
Controlling Physical Memory Fragmentation in Mobile Systems

Sang-Hoon Kim† Sejun Kwon‡ Jin-Soo Kim‡ Jinkyu Jeong‡

†Korea Advanced Institute of Science and Technology, Daejeon, South Korea
‡Sungkyunkwan University, Suwon, South Korea

sanghoon@calab.kaist.ac.kr sejun000@csl.skku.edu jinsookim@skku.edu jinkyu@skku.edu

Abstract

Since the adoption of hardware-accelerated features (e.g.,

hardware codec) improves the performance and quality of

mobile devices, it revives the need for contiguous memory

allocation. However, physical memory in mobile systems is

highly fragmented due to the frequent spawn and exit of pro-

cesses and the lack of proactive anti-fragmentation scheme.

As a result, the memory allocation for large and contiguous

I/O buffers suffers from highly fragmented memory, thereby

incurring high CPU usage and power consumption.

This paper presents a proactive anti-fragmentation ap-

proach that groups pages with the same lifetime, and stores

them contiguously in fixed-size contiguous regions. When

a process is killed to secure free memory, a set of contigu-

ous regions are freed and subsequent contiguous memory

allocations can be easily satisfied without incurring addi-

tional overhead. Our prototype implementation on a Nexus

10 tablet with the Android kernel shows that the proposed

scheme greatly alleviates fragmentation, thereby reducing

the I/O buffer allocation time, associated CPU usage, and

energy consumption.

Categories and Subject Descriptors D.4.2 [Operating Sys-

tems]: Storage Management—Main memory; D.4.2 [Oper-

ating Systems]: Storage Management—Allocation / deallo-

cation strategies

General Terms Design, Management, Performance

Keywords Memory fragmentation, Mobile systems

1. Introduction

Since the advent of the memory management unit (MMU)

and scatter/gather direct memory access (DMA), the frag-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISMM’15, June 14, 2015, Portland, OR, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3589-8/15/06. . . $15.00.
http://dx.doi.org/10.1145/2754169.2754179

mentation of physical memory has not been a primary con-

cern. These two hardware-supported features have elimi-

nated the need for allocating contiguous memory by pro-

viding a contiguous address space over physically scattered

memory pages. Consequently, physical memory is split into

a unit size, or physical page, and is managed at that granular-

ity, which leads to fragmenting physical memory at the page

granularity [13, 14].

Emerging mobile systems, such as smartphones, have re-

vived the need for contiguous memory for their I/O buffers.

Some device vendors statically reserve a part of memory or

adopt similar approaches to secure the required large buffers

(tens of MB) [18, 19]. Some other vendors adopt an input-

output memory management unit (IOMMU) [23, 28], which

can eliminate the need for the reservation and allocation of

contiguous memory by dynamically mapping physical pages

to I/O addresses. However, using large pages (e.g., 64 KB or

1 MB) instead of small ones (4 KB) has proven efficient in

terms of allocation time, mapping and unmapping costs, and

I/O translation look-aside buffer (IOTLB) overhead [7, 36].

The operating system (OS), therefore, still needs to provide

contiguous memory allocations.

Previous approaches to providing contiguous memory

allocations relied on compacting physical pages [13, 14].

When a contiguous memory allocation cannot be handled in

a given free space, the allocator compacts memory by mi-

grating movable pages. This solution has been acceptable

for a small amount of small contiguous memory allocations

(a few MBs at the granularity of 8–32 KB) because the re-

quired contiguous memory can be secured by migrating only

a few pages. This process, however, is impractical to satisfy

the significant number of large contiguous memory alloca-

tions for I/O buffers (hundreds of MBs at the granularity of

64 KB or 1 MB).

This paper proposes a region-based physical memory

management scheme that is robust to the memory fragmen-

tation in mobile systems. Different from PCs or server sys-

tems, memory allocation and deallocation in mobile systems

have a unique characteristic that is associated with applica-

tion caching [3, 35]. Virtual memory (VM) pages for an

application are allocated independently via demand paging,

whereas the pages are deallocated together when the appli-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ISMM’15, June 14, 2015, Portland, OR, USA
ACM. 978-1-4503-3589-8/15/06
http://dx.doi.org/10.1145/2754169.2754179

1

cation is terminated for memory reclamation. By exploiting

this characteristic, the pages can be grouped at allocation

time even if their lifetimes are unknown, and be isolated

from the pages with different deallocation times. To this

end, a region domain is created and associated with a process

when the process is spawned for an application. The region

domain contains fixed-size regions, each of which is phys-

ically contiguous and hosts the VM pages of the process.

When a cached application is killed to reclaim memory, the

regions allocated to the application are freed. Accordingly,

a successive contiguous memory allocation can be satisfied

from the freed regions without requiring significant effort

for compacting pages.

In order to make this scheme practical, (1) internal frag-

mentation in region domains should be minimized, and (2)

all pages other than VM pages should also be managed com-

pactly without fragmenting physical memory. First, inter-

nal fragmentation occurs in the form of unused free pages

in regions. We greatly reduce the internal fragmentation by

compacting each region domain and sharing region domains

for applications sharing the same high-level lifetime. Sec-

ond, the pages other than VM pages are managed in special

region domains that are optimized for their characteristics.

For instance, file pages are allocated in a region domain that

is maintained in a compact state by collaborating with the

system-level page replacement process. Unmovable kernel

pages are confined in a special region domain so that they do

not aggravate the fragmentation.

The proposed scheme is implemented on an Android

tablet and evaluated with a realistic workload. The evalua-

tion results show that the proposed scheme effectively pre-

vents memory from being fragmented when compared to the

stock memory allocation policy. As a result, I/O buffers can

be comprised of large pages within an order of magnitude

shorter allocation time. Since I/O buffers are not fragmented,

the overhead associated with allocating and managing the

buffers is greatly reduced, thereby decreasing CPU usage by

20% as well as energy consumption by 16%.

The rest of the paper is organized as follows. The fol-

lowing section describes the current approaches to handling

contiguous memory allocation and the characteristics of

memory management in mobile devices. Section 3 char-

acterizes the memory usage in mobile systems, and Sec-

tion 4 describes the proposed region-based physical mem-

ory management. Implementation issues are illustrated in

Section 5. Section 6 shows the evaluation results of the pro-

posed scheme. Section 7 discusses the related work. This

paper concludes in Section 8.

2. Background and Motivation

2.1 Memory Management Regarding Fragmentation

Memory fragmentation is an inherent problem in dynamic

storage allocation with variable size units [20]. However, it

has not been a major concern in modern OSes, since physi-

cal memory is divided and managed at a unit size: a page, for

example. On CPU-side, memory management unit (MMU)

supports dynamic translation from virtual to physical ad-

dresses. Accordingly, a process can see a virtual contigu-

ous address space while corresponding physical pages are

scattered. On I/O device-side, scatter/gather DMA supports

similar dynamic mappings between a contiguous I/O address

space and scattered physical pages. Therefore, the fragmen-

tation of physical memory has not been a problem.

However, depending on the implementation of the OS

kernel or the restriction of underlying CPU architecture, it is

occasionally required to manage the fragmentation of phys-

ical memory to satisfy contiguous memory allocations. For

example in Linux, which is prevalently used in mobile sys-

tems [4, 26, 33], the size of a kernel stack is 8 KB (two con-

tiguous pages) [22]. A slab page, which is used in a slab allo-

cator for providing kernel-level dynamic memory allocation,

can be larger than 4 KB in order to minimize the internal

fragmentation inside slabs [9]. In a 32-bit ARM architec-

ture, the size of page global directory (PGD) is 16 KB (four

contiguous pages) [30]. In order to satisfy these small but

essential contiguous page allocations, the Linux kernel has

employed page clustering and memory compaction [13, 14].

Page clustering places pages with the same movability to-

gether in a fixed-size contiguous region, called a page block.

A movable page, such as a process virtual memory (VM)

page and file page, can be migrated and reclaimed on de-

mand since the references associated with the page are man-

aged. On the other hand, an unmovable page, such as a ker-

nel stack and slab page, cannot be migrated because the

pointers referencing the page are not managed. When un-

movable pages are scattered in a contiguous region, the re-

gion cannot be used for a contiguous memory allocation un-

til the unmovable pages are explicitly deallocated. To avoid

this fragmentation problem, physical memory is divided into

large blocks (i.e., page blocks), which are assigned a type

movable or unmovable. Then, pages are allocated in the page

blocks based on their movability. Since the movability can

be readily determined at allocation time, the physical mem-

ory allocator can control the placement of the two types of

pages. This policy can be overridden temporarily when little

free memory remains. In this case, an unmovable page can

be allocated within a movable page block and vice versa.

Memory compaction is applied with the page clustering

to create a contiguous free space on demand. Although the

page clustering enables to group pages with their movability,

the grouping does not necessarily mean a contiguous region

is available; hence, the pages within a page block can be

scattered, thereby fragmenting the page block. Accordingly,

when a contiguous allocation cannot be satisfied from the

given free memory, the kernel actively migrates movable

pages to secure a contiguous free space. In more detail,

the movable pages in low addresses are migrated to free

pages in high addresses. When the compaction completes,

2

the physical memory is compacted, with free pages in low

addresses and movable pages in high addresses.

The unusable index [12, 13] quantifies the degree of

memory fragmentation. It specifies the fraction of free mem-

ory that is unusable for the allocation of a specific size. As-

sume a memory allocator that manages an address space in

power of two pages (e.g., 21 or order-1 to refer to an 8 KB

region). Then, the unusable index of free space for 2x pages

is defined as

UI(x) = 1−

∑
n

i=x
2i × fi∑

n

i=0
2i × fi

(1)

where fi denotes the number of free pages of size 2i, and n
denotes the largest allocable order in the system. When the

unusable index is 0, all contiguous chunks in free memory

can satisfy the allocation of the specified size. When the

unusable index is 1, none of the chunks in free memory can

satisfy the allocation. This may lead to memory compaction

when the amount of free memory is larger than the specified

allocation size. If the free memory itself is smaller than the

requested size, physical memory is reclaimed first, and (if

necessary) memory compaction is conducted [14].

2.2 Memory Management in Mobile Devices

Modern mobile systems, such as smartphones, tablets, or

smart TVs, are general-purpose, and can run many appli-

cations developed by third-party developers. They are multi-

programmed systems but run a limited number of foreground

applications at a time (usually one to a few) due to their lim-

ited resources and screen size. Some background activities

are allowed, but are limited in functionality, such as receiv-

ing push notifications.

A number of studies have reported that users tend to

interact with many applications with a certain degree of

locality in mobile systems [11, 29, 31]. In addition, the burst

of each application is usually short (e.g., checking emails or

new messages in social network services). In this regard, it

is important to minimize the launch time of applications to

make the responsiveness of a system high. To this end, many

mobile systems adopt application caching in memory [15,

35]. When a user leaves an application, the application is not

terminated but paused in memory. When a user accesses a

cached application later, the application is quickly resumed,

which is much faster than launching the application from

scratch.

However, the number of applications that can be cached

in memory is limited by the capacity of physical memory.

Thus, when free memory becomes below a certain thresh-

old some cached (unused) applications are killed to reclaim

memory pages allocated to the applications (e.g., process

virtual memory (VM) pages). This is the main role of low

memory killer in Android. From this characteristic, reclaim-

ing process VM pages by killing a cached application is a

primary means of refilling free pages in mobile systems.

iobuffer* alloc_buffer(int size)
{

static int orders [] = {8, 4, 0};
iobuffer *buffer = kmalloc ();
int size_remaining = size;
int *max_order = &orders [0];
while (size_remaining > 0) {

page = alloc_pages (* max_order);
if (!page) {

max_order ++;
} else {

size_remaining -= 1UL << *max_order;
buffer ->append(page , *max_order);

}
}
return buffer;

}

Figure 1. A C code snippet for allocating an I/O buffer in

the ION allocator

2.3 Motivation

Modern mobile devices are equipped with many auxiliary

hardware devices to enhance system performance and user

experience. For instance, GPU accelerates texture rendering

on 2D or 3D surfaces, providing high-quality visual experi-

ence. A hardware codec accelerates encoding of video feed

from a camera, enabling live video chatting over networks.

An audio decoder enables users to listen to music at low

power consumption.

These hardware accelerators require large I/O buffers,

each of which is tens of MBs, since the accelerators usu-

ally manipulate high-resolution multimedia data. When such

devices do not support scatter/gather DMA, memory reser-

vation is one of common solutions to allocate such phys-

ically contiguous large buffers against the physical mem-

ory fragmentation [1, 19]. Meanwhile, with the adoption of

IOMMU, such large I/O buffers can be allocated dynami-

cally. Physically scattered pages (e.g., 4 KB page) can be

contiguous in an I/O address space because IOMMU pro-

vides on-demand mappings between physical and I/O ad-

dresses. Consequently, the need for large contiguous mem-

ory has been mostly diminished.

However, IOMMU does not completely eliminate the

need for contiguous memory. Comprising an I/O buffer with

only 4 KB pages is inefficient in terms of IOMMU map-

ping and unmapping costs [7, 36] and IOTLB overhead [2],

since it requires many I/O page table updates and causes

high IOTLB miss ratios by reducing IOTLB reach. To avoid

the overhead, many device drivers attempt to allocate I/O

buffers with large pages that IOMMU supports. For exam-

ple in Linux, Figure 1 shows a C code snippet for a buffer

allocation in the ION memory allocator, which is a spe-

cialized memory allocator for device drivers such as hard-

ware accelerators [38]. In this example, IOMMU supports

three types of pages (1 MB, 64 KB, and 4 KB pages) as in

the orders array. The allocator tries to allocate the largest

page first. When the allocation fails, the allocator falls back

and attempts to allocate smaller pages by incrementing the

max order pointer. This operation repeats until the required

3

0.0
0.2
0.4
0.6
0.8
1.0

 0 50 100 150 200 250 300

Order 1

0.0
0.2
0.4
0.6
0.8
1.0

 0 50 100 150 200 250 300

Order 2

0.0
0.2
0.4
0.6
0.8
1.0

 0 50 100 150 200 250 300

Order 3

0.0
0.2
0.4
0.6
0.8
1.0

 0 50 100 150 200 250 300

Order 4

0.0
0.2
0.4
0.6
0.8
1.0

 0 50 100 150 200 250 300

Order 5

U
n
u
sa

b
le

 i
n
d
ex

0.0
0.2
0.4
0.6
0.8
1.0

 0 50 100 150 200 250 300

Order 6

U
n
u
sa

b
le

 i
n
d
ex

0.0
0.2
0.4
0.6
0.8
1.0

 0 50 100 150 200 250 300

Time (min)

Order 7

0.0
0.2
0.4
0.6
0.8
1.0

 0 50 100 150 200 250 300

Time (min)

Order 8

Figure 2. The change in the unusable index over time

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7 8 9 10

C
h

an
g

e
in

 s
iz

e
(M

B
)

Order of the free page list

Young Aged

Figure 3. The change in the number of free pages in each

order in the buddy allocator upon an application termination

amount of memory is allocated. For instance, a 15 MB frame

buffer, which is one of representative I/O buffers in our test

bed, can be composed of fifteen 1 MB pages, or, at worst,

3,840 4 KB pages.

In practice, due to severely fragmented physical memory,

it is difficult to allocate I/O buffers with large pages. Figure 2

shows the change in the unusable index for sizes from 21

to 28 pages (from the smallest to largest allocatable pages)

over time while we ran a series of application launches

that follows realistic user behavior; the details are described

in Section 6. After 100 minutes, the unusable indices for

large pages are saturated to 1, indicating that the desirable

pages are hardly available. Consequently, I/O buffers are

badly fragmented so that over half of the pages comprising

the I/O buffers are 4 KB pages; see Section 6 for details.

This result indicates that the memory compaction and page

clustering are unsatisfactory to satisfy large volume of large

page allocations for I/O buffers.

The severe fragmentation of physical memory is primar-

ily caused by the memory usage policy in mobile systems.

Due to application caching, the utilization of physical mem-

ory is kept high. While free memory is low, allocating small

pages having different deallocation times exacerbates the

fragmentation of free space [25]. Although a bulk of process

VM pages are reclaimed when a cached process is killed,

however, the freed pages do not help to ease severe frag-

mentation. Figure 3 presents the change in free pages in

the buddy system allocator after killing a cached applica-

tion when the physical memory is young (after 10 applica-

tion launches) and aged (after 1,000 application launches),

respectively. The application has approximately 110 MB of

pages in both cases. In the young case, the amount of high-

order free pages is significantly increased after killing the

application. In the aged case, over half of the freed pages

are order-0 (4 KB), order-1 (8 KB), or order-1 pages pro-

duced by coalescing order-0 buddies. Free pages larger than

order-3 are not reclaimed or produced by coalescing smaller

pages. This result implies that bulk memory reclamation by

killing cached applications does not relax memory fragmen-

tation, since the pages allocated to an application are already

fragmented.

3. Memory Usage Characterization

It is important to understand the usage of physical memory

to effectively control the physical memory fragmentation. To

this end, we analyzed the memory usage of Android, which

is the most popular platform for mobile systems. Android

runs on top of the Android kernel, which is an extended ver-

sion of the Linux kernel to support Android-specific func-

tionalities such as binder and low memory killer. Its physical

memory management is the same as that of the Linux kernel.

The ways of using physical memory are roughly fourfold:

process VMs, OS file caches, device I/O buffer, and kernel

memory. These commonly interact with a buddy system al-

locator, which is the core memory allocator in the Linux ker-

nel at the granularity of power of two pages. Memory allo-

cation is explicitly initiated by each component. For exam-

ple, when a process wants to expand its stack, a page fault

handler requests allocation of physical pages and maps them

to the desired address space. When a process wants to play a

video stream, the device driver of a hardware codec allocates

I/O buffers.

Memory deallocation, however, is conducted in two

ways: (1) explicitly by each component and (2) implicitly

by the page replacement policy in OS. In the former case,

a component returns unnecessary pages to the buddy sys-

tem allocator. An example includes the deallocation of I/O

buffers after finishing the function of an I/O device. The lat-

ter case is triggered when free memory is low. A page recla-

mation thread (e.g., kswapd of the Linux kernel) continues to

reclaim pages until free memory becomes sufficient. With-

out swap storage, cache (or file) pages are the only targets of

this page-level reclamation. Instead, the low memory killer

reclaims process VM pages when free memory is below cer-

tain thresholds as described in Section 2.2.

In addition to the basic memory usage characteristics, the

following details the specific characteristics of each memory

type.

4

S
iz

e
(M

B
)

Elapsed time (sec)

Kernel object
Vmalloc

File
VM page

I/O buffer
Free

 0

 200

 400

 600

 800

 1000

 1200

 500 600 700 800 900 1000

(1)

(2)

Figure 4. A 500 second-snapshot of memory usage in a

Google Nexus 10 tablet running the benchmark workload.

• Process VM pages. Process VM pages, or VM pages,

comprise stacks and heaps of processes. In mobile sys-

tems, VM pages account for the largest fraction in mem-

ory usage, as shown in Figure 4, due to the application

caching. VM pages are allocated at the 4 KB page gran-

ularity via demand paging. Since their allocation gran-

ularity is small and allocation times spread over time,

VM pages for a process are usually scattered one a phys-

ical address space. Although the allocation times of VM

pages for a process are different, most of them share the

same deallocation time since they are reclaimed in a per-

process basis by the low memory killer. In Figure 4, the

sudden increases in free pages pointed by the two arrows

indicate terminations of cached applications. VM pages

are movable since the references (e.g., page table entries)

to them are tracked and managed by the kernel.

• File pages. Modern OSes usually cache file data in mem-

ory to accelerate accesses to slow secondary storage.

These file pages are usually allocated individually on

a file cache miss at the page granularity. Unlike VM

pages, file pages are deallocated at a page granularity via

the page replacement policy. Since the page replacement

scheme reclaims file pages prior to VM pages, file pages

account for a moderate fraction of total memory usage,

as shown in Figure 4. File pages are movable, although

some of them become temporarily unmovable by file sys-

tem journaling.

• I/O buffers. As described in Section 2.3, an I/O buffer

can be composed of various sizes of pages depending

on the supported pages in IOMMU (4 KB, 64 KB and

1 MB in our test bed). An I/O buffer allocator allocates

an I/O buffer by allocating pages repeatedly from the

buddy system allocator until a desired size is allocated.

The I/O buffer allocator tries to allocate as many large

pages as possible. When a large page is not available, the

allocator falls back to smaller page allocations. Hence,

when the memory is not fragmented, an I/O buffer can

be composed of a few large pages. If the memory is

highly fragmented, an I/O buffer is composed of many

small pages. The deallocation of an I/O buffer returns

all pages comprising the buffer, so that the pages in an

Type
Alloc. Dealloc. Usage Mov-

granularity unit portion able?

Process
One page

Mostly
Largest Yes

VM page per-process

File page One page Per-page Moderate Yes

I/O buffer
1, 16 or

Per-buffer
Second

No
64 pages largest

Kernel memory

1–8 pages Per-object Minimal Noexcluding

vmalloc objects

Vmalloc objects One page Per-object Fluctuating No

Table 1. Summary of memory usage in mobile systems

I/O buffer have the same lifetime. I/O buffers account

for the second largest fraction in total memory usage, as

shown in Figure 4. Finally, pages comprising I/O buffers

are unmovable.

• Kernel memory. The kernel requires memory for sev-

eral types of usages including kernel stacks, page tables,

and kernel objects. The kernel objects are divided into

two classes: physically contiguous objects (kmalloc or

slab objects) and virtually contiguous objects (vmalloc).

The allocation granularity varies depending on the type

of usage. For example, a kernel stack is 8 KB, PGD is

16 KB, and a slab is between 4 KB and 32 KB. The size

of virtually contiguous objects varies but the allocation

granularity is 4 KB, since scattered pages can be mapped

to be contiguous in the kernel virtual address space. As

shown in Figure 4, except for the virtually contiguous

objects, the amount of kernel memory (denoted as ker-

nel object) is the smallest among the memory usages and

stable over time. The amount of virtually contiguous ob-

jects (denoted as vmalloc) is usually small but fluctuates

occasionally. In the figure, the sudden increase of virtu-

ally contiguous objects is caused by a camera application,

which requires a large volume of memory in the kernel

space.

Table 1 summarizes allocation granularity, deallocation

unit, fraction in total memory and movability of each mem-

ory type. Based on the characteristics, the following section

describes how each memory type is managed to control the

fragmentation of physical memory.

4. Region-based Physical Memory

Management

According to the characterization of memory usage in mo-

bile systems, we found that a large number of free pages

are refilled when a cached application is killed. This implies

that if the freed pages are physically contiguous, subsequent

contiguous memory allocations can be easily satisfied on

the freed pages without incurring additional operations, such

as memory compaction. To realize the idea, we propose a

region-based memory allocator that tries to group pages hav-

ing the same deallocation time in a contiguous region. Fig-

5

Linux kernel

Physical memory

Buddy system allocator

Region-based allocator

VM
pages

File & buffer
pages

Unmovable

pages

(kernel stack,

PGD, slab)

Unmovable pages
(vmalloc, GPU buffer)

Figure 5. The memory management hierarchy of the pro-

posed scheme

ure 5 depicts the overall memory management hierarchy of

the proposed scheme. The rest of this section describes how

the region-based memory allocator realizes the idea with the

various types of memory usage.

4.1 Process Memory Management

Our scheme focuses primarily on the placement of process

VM pages in a contiguous memory space. To this end, we

divide the physical memory into fixed-size regions, and dy-

namically allocate regions to a process. The number of re-

gions allocated to a process depends on the memory demand

of the process. All regions belonging to a process are re-

claimed when the process is terminated.

To group regions belonging to the same process, we de-

fine a region domain, or domain for short. When a process

is created, a domain is created and the process is associated

with the domain. Process VM page allocations and dealloca-

tions are fulfilled within the domain. When the owner pro-

cess requests for a page, a free page in the domain is pro-

vided. If the domain has no region with any free pages, a

region is allocated from the physical memory allocator (i.e.,

buddy system allocator) and associated with the domain.

When every page in a region becomes free, the region is

returned to the physical memory allocator. The free pages

in a region are managed similar to the quick fit [16], which

enables fast allocation and deallocation of pages. Figure 6

illustrates an example of our process memory management.

There are three region domains (three processes) and each

domain has two or three regions allocated. The small squares

in the regions indicate pages that are allocated (shaded) or

free (blank).

Since free pages in a region domain can only be used by

the owner process, these unused free pages can be consid-

ered as internally fragmented from the perspective of the

buddy system allocator. However, such free pages in a re-

gion domain are different from the traditional internal frag-

mentation, which cannot be utilized for any purposes, in that

they can be used by the owner. Nevertheless, minimizing the

amount of such unused pages is important in terms of mem-

ory utilization.

4.1.1 Region Domain Compaction

If a process allocates and deallocates pages monotonically,

its region domain has only one partially used region as Do-

����	��

�	�
����

����	���

����	���

����	��

�	�
����

����	���

����	��

�	�
����

����	���

����	���

Figure 6. Region domains

main A in Figure 6. In practice, however, the allocation and

deallocation are not monotonic, and a process allocates and

deallocates pages dynamically according to its memory us-

age and demand. Thus, a region domain can have multiple

partially used regions as Domain B and C in Figure 6. The

problem is that the amount of unused pages can be larger

than the size of a region as Domain C is. Since the alloca-

tor cannot control the locations of page deallocations, these

holes should be managed properly to make regions compact.

Since VM pages are movable, we can easily compact re-

gions having holes; allocated pages in the region with the

lowest utilization are migrated to the region that is not full

but has the highest utilization. However, the timing of this

compaction is an important issue. If page allocations are

followed by compaction, page migrations during the com-

paction are unnecessary. We avoid the unnecessary com-

paction by compacting a domain when its owner process

goes to the background, since the process in the background

is paused and does not incur memory activities in gen-

eral [17].

The evaluation results indicate that the region domain

compaction requires fewer CPU cycles than the memory

compaction of the kernel. The primary difference is that the

kernel memory compaction scans the physical address space

to locate the pages to migrate and proper free pages. This

scanning cost is significant since each scan needs to test the

metadata of each page frame. In contrast, the region domain

compaction can directly locate pages to move out and proper

free pages to move in by traversing a linked list.

4.1.2 Region Domain Sharing

Although the region domain compaction can reduce the

amount of unused pages within a domain, the amount of

system-wide unused pages can be significant if there are

many region domains. When a region domain is compacted,

the domain has only one partially used region while the

other regions are full. The expected amount of unused pages

in a single domain is 1/2r where r is the size of a region.

If there exist n region domains in a system, the amount of

system-wide unused pages is n × 1/2r. In practice, our test

bed has 55 processes running at boot-up, thereby creating

55 region domains and the amount of unused pages is ap-

proximately 28 MB when a region is 1 MB. These unused

pages cause memory under-utilization and trigger unneces-

sary page reclamation due to a lack of free memory in the

physical memory allocator. Therefore, the system-wide un-

used pages should be managed.

6

To reduce the system-wide unused pages, we found that

many of processes in a system are persistent ones support-

ing the application framework. For instance, system server,

media server, and zygote are in charge of managing the ap-

plications, providing media operations, and spawning a new

application, respectively. The low memory killer never kills

these persistent system processes; hence, their VM pages

have the same lifetime. For this reason, our first solution is to

create a shared region domain to which persistent processes

belong.1

Another characteristic to exploit from mobile systems is

that some processes provide background activities. The ap-

plication framework supports a background activity as the

name of service. For example, when a Facebook application

is in the background, it can receive push notifications as a

background service. Since the application framework prefer

service applications to normal applications, service applica-

tions are given higher priority than normal applications. Ac-

cordingly, the low memory killer tends to kill normal ap-

plications rather than service applications. Even if a service

application is killed, the application is likely to be spawned

again to handle a new incoming event. Hence, service ap-

plications are likely to outlive normal applications. In this

regard, we make service applications share a domain called

a service domain.

In the test bed, there are 25 persistent system processes

and 21 service processes out of total 55 processes. By ap-

plying the domain sharing, the number of region domains is

reduced from 55 to 11 (one shared domain, one service do-

main, and nine domains for normal applications) at boot-up.

Consequently, the amount of system-wide unused pages is

reduced to one fifth.

4.2 File Cache Management

Since file (or cache) pages are allocated and deallocated at

the page granularity, if the placement of them is not con-

trolled, file pages can also be scattered, thereby fragment-

ing physical memory. In order to curb the fragmentation

of file pages, we make a single region domain, cache do-

main, which hosts all file pages. The rationale behind this

is twofold. First, file pages are movable so that the do-

main can be compacted at any time if the domain has many

holes. Second, since file pages store cache data of secondary

storage, the domain compaction can have an additional op-

tion of discarding cached data. Modern mobile systems are

equipped with high-performance secondary storage, such as

high-class secure digital (SD) cards, embedded multimedia

card (eMMC) or universal flash storage (UFS), which shows

much higher performance than traditional disks. Thus, dis-

carding file pages does not cause a high performance penalty

while increasing the flexibility of the domain compaction.

1 Shared pages between processes are allocated in the shared domain, since

the shared pages are still allocated in memory when one of the processes

is killed. The amount of shared pages is approximately 500 KB, which

negligibly affects the blowup of the shared domain.

Therefore, the domain compaction for the cache domain

is specialized as follows; the domain compaction is triggered

by the page reclamation process in the kernel when it at-

tempts to reclaim file pages in a system. The process selects

a file page as a victim according to the page replacement al-

gorithm. For the victim file page, the pages belonging to the

same region are also selected. Among them, active pages,

which are deemed in the current working set, are migrated

to other regions. Dirty pages are also migrated to other re-

gions instead of being written back to secondary storage to

avoid long write-back I/O delay. Finally, the rest of the pages

(clean inactive pages) are discarded, and the region is re-

turned to the physical memory allocator.

In OS buffer cache, block device pages (a.k.a buffer pages

in the Linux kernel) are isolated from the cache domain and

managed in a different manner since these pages are some-

times neither movable nor discardable for a long time (up to

5 seconds). The buffer pages store file system metadata and

journal data [18]. When a buffer page has a dirty data of a

committing transaction in file system journaling, the page is

neither movable nor discardable until the file system jour-

nal is finally written to secondary storage. Moreover, if such

pages are scattered in the cache domain, the regions contain-

ing them cannot be reclaimed, thereby making many unused

pages in the cache domain.

To alleviate this problem, we store buffer pages in a

special domain, buffer domain. These pages account for only

a few MBs throughout the evaluation, and the footprint of the

buffer domain is bounded. In contrast to the cache domain,

the domain compaction of the buffer domain is performed

only using page migration.

4.3 Unmovable Page Management

In spite of the effort to manage the majority of the memory,

we found that unmovable kernel pages can aggravate the

fragmentation severely though they occupy only a small

fraction of the memory. Recall that the kernel pages include

I/O buffers, kernel stacks, process page tables, and slabs.

Interestingly, we already benefit from the page clustering

policy of the kernel [13, 14]. The page clustering places

unmovable pages in a limited set of page blocks. In addition,

the amount of such pages is small and stable, as presented as

kernel object in Figure 4. For this reason, we do not actively

control unmovable kernel pages in general.

As an exception, we manage vmalloc pages by allocating

them from a special region domain, vmalloc domain. Vmal-

loc pages are different from other kernel objects and rather

similar to process VM pages in that they are allocated at the

page granularity and can be scattered over the physical mem-

ory. Thus, we localize their location to prevent them from

fragmenting memory.

In our test bed, GPU buffers have the same characteristics

as vmalloc pages; GPU buffer pages are allocated at the page

granularity and can be scattered on a physical address space.

7

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

U
n

u
sa

b
le

 i
n

d
ex

Elapsed time (min)

w/o vmalloc domain w/ vmalloc domain

Figure 7. The unusable indices of order-6 pages with and

without using the vmalloc domain

Figure 8. An example of the memory usage in the proposed

scheme. The size of a page block is assumed at 512 KB, and

the size of a region is assumed at 128 KB.

Therefore, pages for GPU buffers are forced to be allocated

from the vmalloc domain.

Except for the GPU buffers, we do not explicitly manage

the pages for I/O buffers. When physical memory is not frag-

mented, an I/O buffer can be composed of large contiguous

pages rather than small ones. These contiguous pages are re-

claimed intact when the I/O buffer is deallocated. Hence, if

we prevent physical memory fragmentation from the very

first, the allocation and deallocation of I/O buffers will not

aggravate memory fragmentation.

Figure 7 shows the effect of the vmalloc domain. When

the vmalloc domain is not used, free memory is highly frag-

mented so that the unusable index frequently reaches to 1;

hence no free region is available in the free memory. How-

ever, when the vmalloc domain is employed, the unusable

index is kept low, primarily between 0.1 and 0.4.

Figure 8 shows an example of the physical memory us-

age in our scheme. The regions for VM pages and file pages

are allocated from movable page blocks. Unmovable page

blocks provide unmovable page allocations for I/O buffers,

kernel stacks, PGDs, slabs, and regions for the vmalloc do-

main, which are not depicted in the figure.

4.4 Memory Reclamation

In the Android kernel, the page reclamation process (i.e.,

kswapd) initiates memory reclamation when the amount of

free memory gets below pre-defined thresholds. This ap-

proach offloads time-consuming memory reclamation from

the critical path of application execution. During the recla-

mation, the reclamation process invokes the low memory

killer if the amounts of free pages and file pages are below

specified thresholds at the same time.

Recall that the unused pages in regions are different from

the traditional internal fragmentation in that their owner

process can use them. Hence, these unused pages in regions

can be considered as a sort of free memory. We adjust the

thresholds for checking free memory so that they take the

unused pages in regions into account. Our evaluation shows

that the modification did not incur any side effects such as

an allocation failure due to a lack of free memory in the

physical memory allocation.

Finally, the special domains (shared domain, service do-

main, and buffer domain) are compacted via the memory

shrinker that is invoked automatically when free memory is

low. Consequently, time-consuming page migrations occur

only if those are worthwhile. Recall that the cache domain

is compacted by the page reclamation process and the per-

process domains are compacted when its corresponding ap-

plication goes to the background.

5. Implementation

We implemented the proposed scheme in the Android kernel

3.4.5. The region-based allocator is implemented on top of

the buddy system allocator, and interacts with the buddy

system to allocate or deallocate regions.

Regarding the cache domain, we implemented two cache

domains in the system due to the memory zones in the Linux

kernel. The kernel partitions physical memory into two

memory zones, normal and highmem, and manages them

separately. The majority of our implementation is indepen-

dent of the zones; however, the page replacement algorithm

for file pages works per-zone basis. To cooperate with the

page replacement algorithm, we maintain one cache domain

for each zone.

Regions are allocated from any of the zones by specify-

ing the GFP HIGHMEM flag, except for the buffer domain. The

regions for the buffer domain are allocated from the normal

zone as they are assumed to. All region allocations for mov-

able domains are specified with the GFP MOVABLE flag to let

the buddy system know the pages in the region are movable.

The Android application framework notifies the kernel of

the class of each application via the proc fs interface. By

instrumenting the notification path, the kernel is aware of

the class of processes, such as a persistent process, service

application, and the state changes to the background.

6. Evaluation

6.1 Methodology

We evaluated the proposed scheme on a Google Nexus 10

tablet, which is equipped with a dual-core Cortex-A15 CPU

and 2 GB of RAM, and runs Android 4.2.2 (Jelly Bean). We

composed an in-house benchmark for use as the workload,

which launches Android applications in a given order. The

benchmark launches an application by injecting an intent for

8

Category Applications %

Productivity Adobe Reader, Evernote, Calendar 9.8

News
ESPN Sports Center, CNN,

4.8
The Weather Channel

Games
Angry Birds, Subway Surfer,

18.5
Candy Crush Saga

Communication
Gmail, Hangout, Facebook,

39.9
Google+, Flipboard, Feedly

References Google Maps 4.8

Entertainment Movie, Camera, Gallery, Youtube 11.5

Shopping Play Store 3.9

Browser Browser 6.8

Table 2. The application composition of the benchmark

the application using the am command-line tool, and waits

15 seconds for the application’s launch. The benchmark then

launches the home launcher application and waits for an-

other 5 seconds. The benchmark performs the procedure on

the applications specified in a workload file. We chose 22

popular Android applications from various categories in An-

droid Play Store, and generated a workload comprised of

1,000 application launches. The workload was carefully gen-

erated by referring to LiveLab research [31] to imitate a re-

alistic user behavior. Table 2 summarizes the applications

and their proportion in the workload. Note that the 1,000

launches are equivalent to 18.2 days of uptime according to

the LiveLab trace.

We attempted to use the stock vanilla kernel as the base-

line; however, preliminary evaluations show that the kernel

halts in the middle of the benchmark and cannot proceed

to complete it. In-depth analysis reveals that a conservative

memory system parameter caused the halt. When the kernel

requests for an order-1 page for a new kernel stack, the al-

location fails because high-order (1 or larger) free pages in

the buddy system are deemed insufficient though a few high-

order pages exist. The level of sufficiency is determined by a

parameter, min free order shift, and its default value is

configured to be too conservative. By relaxing the parameter

value from 1 (default) to 2, no kernel halt occurs anymore.

We refer to this configuration as VAN.

We evaluated the region-based allocation using varied

region sizes from order-5 to order-8 pages, each of which

is larger than the second largest IOMMU page (64 KB)

and smaller than the largest IOMMU page (1 MB). We

will refer to RGN as the configuration that uses an order-

N contiguous page as a region. For example, RG5 uses the

25×4 KB = 128 KB regions. Thus, we compare RG5, RG6,

RG7 and RG8.

To reduce unpredictability during evaluation, we set the

CPU frequency governor to the performance governor.

Other parameters are set to default unless stated.

6.2 Unusable Index

First, we analyze the influence of the region-based allocation

on memory fragmentation. While running the benchmark,

we collected the number of free pages in the buddy system

0.0
0.2
0.4
0.6
0.8
1.0

 0 50 100 150 200 250 300

Order 1

0.0
0.2
0.4
0.6
0.8
1.0

 0 50 100 150 200 250 300

Order 2

0.0
0.2
0.4
0.6
0.8
1.0

 0 50 100 150 200 250 300

Order 3

0.0
0.2
0.4
0.6
0.8
1.0

 0 50 100 150 200 250 300

Order 4

0.0
0.2
0.4
0.6
0.8
1.0

 0 50 100 150 200 250 300

Order 5

U
n
u
sa

b
le

 i
n
d
ex

0.0
0.2
0.4
0.6
0.8
1.0

 0 50 100 150 200 250 300

Order 6

U
n
u
sa

b
le

 i
n
d
ex

0.0
0.2
0.4
0.6
0.8
1.0

 0 50 100 150 200 250 300

Order 7

Time (min)

0.0
0.2
0.4
0.6
0.8
1.0

 0 50 100 150 200 250 300

Order 8

Time (min)

RG6
VAN

Figure 9. The change in the unusable indices of VAN and

RG6 over time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

VAN RG5 RG6 RG7 RG8

F
ra

ct
io

n

Order 0 Order 4 Order 8

Figure 10. Breakdown of the allocation unit for I/O buffers

allocator, and calculated the unusable index for each order

using Equation 1. Figure 9 compares the unusable indices

of VAN and RG6 over time. We omitted the results of other

region sizes for brevity.

As described in Section 2, we observed rapid increases of

unusable indices for VAN, which imply heavy memory frag-

mentation in all sizes. In contrast, for RG6, the unusable in-

dices of pages smaller than order-6 are limited to low during

the entire benchmark execution, because an application ter-

mination yields many order-6 pages to the buddy system al-

locator, thereby lowering the unusable indices for the pages

smaller than or equal to an order-6 page. As the proposed

approach does not guarantee the contiguity of areas larger

than the region, the unusable indices for order-7 and order-8

are high. However, as the memory is allocated/deallocated at

a large granularity, the fragmentation indices are maintained

lower than those of VAN.

6.3 I/O buffer

We analyzed the page composition of I/O buffers. As ex-

plained in Section 2, the ION allocator first attempts to allo-

cate high-order pages from the buddy system allocator and

then falls back to lower-order pages. We counted the oc-

currence of each allocation unit, and presented the break-

9

0.0

0.2

0.4

0.6

0.8

1.0

 0.01 0.1 1 10 100 1000

C
u

m
u

la
ti

v
e

ra
ti

o

Allocation time (ms)

RG5
RG6
RG7
RG8
VAN

Figure 11. Allocation time for I/O buffers

down of buffer composition sizes in Figure 10. We can ver-

ify that I/O buffers are heavily fragmented in VAN but not

in the region-based allocation. In VAN, approximately 60%

of the allocations are served with order-0 pages, whereas

RGNs have negligible fractions for the size, implying that

the I/O buffer allocator in VAN has to allocate many small

pages, whereas the region-based allocation can accomplish

the buffer allocation by using large pages.

In addition, we observed that the fraction of higher-order

allocation increases with the size of the region; this is due to

the lower memory fragmentation in the high-order pages for

larger region size.

To further investigate the effect of page allocation for

different configurations, we collected the allocation time for

I/O buffers while running the workload. Each configuration

allocated approximately 147 GB of I/O buffer over 13,300

allocations. Figure 11 illustrates the allocation times; note

that the x-axis is in log-scale.

The allocation time for the region-based allocation is re-

duced significantly when compared to VAN. Specifically, the

medians of the allocation times are less than a millisecond;

0.528, 0.423, 0.265, and 0.280 milliseconds for RG5, RG6,

RG7, and RG8, respectively. The median of VAN is 5.871

milliseconds, which is an order of magnitude longer than

that of the region-based allocation. We attribute the slow

buffer allocation of VAN to the I/O buffer fragmentation.

VAN attempts high-order allocations, which may incur mem-

ory compaction. Memory compaction cannot satisfy all re-

quired large pages, and consequently, VAN falls back to allo-

cate many small pages. In contrast, the region-based alloca-

tion can allocate I/O buffers with a smaller number of large

pages, which require fewer occurrences of page allocations.

From these results, we can conclude that the proposed

region-based allocation can effectively prevent memory

from being fragmented, thereby improving the allocation

performance as well as I/O buffer fragmentation.

6.4 System Performance

To further understand the implications of the region-based

allocation other than I/O buffers, we measure the allocation

time of non-I/O buffer pages. Figure 12 summarizes the re-

sults. On our evaluation system, the size of the page alloca-

 0

 20

 40

 60

 80

 100

 120

VAN RG5 RG6 RG7 RG8

T
im

e
(m

in
u

te
)

User
Nice

System
IRQ

Soft IRQ

Figure 13. Breakdown of CPU times

0.0

0.2

0.4

0.6

0.8

1.0

IOMMU I/O Buffer Compact Migrate Allocate Reclaim
F

ra
ct

io
n

 i
n

 s
am

p
le

s
(%

)

VAN RG6

4.94

Figure 14. Breakdown of CPU cycles

tion ranges from order-0 to order-3, excluding the allocation

for I/O buffers. In addition, we only present the result from

RG6 for brevity, as the configurations with other region sizes

exhibit in a similar manner.

For the order-0 page allocation, which dominates the page

allocations, we observe a slightly improved performance in

RG6 when compared to VAN. We can see two peaks from

the distribution for RG6. We attribute the first peak to the

allocation from the region, which is handled at a low cost,

whereas the second peak is attributed to the allocation from

the underlying buddy system allocator.

For the higher-order allocations of VAN, we can observe

a plateau between 0.01 to 0.1 milliseconds. We believe that

the long tails are caused by the case when the buddy system

allocator migrates one or more pages for the high-order

allocation, thereby delaying the allocation. In contrast, the

region-based allocation can handle high-order allocations in

a more consistent manner. The majority of the allocations

can be served within the region. If this fails to allocate a

page from the region, the allocation is served from a newly

allocated region. In this case, allocating the region can be

quickly served, as the memory fragmentation is maintained

at a low level.

From these results, we can conclude that the region-based

allocation outperforms the original policy in non-I/O buffer

memory allocation.

We analyze the CPU usage by breaking down the total

elapsed ticks into corresponding modes. As shown in Fig-

ure 13, all configurations spend a similar amount of time in

each mode with the exception of the system (kernel) mode.

10

0.0

0.2

0.4

0.6

0.8

1.0

 0.001 0.01 0.1

C
u
m

u
la

ti
v
e

ra
ti

o

Allocation time (ms)

RG6
VAN

(a) Order 0

0.0

0.2

0.4

0.6

0.8

1.0

 0.001 0.01 0.1 1 10

C
u
m

u
la

ti
v
e

ra
ti

o

Allocation time (ms)

(b) Order 1

0.0

0.2

0.4

0.6

0.8

1.0

 0.001 0.01 0.1 1 10

C
u
m

u
la

ti
v
e

ra
ti

o

Allocation time (ms)

(c) Order 2

0.0

0.2

0.4

0.6

0.8

1.0

 0.001 0.01 0.1 1 10

C
u
m

u
la

ti
v
e

ra
ti

o

Allocation time (ms)

(d) Order 3

Figure 12. Allocation time for non-I/O buffer pages

Configuration Energy (kJ) Ratio

VAN 24.4 1

RG6 21.0 0.86

Table 3. Energy consumption while running the workload

Specifically, VAN spends 33.6 to 35.3% more time in the

system mode than the region-based configurations, and the

time in system mode comprise 46.6% of total CPU time. To

further analyze the reasons for the time increase in the sys-

tem mode, we sampled the current function name after ev-

ery 50,000-th CPU cycle using OProfile [27], and then clas-

sified the samples into categories according to their func-

tion. We then aggregated the number of samples for each

category. Figure 14 summarizes the fraction of relevant cat-

egories among the total samples. We omit the samples that

are irrelevant to our scheme.

As shown, a large fraction of the samples in VAN come

from manipulating I/O buffers, including mapping and un-

mapping, which is listed as IOMMU. Specifically, VAN

spends 4.94% of total time in IOMMU-related operations,

the sum of which is 8.76× longer than that of RG6. The ratio

of allocation units for I/O buffers summarized in Figure 10

explains the result, in that the I/O buffer fragmentation in-

creases the CPU cycles to manipulate IOMMU. This also

explains the slight increase in CPU cycles for I/O buffer

allocation/deallocation listed as I/O Buffer.

The other notable difference originates from Compact,

which includes the functions relevant to page compaction—

the fraction of compaction is significant for VAN and is

negligible for RG6, a difference originating from the fre-

quent failure of high-order allocations that trigger costly

page compaction.

To quantify the effect of the region-based allocation in

terms of energy consumption, we have attempted measure

energy consumption using the built-in battery monitoring

unit. Unfortunately, we cannot run the entire workload using

the battery, because the condition of the battery is not suffi-

cient to complete the entire workload. Instead of running the

entire workload, we split the workload into two parts. The

first is comprised of the former half of the workload, and

is used for aging the memory subsystem while the power is

0.0

0.2

0.4

0.6

0.8

1.0

 0 20 40 60 80 100
C

u
m

u
la

ti
v

e
ra

ti
o

Size (MB)

RG5
RG6
RG7
RG8

Figure 15. Unused pages in regions

Configuration VAN RG5 RG6 RG7 RG8

Fraction 0.408 0.439 0.441 0.437 0.440

Table 4. Fraction of the application resume

supplied from an external power source. Upon completion of

this part, we change the power source to the internal battery

and run the second part of the workload. During the sec-

ond part, we measured current (in mA) and voltage (in mV)

from the battery each second. We then obtained the energy

consumption by aggregating the products of the current and

the voltage. Table 3 shows the energy consumption of VAN

and RG6 in joules. We can verify that the region-based allo-

cation reduces the energy consumption by 16.0% in practice,

which is promising for mobile systems.

6.5 Unused Pages in Regions

To estimate the overhead of the region-based allocation, we

measured the amount of unused pages in regions at an in-

terval while running the benchmark, and depict the values

with cumulative distribution in Figure 15. When the region

is small, we can limit the unused pages to a low level. Specif-

ically, the unused pages within order-6 page regions occupy

less than 20 MB during 80% of the entire lifetime, and in-

crease along with the size of the region. When the region

is an order-8 page, the unused pages take up approximately

40 MB of the memory on average. Recall that the unused

pages in regions are not actually wasted but can be utilized

when the owner application becomes active.

11

The implications of these unused pages can be estimated

using memory utilization metric. In mobile systems, the

fraction of application launches served by resuming cached

applications is used as a practical metric. To this end, we

measured the types of application launches while running

the benchmark; Table 4 shows the results. Note that the

higher ratio of the application resume implies better memory

utilization in practice.

We can observe that the region-based configurations have

higher rates of application resumes than VAN. This implies

that the unused pages in regions do not harm the memory

utilization; the reason for the increase is still being investi-

gated.

7. Related Work

Memory fragmentation and its implications have been dis-

cussed in the literature for decades. A number of studies

explore memory fragmentation in dynamic memory alloca-

tion [5, 6, 8, 10, 16, 20, 21, 24, 32, 34]. In particular, John-

stone and Wilson [20] argue that memory fragmentation is

highly affected by the allocation policy via comparing the

degree of memory fragmentation across various combina-

tions of allocation policies. Other research considers mem-

ory fragmentation to bound the time for the garbage collec-

tion of heap-allocated objects [5, 10]. The previous work dif-

fers from our study in that our scheme focuses on memory

fragmentation at the page-level.

It is widely known that grouping memory objects with

similar characteristics can improve both fragmentation and

performance in memory allocators. In particular, consider-

ing the lifetime of objects is one of the most popular and

effective aspects from many studies [6, 16, 21, 24, 32, 34].

Lieberman [21] utilizes the lifetimes of objects to improve

the realtimeness of a garbage collector. Hanson [16] attempts

to segregate short-lived objects from long-lived objects. Bar-

rett and Zorn [6] further enhance the Hanson’s approach by

predicting lifetimes from the behavior of previous runs of the

program. Generational garbage collectors [24, 32, 34] utilize

the high mortality of young objects. However, the previous

work also focuses on fragmentation within the heap and con-

cerns the objects within a single process rather than system-

wide perspectives.

Page-level memory fragmentation has received less at-

tention than the heap due to the MMU and the scatter-

gather DMA. Gorman et al. point out that memory frag-

mentation is getting one of the most concerning issues for

the Linux memory manager [12] and introduce page clus-

tering [13, 14]. Page clustering classifies pages in terms of

their movability at the allocation time, and groups pages with

the same movability together. Their proposals are consid-

ered practical, and are hence adopted as the primary counter-

measure for memory fragmentation in the Linux; however,

page clustering focuses primarily on ensuring the physical

contiguity of small-order pages, and is inefficient in deal-

ing with high-order pages such as I/O buffers. Yeoh [37]

proposes to allocate memory to processes in variable sized

chunks to prevent memory fragmentation from building up

over time, though he does not fully develop the idea and pro-

vides a limited evaluation on an experimental operating sys-

tem. Navarro et al. [25] propose a reservation-based scheme

to support superpages, and claim that fragmentation must

be controlled to sustain the benefits of superpages; however,

their approach attempts to restore fragmented memory rather

than to prevent the fragmentation proactively, thereby incur-

ring management overheads.

To accommodate the demand for physically contiguous

memory, modern mobile systems usually provide APIs for

the dynamic allocation/deallocation of physically contigu-

ous memory [1, 38]. A number of studies attempt to uti-

lize the memory reserved for peripheral devices when the

owner device is not in operation [18, 19, 28]. In particu-

lar, CMA [28] allocates migratable pages from the reserved

memory, and migrates the pages to other locations when the

owner device is about to use the reserved memory. DaaC

and Rental Memory [18, 19] minimize the cost of migrat-

ing pages by allocating easily reclaimable pages such as file

pages. This work differs from our work in that they assume

the I/O buffers are statically allocated with physically con-

tiguous pages and are free from memory fragmentation.

8. Conclusion

This paper introduces a region-based memory management

scheme that exploits the per-process memory reclamation in

mobile systems to ease the fragmentation of physical mem-

ory. The key idea is to group process virtual memory pages

with the same deallocation time in contiguous fixed-size re-

gions so that the termination of a process yields a set of con-

tiguous regions. The reclaimed contiguous regions can be

used to satisfy subsequent I/O buffer allocation, thereby re-

ducing the overhead associated with I/O buffer allocation/-

management and memory compaction. The evaluation re-

sults show that the overhead reduction is exhibited as re-

duced CPU usage and energy consumption.

Acknowledgments

This work was supported partly by the National Research

Foundation of Korea (NRF) grant funded by the Korea Gov-

ernment (MSIP) (No. 2013R1A2A1A01016441) and by the

Basic Science Research Program through the National Re-

search Foundation of Korea (NRF) funded by the Ministry

of Education (NRF-2014R1A1A2054658). Jinkyu Jeong is

the corresponding author.

References

[1] Android kernel features. URL http://elinux.org/

Android_Kernel_Features.

[2] N. Amit, M. Ben-Yehuda, and B.-A. Yassour. Iommu: Strate-

gies for mitigating the iotlb bottleneck. In Proceedings of

12

the 2010 International Conference on Computer Architecture

(ISCA ’10), pages 256–274, 2012.

[3] Android. Managing the activity lifecycle, October 2013. URL

http://developer.android.com/training/basics/

activity-lifecycle/index.html.

[4] Android, January 2015. URL http://www.android.com.

[5] D. F. Bacon, P. Cheng, and V. Rajan. Controlling fragmen-

tation and space consumption in the Metronome, a real-time

garbage collector for Java. In Proceedings of the 2003 Confer-

ence on Language, Compilers, and Tools for Embedded Sys-

tems (LCTES ’03), 2003.

[6] D. A. Barrett and B. G. Zorn. Using lifetime predictors to

improve memory allocation performance. In Proceedings of

the 1993 Programming Language Design and Implementation

(PLDI ’93), pages 187–196, 1993.

[7] M. Ben-Yehuda, J. Xenidis, M. Ostrowski, K. Rister,

A. Bruemmer, and L. Van Doorn. The price of safety: Evaluat-

ing IOMMU performance. In Proceedings of the 2007 Ottawa

Linux Symposium (OLS ’07), pages 9–20, July 2007.

[8] E. D. Berger, B. G. Zorn, and K. S. McKinley. Reconsidering

custom memory allocation. In Proceedings of the 2002 ACM

SIGPLAN Conference on Object-Oriented Programming, Sys-

tems, Languages and Applications (OOPSLA ’02), 2002.

[9] J. Bonwick. The slab allocator: An object-caching kernel

memory allocator. In Proceedings of the USENIX Summer

1994 Technical Conference (USTC ’94), volume 1, 1994.

[10] S. S. Craciunas, C. M. Kirsch, H. Payer, A. Sokolova,

H. Stadler, and R. Staudinger. A compacting real-time mem-

ory management system. In Proceedings of the 2008 USENIX

Annual Technical Conference (USENIX ATC ’08), 2008.

[11] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos,

R. Govindan, and D. Estrin. Diversity in smartphone usage.

In Proceedings of the 8th International Conference on Mo-

bile Systems, Applications, and Services (MobiSys ’10), pages

179–194, 2010.

[12] M. Gorman and P. Healy. Measuring the impact of the Linux

memory management. In Proceedings of the 2005 Libre

Software Meeting (LSM ’05), 2005.

[13] M. Gorman and A. Whitcroft. The what, the why and the

where to of anti-fragmentation. In Proceedings of the 2006

Ottawa Linux Symposium (OLS ’06), pages 369–384, 2006.

[14] M. Gorman and A. Whitcroft. Supporting the allocation of

large contiguous regions of memory. In Proceedings of the

2007 Ottawa Linux Symposium (OLS ’07), pages 141–152,

2007.

[15] D. Hackborn. Multitasking the Android way, 2010. URL

http://android-developers.blogspot.kr/2010/04/

multitasking-android-way.html.

[16] D. R. Hanson. Fast allocation and deallocation of memory

based on object lifetimes. Software-Practice and Experience,

20:6–12, 1990.

[17] S. hun Kim, J. Jeong, and J. Lee. Selective memory dedu-

plication for cost efficiency in mobile smart devices. IEEE

Transactions on Consumer Electronics, 60(2):276–284, May

2014.

[18] J. Jeong, H. Kim, J. Hwang, J. Lee, and S. Maeng. DaaC:

device-reserved memory as an eviction-based file cache. In

Proceedings of the 2012 International Conference on Com-

pilers, Architectures and Synthesis for Embedded Systems

(CASES ’12), pages 191–200, 2012.

[19] J. Jeong, H. Kim, J. Hwang, J. Lee, and S. Maeng. Rigorous

rental memory management for embedded systems. ACM

Transactions on Embedded Computing Systems, 12(1s):43:1–

43:21, March 2013.

[20] M. S. Johnstone and P. R. Wilson. The memory fragmentation

problem: Solved? In Proceedings of the 1998 International

Symposium on Memory Management (ISMM ’98), pages 26–

36, 1998.

[21] H. Lieberman and C. Hewitt. A real-time garbage collector

based on the lifetimes of objects. Communications of the

ACM, 26(6):419–429, June 1983.

[22] R. Love. Linux Kernel Development. Addison-Wesley Pro-

fessional, 3rd edition, 2010. ISBN 9780672329463.

[23] R. Mijat and A. Nightingale. Virtualization is coming to a

platform near you, 2011.

[24] R. Morad, M. Hirzel, E. K. Kolodner, and M. Sagiv. Efficient

memory management for long-lived objects. Technical Report

TR-RC24794, IBM Research, 2009.

[25] J. Navarro, S. Iyer, P. Druschel, and A. Cox. Practical, trans-

parent operating system support for superpages. In Proceed-

ings of the 5th Symposium on Operating Systems Design and

Implementation (OSDI ’02), 2002.

[26] Open webOS, January 2015. URL http://www.

openwebosproject.org.

[27] OProfile. Oprofile: A system profiler for Linux. URL http:

//oprofile.sourceforge.net/news/.

[28] Z. Pfeffer. The virtual contiguous memory manager. In

Proceedings of the 2010 Ottawa Linux Symposium (OLS ’10),

pages 225–230, 2010.

[29] A. Rahmati, C. Shepard, C. Tossell, M. Dong, Z. Wang,

L. Zhong, and P. Kortum. Tales of 34 iPhone users: How they

change and why they are different. Technical Report TR-2011-

0624, 2011.

[30] D. Seal. ARM Architecture Reference Manual. Addison-

Wesley Longman Publishing Co., Inc., 2nd edition, 2000.

ISBN 0201737191.

[31] C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and P. Kortum.

LiveLab: measuring wireless networks and smartphone users

in the field. Performance Evaluation Review, 38(3):15–20,

January 2011.

[32] D. Stefanovic, K. S. McKinley, and J. E. B. Moss. Age-

based garbage collection. In Proceedings of the 1999 ACM

SIGPLAN Conference on Object-Oriented Programming, Sys-

tems, Languages and Applications (OOPSLA ’99), 1999.

[33] The Linux Foundation. Tizen: An open source, standards-

based software platform for multiple device categories, Jan-

uary 2015. URL http://www.tizen.org.

[34] D. Ungar. Generation scavenging: A non-disruptive high

performance storage reclamation algorithm. In Proceedings

of the First ACM SIGSOFT/SIGPLAN Software Engineering

13

Symposium on Practical Software Development Environments

(SDE ’84), pages 157–167, 1984.

[35] T. Yan, D. Chu, D. Ganesan, A. Kansal, and J. Liu. Fast app

launching for mobile devices using predictive user context.

In Proceedings of the 10th International Conference on Mo-

bile Systems, Applications, and Services (MobiSys ’12), pages

113–126, 2012.

[36] B.-A. Yassour, M. Ben-Yehuda, and O. Wasserman. On the

DMA mapping problem in direct device assignment. In Pro-

ceedings of the 3rd Annual Haifa Experimental Systems Con-

ference (SYSTOR ’10), pages 18:1–18:12, 2010.

[37] C. Yeoh. Managing memory in variable sized chunks. In

linux.conf.au, 2006.

[38] T. M. Zeng. The Android ION memory allocator, February

2012. URL http://lwn.net/Article/480055.

14

