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Abstract

NAND flash memory becomes one of the most popular
storage for portable embedded systems. Although many
flash-aware file systems, such as JFFS2 and YAFFS2, were
proposed, the large memory consumption and the long
mount delay have been serious obstacles for large-capacity
NAND flash memory.

In this paper, we present a new flash-aware file system
called DFFS (Direct Flash File System) which fetches only
the needed metadata on demand from flash memory. In
addition, DFFS employs two novel metadata management
schemes, inode embedding scheme and hybrid inode index-
ing scheme, to improve the performance of metadata opera-
tions. Comprehensive evaluation results using microbench-
mark, postmark, and Linux kernel compilation trace, show
that DFFS has comparable performance to JFFS2 and
YAFFS2, while achieving a small memory footprint and in-
stant mount time.

1. Introduction

The demand for storage capacity has been increasing
exponentially due to the recent proliferation of multime-
dia contents. In the meantime, NAND flash memory be-
comes one of the most popular storage media for portable
embedded systems such as MP3 players, cellular phones,
PDAs (personal digital assistants), PMPs (portable media
players), and in-car navigation systems. Although NAND
flash memory is still expensive than magnetic disk, its dis-
tinctive features, such as small and lightweight form fac-
tor, solid-state reliability, and low power consumption, have
made NAND flash memory the standard choice for portable
data storage [4, 10]. However, it is necessary to be aware of
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the following unique characteristics in dealing with NAND
flash memory.

• Out-of-place updates: NAND flash memory is a stor-
age medium which does not allow in-place updates.
In other words, the previous data cannot be overwrit-
ten directly at the same location without being erased
first. To make the problem worse, an erase operation
should be performed on a larger area containing the
original data, not on the particular data selectively. For
coping with the erase-before-write characteristics of
NAND flash memory, many flash-based softwares em-
ploy a strategy in which the new data are written into
an empty space and the old data are invalidated. Due to
this out-of-place update scheme, the physical location
of data changes whenever it is overwritten.

• Asymmetric operation latency: In NAND flash
memory, the read latency is much shorter than the
write latency by about a factor of 8. Since a write op-
eration sometimes involves an erase operation, it may
suffer from long, nondeterministic delays [6].

To overcome these limitations, two major approaches
have been proposed for NAND flash memory. One ap-
proach is to use Flash Translation Layer (FTL) [7, 8] and the
other is flash-aware file systems [2, 3, 5, 15]. FTL is usually
employed between operating system and flash memory. The
main role of FTL is to emulate the functionality of block
device with flash memory by hiding the erase-before-write
characteristics as much as possible. Once FTL is available
on top of NAND flash memory, any disk-based file system
can be used. However, since FTL is operating at the block
device level, FTL does not have any access to file system-
level information and this may limit the file system perfor-
mance.

On the other hand, several flash-aware file systems, such
as JFFS2 [15], YAFFS2 [2], ELF [3], and TFFS [5], have
been developed to simplify the file system design without
being in need of FTL and to extract maximum performance



out of flash memory. Currently, JFFS2 or YAFFS2 serves
as one of the most widely used general-purpose flash file
systems in an embedded environment. However, the large
memory consumption and the long mount delay shown in
these file systems have been severely criticized in the previ-
ous literature [5, 16].

In this paper, we propose a new metadata management
scheme for flash-aware file systems which offers a small
memory footprint and instant mount time. In addition,
we propose a new directory structure and inode indexing
scheme to match the directory operation performance of
JFFS2 or YAFFS2. The prototype file system called DFFS
(Direct Flash File System) has been developed to demon-
strate the effectiveness of the proposed scheme.

The rest of this paper is organized as follows. Section 2
overviews two representative flash file systems, JFFS2 and
YAFFS2, and describes the motivation of this paper. Sec-
tion 3 presents design issues for DFFS. Section 4 shows the
efficiency of the proposed metadata management scheme
through experimental evaluations. Finally, we conclude in
Section 5.

2. Background and Motivation

2.1. JFFS2

JFFS2 is a log-structured file system designed for flash
memories [15]. The basic unit of JFFS2 is a node in
which variable-sized data and metadata of the file system
are stored. Each node in JFFS2 maintains metadata for a
given file such as the physical address, its length, and point-
ers to the next nodes which belong to the same file. Using
these metadata, JFFS2 constructs in-memory data structures
which link the whole directory tree of the file system. This
design was tolerable since JFFS2 is originally targeted for a
small flash memory. However, as the capacity of flash mem-
ory increases, the large memory footprint of JFFS2, mainly
caused by keeping the whole directory structure in memory,
becomes a severe problem. The memory footprint is usually
proportional to the number of nodes, thus the more data the
file system has, the more memory is required. For exam-
ple, a JFFS2 file system containing 128MB data in 512-byte
nodes requires more than 4MB of memory.

Another problem of JFFS2 is the long mount delay.
When the file system is mounted, JFFS2 scans the entire
flash memory media to check CRC in every node and build
the directory structure. The mount time takes from several
to tens of seconds depending on the number of nodes in the
file system.

2.2. YAFFS2

YAFFS2 is another variant of log-structured file sys-
tem [2]. The structure of YAFFS2 is similar to that of the
original JFFS2. The main difference is that node header in-
formation is moved to the NAND spare area and every data
unit, called chunk, has the same size as NAND pages to
efficiently utilize NAND flash memory. Similar to JFFS2,
YAFFS2 keeps data structures in memory for each chunk to
identify the physical location of the chunk on flash mem-
ory. It also maintains the full directory structure in main
memory since the chunk representing a directory entry has
no information about its children. In order to build these in-
memory data structures, YAFFS2 scans all the spare areas
across the whole NAND flash memory. Therefore, YAFFS2
faces the same problems as JFFS2.

2.3. Motivation

As described in the previous subsections, JFFS2 and
YAFFS2 consume a lot of memory to retain the complete
directory structure in memory. The mount even fails if there
is not enough memory. One way to reduce the memory foot-
print is to fetch only the needed metadata on demand from
flash memory as is done in most disk-based file systems.
The fetched metadata are cached in memory for a while to
accelerate the subsequent accesses to the same metadata,
and can be discarded later under memory pressure.

This scheme, however, results in long latency during file
system operations. It is reported that metadata operations
occupy up to 70% of file system operations [11]. Compared
to JFFS2 and YAFFS2 which maintain most of metadata in
memory, the on-demand metadata fetching may incur size-
able overhead. Thus, it is important to minimize perfor-
mance degradation during metadata operations.

This paper investigates two novel metadata management
schemes to improve the performance of metadata opera-
tions. First, we speed up the directory lookup operation
by storing the directory inode and its associated directory
entries in one flash page. The traditional directory lookup
operation repeats the following three steps until it reaches
the end of pathname: (1) read the inode of the current direc-
tory, (2) read the contents (directory entries) of the current
directory, and (3) search for the target child name in direc-
tory entries and obtain the corresponding inode number. In
most file systems, inodes are kept separately from its data.
Therefore, two flash read operations, one for the directory
inode and the other for its contents, are needed whenever a
directory lookup operation is performed. Instead, we embed
directory entries with the directory inode in the same flash
memory page so that the directory lookup operation can be
carried out by just one flash read operation. This is feasible
as the current NAND flash memory has a rather large page
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size ranging from 2KB to 4KB.
The other scheme we consider is the hybrid inode in-

dexing structure. In disk-based file systems, the inode of a
file can be freely updated whenever there is a change in the
file. In flash memory, however, the updated inode cannot be
written into the previous location due to the erase-before-
write characteristics. Hence, inodes will float over the flash
memory area and the file system should be able to locate
a file’s latest version of inode. JFFS2 and YAFFS2 keep
such information in memory and that is why they require so
much memory. The log-structured file system (LFS) [12]
solves this problem by introducing an inode map, which is
basically a mapping table from the inode number to the cur-
rent copy of the inode. Our hybrid inode indexing scheme
is similar to LFS except that the physical location of a reg-
ular file’s inode is directly specified in the corresponding
directory entry. Only the directory inodes are accessible
through the mapping table. This scheme reduces the size of
the mapping table significantly, since regular files outnum-
ber directories in most cases.

3. Direct Flash File System (DFFS)

3.1. Directory Structure

In this paper, we propose inode embedding scheme
to enhance the directory structure by reflecting that the
read/write unit of NAND flash memory is a page1. As
shown in Figure 1, the main idea is to fit a directory inode
and the associated directory entries in one flash page. By
embedding an inode into its contents, the directory lookup
operation can be completed by reading one flash memory

1In the current NAND flash memory technologies, the page size is ei-
ther 2KB (for SLC NAND) or 4KB (for MLC NAND).

page. Likewise, when a file is created or deleted, this
scheme requires only one flash write operation by updating
the parent inode and its directory entries together.

The overall directory structure of DFFS can be imple-
mented using either a balanced tree or a hash table. Al-
though the B+-tree-like structure works reasonably well
under circumstances that numerous files are created and
deleted dynamically [9], it may show extra update cost
in flash memory caused by maintaining indirect indexing
pages during split and merge operations. For simplic-
ity, DFFS adopts a hash table which performs the average
lookup operation in O(1) and has low update cost.

To use the hash table efficiently, hash collisions should
be handled carefully. When a hash collision occurs, DFFS
allocates another virtual inode holding hash buckets and
makes a doubly linked list with the original directory in-
ode as shown in Figure 1. In DFFS, hash collisions occur in
proportion to the number of files in a directory.

3.2 Inode Indexing Structure

There are two inode indexing schemes used in flash-
aware file systems. One is a logical (indirect) indexing
scheme which refers to a mapping table entry to acquire the
physical location of an inode. The other is a physical (di-
rect) indexing scheme which indicates the page location of
an inode directly. Although the logical indexing scheme in-
cludes mapping table access overhead, it can easily update
the physical location of an inode without affecting the par-
ent directory entry. On the other hand, while the physical
indexing scheme has low access latency, the parent direc-
tory entry should be also updated whenever the location of
the child inode changes. This necessitates another update in
the grandparent directory and, eventually, updates are prop-
agated to the root directory. Such recursive index updates
caused by out-of-place update is called a wandering tree
problem [1].

DFFS introduces hybrid indexing scheme to mitigate the
wandering tree problem, to reduce the mapping table size,
and to enhance the file access latency. DFFS has three in-
dexing pointers: (1) directory-to-directory, (2) directory-to-
file, and (3) hash-collision pointers, as illustrated in Fig-
ure 1. Considering frequent updates of inodes, DFFS adopts
the logical indexing scheme between directory pointers. For
the directory-to-file pointers, DFFS takes the physical in-
dexing scheme by substituting the inode number in the di-
rectory entry with the physical location of the inode. This
makes it possible not only to access all the children directly,
but to reduce the size of the mapping table required for the
logical indexing scheme. In addition, the file system does
not have to manage free inode numbers and inode locations
for regular files. Finally, DFFS simply uses the logical in-
dexing scheme for hash-collision pointers as the hash colli-



sion will be rare.
The mapping table for logical pointers is organized in a

linear array and the total size is designed not to exceed over
the size of one erase block. For SLC NAND flash memory,
the size of an erase block is 128KB which can provide up
to 32K entries. Since the number of directories in default
Linux installation is less than 20K, we believe the size of
one erase block is enough in an embedded environment.

3.3 Directory Operations

This subsection explains the internal details of three rep-
resentative directory operations: open, create, and delete.

During the open operation, the pathname resolution is
handled by the VFS (Virtual File System) layer. All DFFS
needs to do is to return the inode that matches the pathname
component in the parent directory. First, DFFS reads the
directory entries embedded into the parent inode. If there
is no hash collision, DFFS locates the child inode using the
hash value. In case of hash collision, DFFS follows each of
the virtual inodes. To avoid visiting all the collided children
inside virtual inodes, DFFS uses an extra small hash table
in a directory inode which occupies one byte per a bucket.
Consequently, DFFS makes use of two hash tables in each
directory inode for better open operation performance.

The create operation can be classified into two cases: one
for a regular file and the other for a directory file. In the for-
mer case, DFFS allocates one physical index and then in-
serts it to the corresponding bucket of the parent directory.
In the latter case, DFFS inserts the logical index to the par-
ent directory. If a hash collision occurs during this process,
a new virtual inode is allocated and linked with the parent
inode.

When a file or a directory is deleted, DFFS simply inval-
idates the parent inode bucket. If it is the last inode in the
virtual inode, the virtual inode itself is invalidated.

4 Performance Evaluation

4.1 Evaluation Methodology

We have implemented DFFS on top of Memory Tech-
nology Device (MTD) in Linux kernel 2.6.14. The total
256MB of SLC NAND flash memory is emulated by the
MTD NAND flash simulator called NANDSIM. There are
2048 erase blocks and each erase block contains 128 pages,
where each page is 2KB in size [13].

The general architecture of DFFS is based on the log-
structured file system [12, 14]. Whenever it needs a free
page for new metadata, DFFS allocates a physical page
from the last log pointer. The popular SHA-1 algorithm is
used as a hash function which generates a pseudo-random
number from the given string.
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The performance of DFFS has been evaluated using
three different workloads. First, we have synthesized a
microbenchmark to characterize the basic performance of
metadata operations. The microbenchmark constructs a
simple directory tree and then measures the average time
to process several random operations. Second, we show the
result for Postmark benchmark to evaluate metadata oper-
ations with a relatively larger directory tree than the mi-
crobenchmark. Finally, we have collected a trace of Linux
kernel compilation and replays file system operations under
the limited memory size.

4.2 Resource Consumption

First of all, we examine the amount of memory required
for JFFS2, YAFFS2, and DFFS. Figure 2 compares the total
memory consumption after each file system is mounted. It
is clear that JFFS2 and YAFFS2 show large memory con-
sumption in proportional to the number of total files. In-
stead, DFFS shows a considerably small memory footprint
independent of the number of files. This is because DFFS
reads only the minimal information during the mount time,
such as super block, checkpoint block, and the root inode.

Figure 3 displays the mount latency. Since JFFS2 and
YAFFS2 scan the whole flash memory medium to build the
directory structure, it takes up to several seconds to mount
a file system. The mount latency is also proportional to the
number of files. On the contrary, we can notice that DFFS
can be mounted instantly.

4.3 Microbenchmark Results

The microbenchmark initially builds ten randomly-
named subdirectories in the root directory where the num-
ber of files in each subdirectory is varied from 50 to 200.
And then the microbenchmark measures the average time
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taken for each open, create, and delete operation. The result
is shown in Figure 4.

We observe that the open operation in JFFS2 is signif-
icantly slower than in other file systems. This is because,
when JFFS2 opens a child inode, all the directory entries of
its siblings are also read into memory in order to maximize
the locality in directory access. For example, when each di-
rectory holds 50 files, opening a file in a directory involves
repeated reading of directory entries for other 49 files. This
also explains why the open latency increases in proportional
to the number of files per directory as shown in Figure 4. It
is apparent that JFFS2 performs worse if the file access is
randomly distributed over multiple directories.

In contrast, YAFFS2 shows the highest performance
since it requires only one flash page read for opening a child
inode. DFFS shows the slightly lower performance than
YAFFS2 mainly due to hash collisions. However, recall that
DFFS consumes substantially less amount of memory (cf.
Figure 2).

Compared to the open operation, the create and delete
operations have much shorter latencies in all file systems
since they require, in most cases, only one or two page
writes owing to the log-structured design.

4.4 Postmark Results

Postmark is one of benchmarks that perform intensive
metadata operations. It measures the overall throughput in
operations/sec (ops/s) while creating and deleting a lot of
files in a number of subdirectories. The results are com-
pared in Table 1.

Postmark consists of three phases. In our experiment,
Postmark initially builds 100 subdirectories in the root di-
rectory. In the first CREATE phase, it creates 1000 files with
128KB of data in a randomly chosen subdirectory. In the
second MIXED phase, 2000 create and delete operations are

0

5

10

15

20

25

50 100 150 200 50 100 150 200 50 100 150 200

JFFS2 YAFFS2 DFFS

A
v

g
. 
T

im
e

 (
m

s)

delete

create

open

Figure 4. Microbenchmark Results

Table 1. Postmark Results (ops/s)
JFFS2 YAFFS2 DFFS

Total time (s) 52 48 52
CREATE 38 47 45
MIXED 76 83 68
DELETE 1052 350 350

performed randomly. Finally, in the DELETE phase, all the
remaining files are deleted.

JFFS2 shows lower create performance than YAFFS2 or
DFFS. When a file is created, JFFS2 writes three types of
nodes: the child dnode, the parent directory entry, and the
parent dnode, while YAFFS2 and DFFS write only the child
inode and the parent inode. Although the latency of individ-
ual create operation looks roughly same in Figure 4, when
summed up, the overall performance impact can be signifi-
cant for applications that intensively create files.

On the contrary, JFFS2 outperforms YAFFS2 and DFFS
by a factor of 3 for the DELETE phase. To delete a file,
JFFS2 simply removes relevant data structures in memory
and marks the corresponding nodes as invalidated in the
spare area. However, YAFFS2 and DFFS require additional
time to erase the deleted file’s data blocks. In terms of
the total elapsed time to run Postmark benchmark, DFFS
demonstrates the comparable performance to JFFS2 and
YAFFS2.

4.5 Kernel Compilation Trace Results

The kernel trace was collected by hooking system calls
which were invoked by metadata operations while compil-
ing the linux kernel. We replayed the trace under 74MB
physical memory which was minimum memory size to run
YAFFS2. The normalized evaluation results are shown in
Figure 5.

Although the open operations in JFFS2 are significantly
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slow in the microbenchmark results, they have much bet-
ter performance in this results. The main reason is from
the locality in directory accesses. While the microbench-
mark selects a directory randomly to open a file, the kernel
trace opens a set of files in the same directory. Therefore
JFFS2 can reduce the high open latency which caused by
pre-reading directory entries and inodes. Nevertheless it can
not show considerably high performance because of read-
ing a lot of directory entries. On the other hand, YAFFS2
shows the highest performance since it maintains the direc-
tory tree in the cache even if the system suffers from not
enough memory. The DFFS performance also follows the
YAFFS2 by 5.1%, since it also does not read a number of
directory entries from flash memory by embedding inode.
The slight difference, however, is caused by reading some
flash pages due to hash collisions in DFFS.

While the create performance is similar to that of Post-
mark results, the delete one is different, since the deletion
in Postmark includes data erase. The delete operations in
JFFS2 are optimal by the reasons in Postmark yet, YAFFS2
writes two flash pages composed of deleted inode and up-
dated parent inode. Since DFFS writes only one embedded
parent inode page, it shows almost twice better performance
than YAFFS2.

The rename performance which is mostly occupied in
miscellaneous one, depends on the amount of data to be
written. While JFFS2 writes a small directory entry node,
YAFFS2 does the renamed inode chunk. On the contrary,
DFFS writes both old and new parent directory in addition
to the renamed inode.

5 Conclusions

NAND flash memory is one of the most popular stor-
age media for portable embedded systems. As the capac-
ity of NAND flash memory grows, the importance of scal-
able flash-aware file systems is ever increasing. In this pa-
per, we present the design and implementation of DFFS, a

novel flash-aware file system which achieves a small mem-
ory footprint and instant mount time. DFFS introduces
a new efficient directory structure and an inode indexing
scheme. Through comprehensive experimental evaluations,
we demonstrate that DFFS has comparable performance to
JFFS2 and YAFFS2.
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