluation, Hetero-
Drive improves the transactions per second (TPS) by up to 201 %.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management—Storage hier-
archies, secondary storage

General Terms
Design, Implementation, Evaluation

Keywords
Solid-state drive (SSD), OLTP workload, storage architecture, TPC-
C, Oracle, NAND flash memory

1. INTRODUCTION
The on-line transaction processing (OLTP) system is a class of sys-
tems that facilitate and manage transaction-oriented applications.
Many database operations fall in this class. It is widely known that
OLTP systems produce intense random storage accesses with high
ratio of write [15]. The conventional hard disk drive (HDD) suffers
from the random access pattern and results in high latency in OLTP
applications.

Recently emerging NAND flash memory-based solid-state drives
(SSD) might be considered as an alternative to HDD in OLTP ap-
plications. As SSD stores and retrieves data electronically, it elim-
inates the seek time which is one of the key contributors of the

∗This work was supported by the Korea Science and Engineer-
ing Foundation (KOSEF) grant funded by the Korea govern-
ment (MEST) (R01-2007-000-11832-0)

 100

 1000

 10000

 100000

HDD SSD
Low-end 1

SSD
Low-end 2

SSD
High-end

I/O
 o

pe
ra

tio
ns

 p
er

 s
ec

on
d 

(I
O

P
S

)

Sequential Read
Sequential Write

Random Read
Random Write

Figure 1: Performance of HDD and various SSDs. The result
is obtained with fio [14], which issues 4 KB synchronous re-
quests to each device.

latency on HDD-based storage systems. It also exhibits many ap-
pealing aspects: low energy consumption, high shock resistance,
and small and lightweight form factor.

In spite of those attractive features, the random write performance
of SSD falls far behind expectations. Figure 1 compares the I/O
performance of one HDD and three SSDs available in the market.
The low-end SSDs perform worse than HDD in random write. Con-
sidering the superior random read performance of SSD, which is an
order of magnitude higher than that of HDD, the random write per-
formance of the high-end SSD is still disappointing. Also, the price
per gigabyte of the high-end SSD is about ×50 higher than that of
HDD, and the capacity of SSDs is insufficient for data-intensive
OLTP applications. Consequently, simply replacing HDDs with
SSDs in the OLTP system promises neither high performance nor
cost-effectiveness.

Based on the properties of OLTP applications and SSDs, we de-
signed and implemented a prototype of storage architecture, called
HeteroDrive. HeteroDrive is tailored to the characteristics of the
OLTP workload by combining two heterogeneous storage devices,
SSD and HDD. Intense random writes are reshaped to sequential
writes to SSD whose sequential write performance is better than
the random write performance. With the high random read perfor-
mance, SSD acts as a cache of HDD. The cache contents are flushed
to HDD by sequential write. Figure 2 illustrates the concept of re-



Figure 2: Concept of request reshaping in HeteroDrive

quest reshaping and its benefit. HDD provides an inexpensive large
capacity of storage, and offers high bulk write performance with
its high sequential write performance. HeteroDrive is viewed as a
normal block device to upper layers, hence no application modifi-
cation is needed. Consequently, HeteroDrive provides a practical
opportunity to improve the I/O performance of the storage systems
in OLTP applications.

We evaluated HeteroDrive using the Oracle DBMS with the TPC-
C benchmark. The evaluation shows that HeteroDrive reshapes re-
quests to be friendly to underlying devices, and improves the I/O
performance by up to 201 %.

The rest of This paper is organized as follows. Section 2 goes over
the related work. Section 3 presents our motivation and system
details. We will evaluate the system in Section 4 and draws a con-
clusion in Section 5.

2. RELATED WORK
NAND flash memory (or flash) in SSDs has a limitation that a page
must be erased before new data is overwritten to the same loca-
tion. Although many flash translation layers (FTLs) are introduced
to hide the erase-before-write limitation, the random write perfor-
mance has not been improved much.

Adopting a non-volatile memory (NVRAM) in HDDs has been
widely discussed [2][5][10][16][17]. They take advantage of the
complementary properties of HDD and NVRAM, and try to im-
prove performance or to reduce energy consumption. Hybrid drives
[3][4][6][12][13] and Intel Turbo Memory [9] are two represen-
tative examples of this approach. However, they employ only a
small amount of NVRAM. Our work differs from the previous ap-
proaches in that we consider the use of SSD which provides the
larger capacity than the NVRAM in Hybrid drives or Intel Turbo
Memory.

Narayanan et al. [11] analyze the tradeoffs of SSD in server work-
load. They build a “solver” which inputs workload and storage
specifications, then gives an optimal configuration satisfying the
given constraints. They show that replacing HDD with SSD is not
beneficial yet due to the high price per gigabyte of SSD. They also
suggest a “tiered model” as an intermediate configuration of de-
ploying SSDs. Although it is very similar to our approach, the
implementation detail has not been discussed.

Koltsidas et al. [7][8] suggest an architecture using SSD as a page
cache and study page replacement policy on the architecture. But
the disparity of sequential and random access performance has not
been taken into account. Also, it requires the modification of exist-
ing applications, which is infeasible for commercial or enterprise
environment.

3. DESIGN AND IMPLEMENTATION
3.1 Motivation
To understand the storage characteristics of OLTP workloads, we
collected a block-level trace while running TPC-C benchmark for
24 hours. Besides the well-known intense random access pattern,
the access count distribution shows that about 20% of touched sec-
tors were read or written more than 10 (up to 400) times. Also, their
read count has some correlation with the write count. This implies
that the locality might be exploited as randomly written contents
are likely to be randomly read in the near future.

As we examined in Section 1, SSD is good at random read while
its random write performance is disappointing. The performance of
sequential write is an order of magnitude better than that of random
write. These properties led us to the idea that reshaping random
write into sequential write could utilize SSD better.

Our approach is to place an SSD in front of an HDD (or an array
of HDDs) in storage hierarchy, and to co-operate with each other
considering the complementary properties of them. Random writes
are reshaped into sequential writes and written to SSD sequentially
in a log-structured manner. Additionally, the written contents are
served as a cache for read requests at high random read perfor-
mance of SSD. The large capacity of SSD also gives an opportu-
nity to reshape the flush requests, as well. Figure 2 demonstrates
the effect of request reshaping done by HeteroDrive.

We design HeteroDrive to be transparent to upper layers so that
application modification is not required. As a result, we could run
a commercial Oracle DBMS on top of HeteroDrive.

3.2 Architecture Overview
HeteroDrive is implemented as a Linux mapped-device module
which accepts block I/O requests and forwards them to the under-
lying block devices transparently.

Using write requests, HeteroDrive determines whether the current
write pattern is sequential or random. If the access pattern is se-
quential, write requests are routed to HDD. If the pattern is random,
write requests are routed to SSD and written sequentially. Read re-
quests are served by mapping the sector of the requests to the corre-
sponding locations. Figure 3 illustrates an example where 8 sectors
starting from sector 7970 are mapped to SSD sector 214 (4 sec-
tors), HDD sector 7974 (2 sectors), and SSD sector 408 (2 sectors).
Since the mapping information is large, a portion of the mapping
information can be swapped out into SSD or loaded into memory
on demand.

A background kernel thread, called flush worker, performs SSD
flushing. The flush worker groups a certain amount of cached con-
tents, and issues write requests to HDD in increasing order of their
sector numbers. Such policy reduces the arm movement of HDD
and helps to improve the flushing throughput. The flush worker
is scheduled when the device is idle, which minimizes the perfor-
mance impact incurred by flushing operations.



Flushed zone Cached zone
Free

zone

Mapping

region
SSD

Forward map Reverse map
Block

I/O
V(7970:8)

S(214:4) S(408:2)

Super-

block

Cache 

region

Swap 

in /out

Flush worker Write

HDD

I/O 

Request

H(7976:2)H(7974:2)

Figure 3: Architecture and example of mapping

3.3 SSD Layout
Figure 3 illustrates the overall layout of SSD under HeteroDrive.
SSD is statically partitioned into superblock region, mapping re-
gion, and cache region.

The superblock region stores the metadata of HeteroDrive which
will be used in mounting and recovery. The mapping region stores
the mapping information which is used in translating sector num-
bers as described in Section 3.5.

The cache region occupies the most of the SSD capacity and is used
as a read/write cache for HDD. It is managed as a circular buffer.
The cache region is divided into three zones. The free zone is an
area which is not used yet. The cached zone and the flushed zone
are used as read caches. Random write requests are reshaped into
sequential write, and appended at the end of the cached zone. The
appending expands the area of the cached zone by consuming the
free zone. The cached zone contains dirty contents which are not
yet flushed to HDD. As the contents in the cached zone are flushed
by the flush worker, the cached zone is converted to the flushed
zone.

3.4 Request Routing Policy
The sequential write performance of HDD is better than or compa-
rable to that of SSD. Therefore, HDD is the better place for bulk
write.

HeteroDrive routes a write request based on its size and estimated
access pattern. If the size of a request is equal to or larger than a
threshold, the request is routed to HDD. If the size is smaller than
the threshold, the request is routed by the following estimation.

HeteroDrive counts the number sectors which are written consec-
utively. If the counter exceeds a threshold, the current pattern is
estimated as sequential, and requests are routed to HDD. If a write
request is not consecutive to the last request, the counter is halved.
As the counter gets below the threshold, the current pattern is esti-
mated as random, and requests are routed to SSD. Since the counter
decreases fast by the latter case, HeteroDrive can adapt to random
write pattern quickly.

3.5 Mapping Layer
In HeteroDrive, every I/O request must be translated to its phys-
ical location. Consequently, it mandates the mapping layer to be
lightweight and to allow concurrent access for high performance.
Considering the huge space to map, the mapping layer must exhibit
small memory footprint as well.

Our design is motivated by the multi-level page table used in vir-
tual memory. A 36-bit key is converted to a 64-bit value through
four-level translations. Each translation uses 9 disjoint bits of the
key. The 36-bit key allows 64 G sectors and 32 TB space to be
addressable.

To limit memory footprint, we divided up the whole page table into
a number of tablets. A tablet fits in a page (4 KB) and is used as
a unit of swapping — tablets can be swapped out to the mapping
region described in Section 3.3. The tablets can be brought into
memory as needed.

While allocating a tablet, its swap location is allocated from the
mapping region, and the starting sector of the swap location is used
as the tablet identifier. Tablets which reside in memory are indexed
by red-black tree for fast lookup. If a tablet is required, it is looked
up through the tree. If the required tablet is not in the tree, the tablet
is loaded from SSD located by the tablet identifier. Recall that the
tablet identifier is the starting sector of its swap location. If allo-
cating or loading a tablet results in exceeding a memory footprint
limit, a tablet is evicted by the LRU policy. If the tablet is dirty, the
contents are written to SSD before being discarded from memory.

Using the mapping layer, HeteroDrive defines two mapping tables:
forward map and reverse map. The forward map is used to map
read requests to its corresponding sectors. The forward map stores
the mapping from a virtual sector number (VSN) of HeteroDrive to
a physical sector number (PSN) of SSD. It only keeps the informa-
tion for sectors written in SSD, that is, the sectors in HDD are not
explicitly mapped. For example, in Figure 3, VSN 7970 is explic-
itly mapped to PSN 214, while VSN 7974 is not. The VSN 7974 is
translated to PSN 7974 at HDD. Such a policy helps to reduce the
size of mapping information.



The reverse map is used to flush the cache region. The reverse map
stores the mapping from a PSN of SSD to a PSN of HDD. Once
the contents in the cached zone is flushed by the flush worker, its
reverse map entry is removed.

4. EVALUATION
To evaluate HeteroDrive, we used two servers: database server and
load server. Each server is equipped with Intel Core2Quad Q9650
CPU and 4GB RAM. They are connected with Netgear GS748TS
Gigabit Ethernet switch.

The database server runs Oracle 10gR2 on Linux. Oracle is con-
figured to use at most 312 MB of memory as data buffer to stress
storage. Database file and index are located at the device as a block
device to minimize the effect of buffer cache. The transaction log,
rollback segments, and temporary table space are located on a sepa-
rate disk. We used Samsung MCCOE64G5MPD-OVA 64 GB SSD
and Seagate ST3500418AS 500 GB SATA-2 HDD. The raw per-
formance of the SSD and HDD are illustrated in Figure 1 as the
“Low-end 2 SSD” and “HDD”, respectively. The devices are con-
trolled by Intel SRCSATAWB RAID controller which is connected
to mainboard at PCI-e 4x.

The load server runs Benchmark Factory v5.5.0. We used the TPC-
C benchmark scenario. The benchmark is configured to use 64
warehouses, 32 users, 30 minutes run (10 minutes pre-sampling
plus 20 minutes sampling), and 45/43/4/4/4 percentage of trans-
action mix (new order, payment, order-status, delivery, and stock-
level transactions, respectively).

To illustrate the request reshaping, we collected block-level traces
using blktrace [1]. Figure 4 plots a part of the traces for 120
seconds. Figure 4(a) plots the original access pattern of the OLTP
workload. At a glance, the random writes look sequential. How-
ever, the average sector distance between two consecutive writes
is about 35,000 sectors and most requests are 8 KB in size. If the
pattern is applied to HDD, the arm must be moved for each request.
Also, many read requests will disturb the sweep motion of the arm.
If the pattern is applied to SSD, the small writes will be scattered
over the storage. It will result in many garbage collections inside
SSD which degrade performance.

Figure 4(b) depicts the access pattern of SSD in HeteroDrive con-
figuration. The random writes are reshaped into sequential writes at
sector 13–14 M. Such a reshaped pattern will fully utilize the high
sequential performance of SSD. The writes around sector zero and
2 M are caused by forward map and reverse map, respectively.

Figure 4(c) depicts the access pattern of HDD in HeteroDrive con-
figuration. Compared to the original access pattern, many write
requests are eliminated and only large write requeste are survived.
The eliminated writes are redirected to SSD, and reshaped to se-
quential writes. The flush writes are located around sector 10 M.
Although the pattern is not fully sequential, we believe that the
large capacity of SSD gives a chance to reshape flush requests. We
will validate the claim later by tuning the flush worker’s policy.

We measured the transactions per second (TPS) of various storage
configurations. HeteroDrives are configured to use 64 GB of HDD
and 32 GB of SSD and to keep tablets in memory up to 64 MB.
Table 1 summarizes the result.

One SSD handles about 41.6 TPS which is almost twice the per-

(a) Original

(b) HeteroDrive SSD

(c) HeteroDrive HDD

Figure 4: Reshaping the storage access pattern in the TPC-
C workload. The red, green, and blue marks denote write,
read, and flush operation, respectively. The x-axis represents
the elapsed time.



Table 1: I/O performance of SSD, HDD, and HeteroDrive con-
figuration.

Configuration I/O performance
(Transaction per second)

HDD 18.14
SSD 41.55

HeteroDrive 54.44

formance of a single HDD (18.1 TPS). As the most distinguishable
characteristics of the SSD from the HDD is the smaller random read
latency, we concluded that the key contributor of the improved per-
formance is the fast random read performance offered by the SSD.

HeteroDrive configuration achieves 54.4 TPS, which outperforms
a single SSD and HDD by about 31 % and 201 %, respectively.
There are a number of reasons for the performance improvement.
The reshaped access pattern improves the device performance. The
high read ratio from SSD (48 %) results in low random read latency.
Also, the multiple devices in configuration increases the degree of
concurrent request processing. We left the quantitative analysis of
the improvement as future work.

5. CONCLUSION
In this paper, we presented the design and implementation of Het-
eroDrive. It is tailored to the characteristics of the OLTP workload
by combining two heterogeneous storage devices, SSD and HDD.
HeteroDrive actively reshapes random writes to sequential writes
and uses SSD as a large non-volatile cache. As HeteroDrive is
transparent to applications, no application modification is needed.
We evaluated the performance of HeteroDrive, and the request re-
shaping is demonstrated by capturing block-level traces. The TPC-
C benchmark results show that HeteroDrive improves the transac-
tion rate by up to 201%.

Although contents in SSD are used as a read cache, HeteroDrive
does not actively pull up data from HDD to SSD. It is clear that such
an approach will not result in significant performance improvement
under read-intensive workload. We will address this issue in the
next version of HeteroDrive. In addition, we will implement a re-
covery scheme to cope with sudden power failure and improve the
policy of estimating the current access pattern. Evaluation using
high-end SSDs and in-depth performance analysis are also planned.

6. REFERENCES
[1] blktrace(8) linux man page.

http://linux.die.net/man/8/blktrace.
[2] B. Marsh and F. Douglis and P. Krishnan. Flash Memory File

Caching for Mobile Computers. In Proc. 27th Hawaii Int’l
Conference, pages 451–460, 1994.

[3] T. Bisson and S. A. Brandt. Reducing hybrid disk write
latency with flash-backed i/o requests. In Proc. 15th IEEE
Int’l Symposium on Modeling, Analysis, and Simulation
(MASCOTS), 2007.

[4] T. Bisson, S. A. Brandt, and D. D. Long. NVCache:
Increasing the Effectiveness of Disk Spin-down Algorithms
with Caching. In Proc. 14th IEEE Int’l Symposium on
Modeling, Analysis, and Simulation (MASCOTS), 2006.

[5] T. Kgil and T. Mudge. FlashCache: A NAND Flash Memory
File Cache for Low Power Web Servers. In Proc. Int’l Conf.
on Compilers, Architecture, and Synthesis for Embedded

Systems (CASES), pages 103–112, 2006.
[6] Y.-J. Kim, S.-J. Lee, K. Zhang, and J. Kim. I/O Performance

Optimization Techniques for Hybrid Hard Disk-Based
Mobile Consumer Devices. IEEE Transactions on Consumer
Electronics, 53(4):1459–1476, 2007.

[7] I. Koltsidas and S. D. Viglas. Flashing up the storage layer.
In Proc. 34th Int’l. Conf. on Very Large Data Bases (VLDB),
pages 514–525, 2008.

[8] I. Koltsidas and S. D. Viglas. The case for flash-aware
multi-level caching. Technical report, University of
Edinburgh, 2009.

[9] J. Matthews, S. Trika, D. Hensgen, R. Coulson, and
K. Grimsrud. Intel R©Turbo Memory: Nonvolatile disk
caches in the storage hierarchy of mainstream computer
systems. ACM Trans. Storage (TOS), 4(2):1–24, 2008.

[10] E. L. Miller, S. A. Brandt, and D. D. Long. HeRMES:
High-Performance Reliable MRAM-enabled Storage. In
Proc. IEEE Workshop on Hot Topics in Operating Systems
(HotOS), May 2001.

[11] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and
A. Rowstron. Migrating Server Storage to SSDs: Analysis of
Tradeoffs. In Proc. 4th ACM European Conf. on Computer
Systems (EuroSys), pages 145–158, 2009.

[12] R. Panabaker. Hybrid hard disk and ReadyDrive technology:
Improving Performance and Power for Windows Vista
Mobile PCs. http://www.microsoft.com/whdc/
winhec/pres06.mspx, 2006.

[13] Samsung Electronics Co., Ltd. Samsung Hybrid HDD.
http://www.samsung.com/global/business/
hdd/learningresource/whitepapers/
LearningResource_WhatIsHybridHDD.html,
2008.

[14] SourceForge, Inc. fio.
http://freshmeat.net/projects/fio, 2009.

[15] The Transaction Processing Performance Council.
http://www.tpc.org.

[16] A.-I. A. Wang, P. Reiher, G. J. Popek, and G. H. Kuenning.
Conquest: Better Performance Through a
Disk/Persistent-RAM Hybrid File System. In Proc. 2002
USENIX Annual Technical Conference, 2002.

[17] M. Wu and W. Zwaenepoel. eNVy: A Non-volatile, Main
Memory Storage System. In Proc. 6th Int’l Conf. on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 86–97, 1994.


