FASS : A Flash-Aware Swap System

Dawoon Jung; Jin-Soo Kim! Seon-Yeong Park} Jeong-Uk Kang?$ and Joonwon Lee’
Division of Computer Science
Korea Advanced Institute of Science and Technology
373-1 Guseongdong, Yuseonggu, Daejeon 305-701, Korea
{dwjung? parksy} ux®} @camars kaist.ac.kr, {jinsoo! joon¥} @cs kaist.ac.kr

Abstract

Laptop computers and tablet PCs currently exploit
swap system with their second storage media as a cost
effective solution to extend limited memory space. The
rapidly evolving flash memory technology starts to re-
place the magnetic disks of these computers by flash
memory due to its advantageous characteristics such
as energy efficiency and mechanical shock resistance.
Thus, we can imagine that the swap system running
over flash memory will show up.

However, since the contents of flash memory can-
not be overwritten before being erased, we need a
flash translation layer (FTL) to use flash memory as
a disk transparently. Although FTLs help to deploy
flash memory-based storage easily, the kernel and FTL
sometimes make bad decisions because FTL cannot
access kernel-level information and the kernel is not
aware of flash memory states.

In this paper, we mainly focus on the swap system
running over flash memory. We discuss design and im-
plementation of flash-aware swap system, called FASS,
where the kernel manages flash memory-based swap
space directly without FTL. This approach can utilize
kernel information and flash memory states to optimize
the system. On average, we show that our FASS re-
duces the number of flash read and write operations
by 61% and 41.5%.

1 Introduction

Flash memory recently has become popular storage
media of mobile systems due to its advantageous fea-
tures such as non-volatility, mechanical shock resis-
tance, and low power consumption. There are two ma-
jor types of flash memory. One is NOR flash mem-
ory and the other is NAND flash memory. NOR flash
memory is used in place of ROM (Read Only Mem-
ory) to store and execute application code [8]. NAND

flash memory is usually employed as high capacity
storage media since it provides high density with low
cost.

As other semiconductor memory devices such as
SRAMs and DRAMs, the capacity of NAND flash
memory has been increased quite dramatically by ag-
gressive scaling of the memory cell transistor and ar-
chitectural innovations. Now it is easy to find NAND
flash memory cards with more than 1GBytes of storage
capacities in the market. Moore’s law tells us that the
exponential growth in the flash memory capacity will
continue for a considerable time. Hence, we can ex-
pect that there will appear laptop computers and tablet
PCs in the near future, which are equipped with tens
of GBytes of NAND flash memory-based secondary
storages instead of hard disks. M-Systems is already
shipping NAND flash memory-based storages called
FFDs (Fast Flash Disks), whose capacity ranges from
1GBytes to 128GBytes [6]. Replacing hard disks with
NAND flash memory brings advantages in terms of
size, weight, reliability, and energy use.

For decades, traditional operating systems have per-
formed various optimizations for hard disks, assum-
ing that hard disks are used as a backing storage for
file systems and swap systems. Unfortunately, how-
ever, NAND flash memory shows very different char-
acteristics compared to magnetic disks. Most notably,
there is no seek time in NAND flash memory, while it
has an access constraint that data cannot be overwrit-
ten before being erased. Therefore, it is necessary to
revisit various operating system policies and mecha-
nisms, and to optimize them for NAND flash memory-
based secondary storages.

The main focus of this paper is the optimization
of virtual memory system, especially when the swap
space is created on NAND flash memory. Although

there are several previous work on flash-aware file sys-
tems such as YAFFS [1] and JFFS2 [12], little atten-
tion has been paid to flash-aware swap systems. Al-
most every modern desktop operating system makes
use of additional swap space in order to supplement
the limited physical memory space. Moreover, re-
cently it is shown that the page-level swapping with
NAND flash memory can be an energy and cost effi-
cient solution for ever-increasing memory requirement
in mobile embedded applications running on cellular
phones or PDAs [7]. Therefore, devising an efficient
flash-aware swap management scheme is as important
as developing a flash-aware file system.

One of common practices used for flash memory-
based secondary storages is to employ a thin software
layer called FTL (Flash Translation Layer). Since
FTL emulates the conventional hard disks transpar-
ently, most systems do not require any modification
to the kernel in order to build file systems or swap
space on top of flash memory-based secondary stor-
ages. While this layered approach eases the deploy-
ment of flash memory-based storages, the kernel or
FTL can sometimes make bad decisions because FTL
has no access to kernel-level information and the ker-
nel is not aware of flash memory states. (Details will
be discussed in section 2.4.)

In this paper, we propose a novel flash-aware
swap system called FASS (Flash-Aware Swap Sys-
tem), where the kernel manages NAND flash memory-
based swap space directly without the use of an inter-
mediate layer such as FTL. We have implemented a
FASS prototype based on the Linux kernel and have
shown that FASS is very effective in reducing the num-
ber of flash read/write/erase operations.

The rest of the paper is organized as follows. Sec-
tion 2 describes the background and the motivation of
our work. Section 3 presents the design and implemen-
tation of FASS. The performance of FASS is evaluated
in section 4. Finally, section 5 concludes the paper.

2 Background and Motivation
2.1 NAND Flash Memory

A NAND flash memory consists of a fixed number
of blocks, where each block has 32 pages and each
page consists of 512bytes main data and 16bytes spare
data [10]. A page is a basic unit of the read/write op-
eration, while the erase operation is performed on a
block basis. In flash memory, once a page is written, it

should be erased before the subsequent write operation
is performed on the same page. This characteristic is
sometimes called erase-before-write.

Unlike hard disks or other semiconductor devices
such as SRAMs and DRAMSs, the write operation re-
quires relatively long latency compared to the read op-
eration. As the write operation usually accompanies
the erase operation, the operational latency becomes
even longer. Another limitation of NAND flash mem-
ory is that the number of updating a block is limited to
about 100,000 times. Thus, the number of erase oper-
ation should be minimized to lengthen the lifetime of
NAND flash memory.

Recently, a new type of NAND architecture called
large block NAND flash has been introduced to pro-
vide a higher capacity [10]. In the large block NAND
flash, a page in a single memory array is 2112bytes
(2048bytes main data + 64bytes spare data) and a
block consists of 64 pages resulting in a block size
that is 8 times larger. Note that the large block
NAND flash has another constraint in programming
the flash memory; within a block, the pages must be
programmed consecutively from page 0 to page 63.
Random page address programming is strictly prohib-
ited by the specification.

2.2 Flash Translation Layer

Since a page in flash memory cannot be overwrit-
ten before it is erased and it takes much longer time
to erase a block, an intermediate software layer called
FTL (Flash Translation Layer) is usually employed be-
tween the kernel and flash memory [3, 5]. The main
role of FTL is to emulate the functionality of hard
disks with flash memory, hiding the latency of erase
operation as much as possible. FTL achieves this by
redirecting each write request from the kernel to an
empty location in flash memory that has been erased
in advance, and by managing the mapping information
internally. According to the granularity with which the
mapping information is managed, FTL can be classi-
fied as page-mapped, block-mapped, or hybrid [5].

FTL also performs garbage collection to reclaim
free pages by erasing appropriate blocks. Since the
lifetime of flash memory is limited, FTL may utilize
a wear leveling mechanism so that the block erase
counts are distributed evenly across the media. In addi-
tion, FTL should deal with power-off recovery because
there could be unexpected power-outages any time in

page table page table

1

1

| 1
|

v

age table ents
Swap area Page page ty
I I I

swap_map
array

[T]---

15 0
swap_map

1

: The number of processes using it

1
- Bad Block Mark

Figure 1. Linux swap system architecture

mobile embedded systems. Readers are encouraged to
refer to [5] for further details on FTL.

2.3 Linux Swap System

Figure 1 illustrates the overall architecture of the
swap system in the Linux kernel 2.4. When a page is
swapped out, its location in the swap area is stored in
the corresponding page table entry (PTE). Several dif-
ferent swap areas may be defined, and each swap area
consists of a sequence of page slots: 4KBytes blocks
used to contain a swapped-out page. The swap_map
array is used to record the state of each page slot. If
an entry in the swap_map is equals to 0, the page slot
is free; if it has the value 32,768, the page slot is
considered defective, and thus unusable. If an entry
is positive, the page slot is filled with a swapped-out
page. For the shared page which is pointed by multi-
ple PTEs, the entry represents the number of processes
sharing it [2]. Even if the number of processes sharing
a page slot exceeds the maximum value!, the kernel
correctly works because the page slot is assigned to the
corresponding memory page permanently and cannot
be removed from the slot.

On a page fault, the kernel simply reads a page from
the page slot pointed by PTE. After the kernel reads a
page, it examines the swap area utilization. If the swap
area is used more than 50%, the kernel attempts to free
the page slot which is just swapped in. Otherwise, the
page slot is not freed and gets reused when the same
page is swapped out.

Swapping out a page consists of two phases, the al-
location phase and the writing phase. At the allocation
phase, the kernel assigns page slots to memory pages

'The maximum value of Linux kernel 2.4 (SWAP_MAP_MAX)
is 32,767.

which are selected as victims. The position of the al-
located page slot is stored in the PTE at this time. If a
memory page already has an associated page slot, the
kernel reuses it instead of finding a new free page slot.
The actual writing of the victim page to the assigned
page slot takes place in the writing phase, when the
page is not recently accessed and every PTE sharing
the page indicates the position of the page slot. Note
that the writing phase does not follow the allocation
phase immediately. This implies that although page
slots are assigned to memory pages sequentially, the
order in which page slots are written may not be se-
quential.

2.4 Motivation and Contribution

Our work is primarily motivated by the observation
that the traditional swap architecture, which regards
flash memory as a conventional hard disk through the
use of FTL, can be very inefficient since useful in-
formation is not shared between the kernel and FTL.
For example, although there are many invalidated page
slots in the swap area due to process termination, un-
mapped anonymous pages, and page slot release by
the kernel, such information is not readily available to
FTL. This will result in a situation where FTL use-
lessly copies those pages during garbage collection,
considering them as valid.

Some functions of FTL are even unnecessary for
swap system. For instance, the comprehensive power-
off recovery is not necessary for swap system, since
the contents of page slots are meaningless after the sys-
tem restarts. For the same reason, it is not required to
preserve mapping information managed by FTL.

This inefficiency can be avoided by turning off use-
less functions of FTL and providing communication
channels between the kernel and FTL. However, this
requires modification of both layers and incurs com-
munication overhead. Moreover, the extra mapping
performed inside FTL is redundant if the page table
entry (PTE) points to the physical location of page slot
directly.

In this paper, we propose a novel flash-aware swap
system called FASS. To the authors’s best knowl-
edge, this is the first approach which directly manages
NAND flash memory for swap system without the use
of FTL. Our contributions can be summarized as fol-
lows.

e We introduce a NAND flash memory man-
agement scheme using page table entries and
swap-map array, removing the extra mapping
usually done inside FTL.

o We take advantage of kernel information to elim-
inate unnecessary page copy during garbage col-
lection.

e We implement our approach based on the Linux
kernel 2.4, minimizing additional data structures
and removing several unnecessary optimizations
performed for disks.

o We compare the proposed approach with the con-
ventional swap system built on top of FTL. The
evaluation results indicate that our approach is
very effective in reducing the number of actual
flash memory operations.

e Finally, we predict the lifetime of NAND flash
memory when it is used as a backing storage for
swap system.

3 Design and Implementation of FASS
3.1 Basic Design

The basic idea behind FASS is to use the existing
PTEs to point to the physical location of the page slot
in NAND flash memory, as shown in figure 2. By elim-
inating the extra logical-to-physical mapping which is
usually performed inside FTL, we can save the space
required to construct the mapping table. Moreover,
the runtime overhead can be minimized, since other-
wise FTL would try to synchronize the mapping table
to NAND flash memory periodically for power-off re-
covery.

In the conventional swap system, a dirty memory
page is swapped out to the same page slot, if the mem-
ory page still has an association with the previously
allocated page slot. FASS, however, assigns a new
empty page slot whenever a dirty memory page is
swapped out in order to avoid overwriting the previ-
ous page slot.

Recall that each page slot may be in one of three
states, bad, used, or free, and this information is
recorded in swap_map array. FASS requires an addi-
tional state to identify invalidated page slots. We call
this state dirty and assign a bit in a swap_map array
as shown in figure 3. A dirty page slot is not allocated
until FASS erases the block containing it.

page table page table page table page table

=

N
SO T
Swap area Page Page
(flash memory) | | glot slot
J

(2) (b)

iy

FTL [[[

Figure 2. Conventional swap system (a) and
FASS (b) running over flash memory

3.2 Shared Page Problems

The FASS architecture described in the previous
section works well if the system has only private
pages. However, there is a problem caused by shared
pages as shown in the following scenario.

Let us assume that two processes, F; and P», are
sharing a page (), and @ is swapped out at page slot
So. In this case, both corresponding PTEs of A, and
P, will point to Sp. Now consider a situation where P
makes a write request to the page (); the page) will
be swapped in into the physical memory and become
dirty. If the page (@ is swapped out later, FASS assigns
a new page slot .S to avoid overwriting Sp. The PTE
of P is updated to point to Sy, but the PTE of P, will
still indicate the old invalidated page slot &.

This problem can be solved easily if we can up-
date the PTE of P, immediately when the page () is
swapped out to a new page slot 5;. Unfortunately,
however, the Linux kernel 2.4 does not have a back-
ward pointer from a memory page to the correspond-
ing PTE. Thus, when a new page slot S is assigned
to the page @, other PTEs that point to the same page
cannot be discovered unless the whole page tables are
searched. In the original Linux kernel, this is not a se-
rious problem since the kernel simply overwrites the
existing page slot without needing to allocate a new
one.

FASS solves this problem by maintaining a hash ta-
ble which records the fact that the latest copy of .5 is
available at S7. We use another bit in the swap_map
array to indicate the need for consulting the hash ta-
ble (see figure 3). In the previous scenario, when the
page () is swapped out to a new page slot .S;, FASS
marks a hash table mapping bit in the swap_map en-
try of Sy, and inserts an entry S; — S to the hash

swap_map
array

[] I I I]---

swap_map
entry

The number of processes using it
(bad block mark included)

Physical page offset (for large
block NAND flash memory only)

===9% Dirty Block
====% Hash table mapping

Figure 3. A swap_map array entry of FASS

table. Later, when the process P makes a reference to
the page (), the kernel checks the hash table mapping
bit in the swap_map entry of Sy, and if it is set, finds
the valid copy at the page slot S; using the hash table
information.

The kernel removes the hash table entry when the
page slot Sy is not used anymore by the processes shar-
ing it. Then the page slot Sy and S; can be reused
without hash table mapping. Even though the hash ta-
ble mapping Sy — S still exists, the page slot Sy can
be reused through another hash table mapping.

Since the number of shared pages is usually small
and there is very little chance where shared pages are
swapped out, the hash table is a very effective way to
deal with the shared page problem. The presence of
the hash table hardly affects the overall performance.

3.3 Supporting the Large Block NAND Flash
Memory

As described in section 2.1, the large block NAND
flash memory has a restriction that the pages should be
programmed sequentially within a block. This causes
a serious problem in FASS because swapping out is
handled by two separate phases, the allocation phase
and the writing phase. Even if sequential page slots are
allocated to victim pages during the allocation phase,
there is no guarantee that the actual write to the page
slot is issued sequentially within a block. It is not pos-
sible to predict the actual write order in the allocation
phase either, because the moment a victim page is writ-
ten to the page slot depends on many runtime factors.

We can imagine several solutions for this problem.
The first is to assign sequential page slots to victim
pages at the allocation phase, and then flush them
immediately to NAND flash memory. Alternatively,
when a victim page is written to the assigned page slot,
we can find all the preceding pages inside the block

and write them together. Although these methods can
guarantee the sequential write order within a block,
they tend to increase the swapping traffic by forcing
some pages to be written unnecessarily.

FASS supports the large block NAND flash mem-
ory by constructing an intra-block mapping inside the
entry of swap_map array. In the allocation phase,
page slots are allocated to victim pages in a usual way.
When a victim page is written to NAND flash mem-
ory, FASS writes it to the next available page slot in
the block which does not violate the sequential write
order, and records the page slot number within the
original swap_map entry. Therefore, a victim page
is always written to the block to which it is originally
assigned, but the actual location within the block may
vary depending on the write order of victim pages be-
longing to the same block. Because each block can
contain 32 page slots in the large block NAND flash
memory, we need to use Sbits inside the swap_map
entry to record the physical page offset.

The resulting layout of the swap_map entry used
in FASS is depicted in figure 3. Due to the assignment
of several bits for handling flash memory, the remain-
ing space is reduced to 9 bits which can represent the
maximum 512 processes sharing a page slot. However,
this has little influence on the system because personal
computers or small system rarely exceed maximum
value. Although the number of processes sharing a
page slot becomes greater than 512, the kernel guaran-
tees correct operation as the original Linux kernel.

3.4 Garbage Collection and Wear-Leveling

The primary role of garbage collector is to erase
flash memory blocks and to reclaim clean pages with-
out loss of valid data. In the swap system, many page
slots become invalidated due to various reasons such
as overwriting the same page slot, process termina-
tion, unmapped anonymous pages, and system restart.
FASS makes use of these informations to eliminate
unnecessary data copy during garbage collection. In
FASS, the garbage collector is triggered when there
are free pages lower then the predefined threshold. It
uses a simple version of cost-benefit algorithm [4, 9]
to select victim blocks. If there are valid page slots in
the victim block, they are swapped in before the block
is erased.

Since the lifetime of flash memory is limited, it is
important to distribute erase operations evenly among

the whole flash memory blocks. In particular, as the
size of swap space is usually small and there may be
frequent swap-out requests, the importance of wear
leveling should be emphasized. In FASS, if the dif-
ference between erase counts of the victim block and
the minimally-erased block exceeds a certain thresh-
old, these two blocks are exchanged to achieve wear
leveling.

4 Experimental Results

4.1 Evaluation Methodology

We have implemented a FASS prototype system
based on the Linux kernel 2.4. Our machine con-
sists of a Pentium III processor, 32MBytes RAM, and
32MBytes NAND flash memory?. In order to induce
a modest number of garbage collections, we decided
to use only 32MBytes flash memory. With this size
we can exhaust whole flash memory area several times
during the experiments. The performance of FASS is
compared with that of the original Linux swap system
running over the log-scheme FTL[5]. We turned off
the swap read-ahead feature in both configurations to
isolate the impact of different swap space management
schemes.

In order to generate swap-in and swap-out opera-
tions, we run two Linux application sets which re-
quire more than 32MBytes RAM. The first application
set consists of X server and Mozilla web browser, in
which a user visits several web sites including Google,
CNN, Amazon, and Hotmail during about 30 minutes.
The second application set models a situation where
a user plays a song with the xmms mp3 player while
compiling the Linux kernel with gcc. The first appli-
cation set is less heavily loaded than the second one
because the first one is an interactive job.

4.2 Flash Memory Accesses

Figure 4 compares the number of swap-in and swap-
out operations generated in each configuration. It is
obvious in figure 4 that both configurations show al-
most the same number of swap-in/swap-out opera-
tions, since FASS is not intended to reduce the number
of such operations.

Figure 5 and 6 illustrate the number of flash
read/write and erase operations performed for NAND
flash memory. Although the number of swap-in/swap-
out operations is not much different, the experimental

>The NAND flash memory is emulated with the spare RAM
available on the system.

50000

OFASS BFTL

40000

30000

20000

Swap in/out

10000

Mozilla |Geetxmms | Mozilla |Geetxmms

swap out swap in

Figure 4. The number of swapping operations

700000
600000
500000
400000
300000
200000
100000

0

OFASSEFTL

Mozilla |Geetxmms| Mozilla |Geetxmms

The number of Read/Write operations

write

Figure 5. Comparison of flash read/write ac-
cesses

results indicate a significant benefit of FASS in terms
of the number of actual flash memory operations. This
is because FASS can fully take advantage of the var-
ious kernel informations in managing swap space, as
explained in section 2.4.

On average, the number of flash read and write op-
erations is decreased by 61% and 41.5%, respectively.
FASS also reduces the number of erase operations by
84% with the assistance of the internal kernel infor-
mation which allows to reclaim as many free pages as
possible during garbage collection.

In this paper, we only measure the number of swap-
ping and flash memory operations because RAM-
emulated flash memory cannot provide actual timing
of NAND flash memory. So we leave running time
measurement and other evaluation related to this as a
further work.

4.3 Wear-Leveling Impact
Since the result of FTL is much worse than FASS,

we only compare the following two configurations:
FASS with wear leveling and FASS without wear lev-

50000 OFASSBFTL |—

40000

30000

20000

- r—.
0

Mozilla

The number of erase operations

Geetxmms

Figure 6. The number of erase operations

2500] o w/o Wear Leveling

w/ Wear Leveling

%)
=3
=3
S

2 1500

1000 o

Maximum Erase Count
\
\
N\
\
\
\ .‘

%3
=3
S
\|

0 100 200 300 400 500 600
Time(hour)

Figure 7. The growth of the maximum erase
count with respect to running time

eling. In order to investigate the effectiveness of wear
leveling and to estimate the lifetime of flash mem-
ory, we simulated the behavior of FASS with a two-
hour long swap system trace. The trace is obtained
from a system which runs various applications such as
GNOME desktop manager, Mozilla, xmms, gcc, ter-
minals, and vi editor.

Figure 7 compares the growth of the maximum
erase count in two configurations. If we assume that
the maximum erase count of a block is limited to
100,000 and the same trace is repeatedly given to
the system, the estimated lifetime of flash memory is
about 4.5 years with wear leveling and about 2.9 years
without wear leveling. We can see that the wear level-
ing mechanism used in FASS improves the lifetime of
flash memory about 55% longer. However, it does not
come for free. Our evaluation shows that the number
of erase operations is increased by 8.0% and the num-
ber of write operations by 7.1% due to the wear level-
ing. In addition, we should notice that this estimation
would vary according to its workloads and running en-

vironments.
S Conclusion and Future Work

In this paper, we have presented the design and im-
plementation of flash-aware swap system (FASS), in
which the kernel manages NAND flash memory di-
rectly without the use of intermediate software layers
such as FTL. We have also shown the effectiveness of
FASS by performing experiments with our prototype
implementation running several real workloads. Ac-
cording to our experiments, FASS actually reduces the
number of flash memory operations by about 39-87%
by utilizing various kernel-level information in man-
aging NAND flash memory. In addition, by simulating
FASS with a swap system trace, we show that the wear
leveling employed in FASS improves the total lifetime
of flash memory by 55%.

In the near future, we plan to port FASS on the
Linux kernel 2.6, which enables to exploit the reverse
mapping from a memory page to the corresponding
PTEs. In addition, more detailed analysis on the per-
formance of FASS such as actual completion time and
average access time with various configurations will

be examined.

References

[1] Yet Another Flash Filing System (YAFFS). Aleph One Com-
pany.

[2] D.P.Bovetand M. Cesati. Understanding the Linux Kernel.
O’Reilly, second edition, 2003.

[3] http://www.intel.com/design/flcomp/
applnots/29781602.pdf.

[4] A. Kawaguchi, S. Nishioka, and H. Motoda. A flash-
memory based file system. In USENIX Winter, pages 155—
164, 1995.

[5] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho.
A space-efficient flash translation layer for compactflash
systems. [EEE Transactions on Consumer Electronics,
48(2):366-375, May 2002.

[6] http://www.m-systems.com/content/
Products/FFDFamily.asp

[7] C. Park, J.-U. Kang, S.-Y. Park and J.-S. Kim. Energy-
aware demand paging on nand flash-based embedded stor-
ages. In ISLPED ’04: Proceedings of the 2004 interna-
tional symposium on Low power electronics and design,
pages 338-343. ACM Press, 2004.

[8] C.Park, J. Seo, D. Seo, and B. Kim. Cost-efficient memory
architecture design of nand flash memory embedded sys-
tems. In ICCD ’03: Proceedings of the 21st International
Conference on Computer Design, pages 474—489. 1EEE,

2003.

[9] M. Rosenblum and J. K. Ousterhout. The design and im-
plementation of a log-structured file system. ACM Trans.
Comput. Syst., 10(1):26-52, 1992.

[10] http://www.samsung.com/Products/
Semlconductor/Flash/TechnlcalInfo/

datasheets. .
[11] A. Silberschatz, P B Galvin, and G. Gagne. Operating

System Concepts. John Wiley & Sons, sixth edition, 2003.
[12] D. Woodhouse. JFFES : The journalling flash file system.
Ottawa Linux Symposium, 2001.

