
Energy-Aware Demand Paging on NAND Flash-based
Embedded Storages∗

Chanik Park Jeong-Uk Kang Seon-Yeong Park Jin-Soo Kim
ci.park@samsung.com {ux,parksy}@camars.kaist.ac.kr jinsoo@cs.kaist.ac.kr

Memory Division Computer Science Division
Samsung Electronics Co. Korea Advanced Institute of Science and Technology (KAIST)

ABSTRACT
The ever-increasing requirement for high-performance and
huge-capacity memories of emerging embedded applications
has led to the widespread adoption of SDRAM and NAND
flash memory as main and secondary memories, respectively.
In particular, the use of energy consuming memory, SDRAM,
has become burdensome in battery-powered embedded sys-
tems. Intuitively, though demand paging can be used to
mitigate the increasing requirement of main memory size, its
applicability should be deliberately elaborated since NAND
flash memory has asymmetric operation characteristics in
terms of performance and energy consumption.

In this paper, we present energy-aware demand paging
technique to lower the energy consumption of embedded sys-
tems considering the characteristics of interactive embedded
applications with large memory footprints. We also propose
a flash memory-aware page replacement policy that can re-
duce the number of write and erase operations in NAND
flash memory. With real-life workloads, we show the system-
wide Energy•Delay can be reduced by 15∼30% compared to
the traditional shadowing architecture.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—Virtual mem-
ory ; D.4.2 [Operating Systems]: Storage Management—
Secondary storage, Virtual memory ; C.4 [Performance of
Systems]: Design Studies

General Terms
Algorithms, Measurement, Performance, Design

Keywords
Demand paging, Page replacement, Virtual memory, NAND
flash memory, Embedded systems, Embedded storages

∗This work was supported in part by University IT Research
Center Project.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’04, August 9–11, 2004, Newport Beach, California, USA.
Copyright 2004 ACM 1-58113-929-2/04/0008 ...$5.00.

1. INTRODUCTION
As emerging embedded applications grow in code and data

requirement, there has been more need for increased mem-
ory size, usually SDRAM. Recently, for huge capacity, flash
memory is used as a secondary storage device due to its
versatile features: non-volatility, solid-state reliability, low
power consumption, etc. The most popular flash types are
NOR and NAND. NOR flash is particularly well suited for
code storage and execute-in-place (XIP) applications, which
require high-speed random access. While NAND flash mem-
ory provides high density and low-cost data storage, it does
not lend itself to XIP applications due to the sequential ac-
cess architecture and long random access latency.

Current design practice for satisfying the strong require-
ment of high-performance and large capacity is to transfer
OS and application code from the non-volatile memory de-
vice such as NAND flash memory to the volatile memory
such as SDRAM, which is hereafter referred to as mem-
ory “shadowing” (Figure 1(a)). The shadowing offers the
best performance possible since all the code is executed in
fast SDRAM memory, but copying overhead at boot-time
contributes to the slow boot process. In addition, a large
amount of SDRAM is necessary to hold both OS and appli-
cation codes even though all applications are not executed.
Most of all, high power consumption from power hungry
SDRAM memory is a critical problem for battery-operated
embedded systems.

Intuitively, in order to utilize the limited memory space,
we can take advantage of demand paging technique with
the assistance of operating system and memory management
unit (MMU) hardware (Figure 1(b)). Demand paging allows
application code to be executed by loading code and data
on demand from the secondary storage to the main memory.

However, frequent data transfers between the secondary
storage and the main memory may require additional energy
budget. Furthermore, possible degradation of system per-
formance is another concern to embedded system designers.
This problem can be worsened by the operational character-
istics of NAND flash memory which will be explained in the
next section.

In this paper, we investigate the impact of demand pag-
ing on energy consumption and performance. In particular,
we focus on NAND flash-based demand paging due to its
popularity in mobile embedded systems. This is the first
approach using demand paging on NAND flash-based stor-
age architecture.

Our contributions are as follows:

• We characterize the interactive applications with large

12.3

338

Figure 1: Memory architectures for mobile embed-
ded systems

memory footprints in terms of memory access pattern
and CPU utilization.

• We analyze the performance and energy consumption
bottleneck in demand paging.

• We present an improved page replacement algorithm
(called CFLRU) which is optimized for NAND flash
memory.

• We evaluate the Energy•Delay metric of each appli-
cation on two memory architectures with system-level
energy modeling.

• Finally, we present cost and energy efficient embedded
storage architecture based on NAND flash memory.

The rest of this paper is organized as follows. The next
section describes the characteristics of NAND flash memory.
In Section 3, we present the effectiveness of demand pag-
ing on NAND flash memory and our modified page replace-
ment algorithm. In Section 4, we show experimental results
with trace-driven simulation environment and evaluate per-
formance and power consumption over real-life workloads.
Section 5 reviews related work. Finally, our conclusions and
future work are drawn in Section 6.

2. BACKGROUND
A NAND flash [12] memory consists of a fixed number of

blocks, where each block has 32 pages and each page con-
sists of 512 or 2048 bytes main data and 16 or 64bytes spare
data. Read/write operation is performed on page basis. In
order to read a page, command and address are given to
NAND flash memory through I/O pins. After a fixed de-
lay time of 10∼25µs, the selected page is loaded into data
and spare registers in NAND flash. Hereafter 8bit or 16bit
data can be sequentially fetched from data and spare regis-
ters every 50ns. Table 1 shows the characteristics of various
non-volatile storage devices. In case of NAND flash memory,
differently from MicroDrive [1], the write operation requires
relatively long latency compared with the read operation.
As write operation usually accompanies erase operation, the
operational latency becomes longer. This also results in dif-
ferent energy consumption aspect depending on operations.

Currently the operating system implementation of demand
paging is customized for hard disk drive to hide the long seek
and rotational times. On the contrary, NAND flash has ad-
vantage in fixed operation times. However, it has disadvan-
tage in updating a page since a page to be updated should
be erased before write operation is performed. Another lim-
itation is that the number of updating a block is limited to
about 100,000 times. Thus, the number of erase and write

Table 1: Characteristics of non-volatile devices
Current (mA) Access Time (4KB)

Device
Idle Active Read Write Erase

NOR 0.07 40 23µs 28ms 1.2sec
NAND 0.05 20 156µs 652µs 2ms

MicroDrive 20 250 21ms 21ms N/A
(Parameters are obtained from [12, 5, 1])

operations should be minimized to not only reduce the en-
ergy consumption but also lengthen the endurance of NAND
flash memory. In this paper, we propose a modified page re-
placement policy to minimize the number of erase and write
operations. The detailed technique will be explained in later
sections.

3. DEMAND PAGING FOR NAND FLASH
MEMORY

Demand paging is a virtual memory technique used by
modern operating systems, where code or data are loaded
from the secondary storage only as needed by a process.
Previously, demand paging has not been used extensively
for embedded systems mainly because memory management
unit (MMU), a hardware required to support demand pag-
ing, adds to costs in embedded processors. However, many
recent embedded processors, such as Motorola 68060, In-
tel PXA255, ARM 920T, and PowerPC 440GX, come fully
equipped with MMU in order to ease memory management.

We predict that demand paging (more generally the vir-
tual memory system) will prevail also for embedded systems
in the near future due to the following reasons. First, as the
performance of embedded processors improves, there will be
a growing demand for performing complex tasks, which in-
evitably increases the application’s memory footprints and
the required main memory size. Secondly, it is increasingly
common to download new applications from the network for
PDAs or hand-held phones, in which case the number of ap-
plications and their total memory requirement are changing
dynamically. Finally, it is not efficient, in terms of energy
consumption and space utilization, to keep all the applica-
tions in the main memory as is done in shadowing, because
they need not be active at the same time. The aforemen-
tioned situations can be handled elegantly using demand
paging, as we can keep only the working sets of active pro-
cesses in the main memory, while backing up the rest in the
secondary storage.

3.1 Impact on Energy Consumption
We consider, in this paper, using NAND flash memory as

the backing store for demand paging. By moving unused or
least recently used pages into NAND flash memory, it is ap-
parent that we can reduce the main memory size and hence
the SDRAM retention energy (ESDRAM Retention) caused
by the main memory. This is because the retention energy
of NAND flash memory is negligible compared to that of
SDRAM. However, such energy saving does not come with-
out a price; it is necessary to spend a certain amount of
energy (ENAND) for accessing NAND flash memory during
swap in/out.

One can easily see that ESDRAM Retention depends on the
total execution time of the application, while ENAND only
depends on the amount of memory references when CPU is
active. Therefore, the actual benefit of using demand paging

339

Table 2: Workloads used in the experiments and their characteristics
CPU Memory Memory references

Workload
utilization used (MB) total read : write

Scenario

gqview 0.57% 20.77 28,940,881 43% : 57% Performs a slide show of seven images and adjusts
their sizes.

kword 1.64% 27.52 4,779,386 81% : 19% Edits several lines in a text document.
kspread 2.62% 38.93 11,366,261 68% : 32% Calculates sum, avg., min., and max. of numerical

data, and sorts them.
acrobat 4.31% 35.79 10,815,848 40% : 60% Views a PDF document.
mozilla 0.77% 38.04 41,533,372 85% : 15% Browses several web sites including Yahoo, CNN, Hot-

mail, Amazon, etc.

on NAND flash memory is affected by CPU utilization, i.e.,
the ratio of the active CPU cycles to the total CPU cycles.
The lower CPU utilization suggests that relatively the larger
amount of energy is spent for ESDRAM Retention, thereby
increasing the benefit of demand paging.

In order to investigate the typical range of CPU utiliza-
tions, we actually ran five interactive applications on Linux
and measured their CPU utilizations using the time com-
mand. Table 2 describes the real-life workloads and sce-
narios used during the measurement: gqview (an image
viewer), kword (a word processor), kspread (a spread-
sheet application), acrobat (a PDF reader), and mozilla
(a web browser). We can see that all the tested workloads
show less than 5% of CPU utilization, with the average of
2%. Zhong and Jha have also reported the similar result
that over 95% of the time is spent in waiting for user input
on a Linux-based Sharp Zaurus SL-5500 PDA [14]. These
results suggest that, for interactive embedded applications,
CPU is in idle state for the significant percentage of the to-
tal execution time. In this circumstance, demand paging is
an effective way to reduce ESDRAM Retention. We present
the actual experimental results in section 4.

Note that demand paging slightly increases the total ex-
ecution time of the application as a result of servicing page
faults. However, under the multi-processing environment,
such delay can be hidden by switching to another process.

3.2 Flash Memory-Aware Page Replacement
Traditional operating systems have been optimized for

decades under the assumption that the secondary storage
consists of magnetic disks. With the advent of NAND flash
memory as a viable candidate for the secondary storage,
however, we need to revisit the various operating system
policies and mechanisms which were developed for disks. In
this section, we propose a page replacement policy which is
aware of the fact that NAND flash memory is used for swap
device instead of disks.

Existing operating systems mainly use LRU (Least Re-
cently Used) or pseudo-LRU page replacement policies, whose
primary goal is to minimize the page fault ratio. However,
as the write cost for evicting a page is much higher than the
read cost for swapping in a page in NAND flash memory, it
is sometimes useful to keep dirty pages as long as possible
so that the number of swap outs can be minimized. Reduc-
ing the number of swap outs decreases not only the average
miss penalty for handling page faults, but also the number
of erase operations in NAND flash memory.

Suppose pages are recently accessed in the order of A, B,
C, D, and E, as illustrated in Figure 2. Under the LRU
page replacement algorithm, the sequence of victim pages

Figure 2: CFLRU page replacement example

is E, D, C, and B, always evicting the least recently used
page first. However, when we use NAND flash memory as
a swap device, it may be advantageous to evict the clean
page D first in order to reduce the number of flash write
operations, even though the page is more recently accessed
than the dirty page E. We call this CFLRU (Clean First
LRU) and propose it as a new page replacement policy for
swapping over NAND flash memory.

CFLRU is a modified LRU algorithm, where a clean page
is more preferred than a dirty page as a victim. The idea is
to search for a victim page in the following order:

1. least recently used clean pages

2. least recently used dirty pages

3. recently used pages (clean or dirty)

As the page fault ratio may increase if we evict the re-
cently used clean page, only the clean pages within the pre-
determined window size (w) become candidates for a victim
in CFLRU. If CFLRU does not find any clean page within
the window, it is converted into the normal LRU algorithm.
In Figure 2, pages are evicted in the sequence of D, B, E,
and C, when we use CFLRU. The performance of CFLRU
is discussed in detail in section 4.

4. EVALUATION

4.1 Energy Consumption Modeling
The total energy consumed by the system is the sum of

energies consumed by system components such as proces-
sor, bus, memory and the DC-DC converter. In this paper,
we concentrate on the energy consumption of the processor,
memory and system bus.

Etask(t) = ECPU(t) + Emem(t) + Ebus(t) (1)

The energy consumption of CPU is divided into active and
inactive state depending on whether CPU is in execution or
in idle mode:

ECPU(t) = tactive×PCPU active+tinactive×PCPU idle (2)

340

Table 3: Power and energy coefficient values
Component Coefficient Value

CPU [6] PCPU active 411 (mW)
PCPU idle 0.15 (mW)

SDRAM [11] Eread 17.95 (mJ/4KB)
Ewrite 13.21 (mJ/4KB)
Pidle 45.1 (mW)

Prefresh 6.4 (mW)
Pretention 1.8 (mW)

NAND [12] Eread 9.44 (uJ/4KB)
Ewrite 76.08 (uJ/4KB)
Eerase 16.49 (uJ/4KB)

Pretention 0.13 (mW)

As for memory, the number of accesses to the memory
(Naccess) is directly proportional to the energy consump-
tion. The unit access energy consumption (Emem active) can
be estimated from the active power specified in the data
sheet [11, 12]. Specifically, SDRAM consumes idle power
(Pidle) and refresh power (Prefresh) during the CPU exe-
cution. If there is no memory access, the memory stays
in the power down state consuming only retention power
(Pretention).

Emem(t) = Emem active × Naccess

+ tactive × (Pidle + Prefresh) + tinactive × Pretention (3)

In case of bus model, the energy is a function of the voltage
swing on the lines that switched (Vdd), the capacitance of
one interconnect line and the pins attached to it (Cswitch

1),
the number of bus accesses (Naccess), the bus width (Nwidth)
and the bit change rate Rchange

2.

Ebus(t) = Rchange × Nwidth × Naccess × Cswitch × V 2
dd (4)

4.2 Evaluation Methodology
Table 3 shows various coefficient values we use to deter-

mine the total energy consumption according to the model
presented in section 4.1. We assume CPU is Intel PXA260
400MHz [6] and parameters for SDRAM and NAND are ob-
tained from [11] and [12], respectively. Other information,
such as tactive, Naccess, the number of swap ins/outs, etc.
is collected from a trace-driven simulation.

The memory reference trace of each application is gath-
ered using Valgrind [9] on Linux/x86 platform under the
same scenario shown in Table 2. Valgrind is a tool that
uses dynamic binary translation technique and its cache sim-
ulation module called Cachegrind has been slightly modi-
fied to generate instruction/data reference traces. We have
translated the total number of instructions obtained from
Valgrind into the corresponding CPU cycles (tactive) for
PXA260 with the assistance of profiling results using AR-
Mulator. The total execution time t is calculated by dividing
tactive by CPU utilization.

We compare two memory configurations in the experi-
ments. For shadowing, we assume the system consists of

1Pin capacitance values are obtained from the data sheets [6,
11, 12].
2The bus energy is consumed when a value of a line (bit) is
changed from 0 to 1 or 1 to 0. In this paper, the bit change
rate is determined to be the average number of changed bits
per bus width (32bits) through program execution profiling.
In our case, the bit change rate value is 0.25.

Table 4: Normalized energy and delay
Normalized Normalized

Workload
Energy (E) Delay (D)

E • D

gqview 0.69 1.11 0.77
kword 0.68 1.10 0.75
kspread 0.69 1.12 0.77
acrobat 0.65 1.07 0.70
mozilla 0.74 1.15 0.85

two 32MB SDRAM modules and one NAND flash memory
module, while only one 32MB SDRAM module is used for
demand paging. When we simulate LRU and CFLRU page
replacement algorithms, it is also assumed that Linux oper-
ating system and X-windows consume about 16MB and this
amount of main memory is not available to applications.
Therefore, the memory size that applications can freely use
is limited to 48MB for shadowing, and to 16MB for demand
paging.

Unless otherwise explicitly stated, it is assumed that CPU
utilization is 5%, and the window size (w) for CFLRU is 30%
of the total number of physical pages.

4.3 Experimental Results
In this section, we show our experimental results as a re-

sult of exploring two memory architectures: shadowing vs.
demand paging. Figure 3 compares the total energy con-
sumption of shadowing and demand paging, giving a break-
down by the energy consumption sources: Bus, NAND flash
memory, SDRAM (for Retention and Reads/Writes), and
CPU. On the average, we can see that CPU is responsi-
ble for about 15% of the total energy consumption, while
SDRAM modules for the rest in case of shadowing. The
portion of energy consumed by Bus is less than 1% in both
cases.

It is not surprising to see that the energy consumption
by CPU and SDRAM access does not change much even if
we use demand paging. Ideally, demand paging should re-
duce the energy required for SDRAM retention by half, since
there is only half of the SDRAM module. This is not the
case in Figure 3, however, because the total execution time
is slightly increased due to page faults. Demand paging also
consumes some additional energy in NAND flash memory
for swap in/out.

Table 4 shows the normalized energy and delay of the de-
mand paging architecture over the shadowing architecture.
On the average, about 30% reduction in energy consumption
is achieved in case of demand paging architecture, while de-
lay is increased by about 10%. As a result, the Energy•Delay
of demand paging is reduced by approximately 23% over
that of shadowing. Demand paging overhead is offset by
significant energy gain.

Figure 4 describes the relative energy consumption of de-
mand paging over shadowing in proportion to CPU uti-
lization. acrobat and mozilla are selected due to their
best and worst characteristics in terms of swapping over-
head, respectively. acrobat shows better energy efficiency
until CPU utilization reaches 40%, while mozilla shows
drastic degradation of energy efficiency from the point of
15% in CPU utilization axis. According to our analysis re-
sults, most applications show better energy efficiency than
in shadowing architecture when CPU utilization is less than
20∼40%.

341

S
ha

do
w

in
g

D
em

an
d

P
ag

in
g

Acrobat

S
ha

do
w

in
g

D
em

an
d

P
ag

in
g

Kspread

S
ha

do
w

in
g

D
em

an
d

P
ag

in
g

Kword

S
ha

do
w

in
g

D
em

an
d

P
ag

in
g

Gqview

S
ha

do
w

in
g

D
em

an
d

P
ag

in
g

Bus

NAND

SDRAM

Retention

SDRAM

Access

CPU

0

10

20

30

40

50

60

70

E
ne

rg
y

(J
)

0

2

4

6

8

10

12

14

0

10

20

30

40

50

60

70

0

5

10

15

20

25

30

0

10

20

30

40

50

60

70

Mozilla

Figure 3: Energy consumption breakdown of each application

Figure 4: Effects of CPU utilization

In order to compare the performance of LRU and CFLRU,
we have analyzed the energy consumption during NAND
flash access, namely, swapping in/out operations in Figure 5.
As explained in section 3.2, CFLRU is advantageous for re-
ducing the number of swap out operations, while it tends to
slightly increase the number of swap in operations since the
recently referenced page can be a victim if the page remains
in the clean state.

Note that gqview and acrobat have little benefit from
CFLRU policy. One of the common characteristics in these
applications is that they exhibit the relatively large number
of memory write operations. From Table 2, we can see that
about 60% of memory references are writes in gqview and
acrobat, while the percentage of memory writes in other
applications is less than 30%. As the percentage of memory
write operations increases, it will be more and more difficult
to find a clean page within the CFLRU’s window, which
ultimately transforms CFLRU into LRU. When the memory
references are mostly reads as in kword, kspread, and
mozilla, CFLRU shows better performance than LRU. For
example, the number of swap out operations is reduced from
5369 to 5156 in acrobat. The minimization of write and
accompanying erase operations also results in improving the
endurance of NAND flash memory.

On the other hand, in Figure 5, it is interesting to see
that the number of swap in has been noticeably increased in
mozilla. This is because the working set size of mozilla

is significantly large compared to other applications. When
the application’s working set size is large, some of pages
that belong to the working set will reside in the CFLRU’s
window, which forces CFLRU to evict frequently referenced
clean pages in order to keep dirty pages. This implies that
the window size in CFLRU should be dynamically adjusted
according to the application’s working set size, but we leave
it to future work.

Figure 6 shows the change of the normalized Energy•Delay
value in proportion to CPU utilization. We selected the
mozilla trace since it shows the worst case demand pag-
ing performance due to its large working set size. We can
see CFLRU shows gradual increase in Energy•Delay com-
pared with the LRU policy. Above 10% of CPU utilization
in Figure 6, both LRU and CFLRU show the increase in
Energy•Delay. This arises from the fact that we consider a
single process execution assuming that CPU is in idle state
during swap in/out operations. In the multi-processing en-
vironment, however, CPU can be more utilized through con-
text switching to another ready process. The performance
impact of demand paging in the multi-processing environ-
ment remains as a future work.

5. RELATED WORK
In the literature, a little research work is found in related

to our approach. Lee et al. [8] presented energy-aware mem-
ory allocation schemes in heterogeneous non-volatile mem-
ory systems. They characterized the energy consumption
coefficient over various memory components including reten-
tion energy that is indispensable in SDRAM memory. Even
though its approach is similar to ours in that it considered
retention energy and energy-aware allocation, they do not
address dynamic loading effect on system energy consump-
tion considering operating system.

Zhong et al. [14] analyzed the power characteristics of in-
teractive systems using four commercial applications shipped
with PDA. They say that over 90% of system energy and
time was spent waiting for user input. Though our work
shares the same observation for interactive applications’ be-
havior, our energy minimization technique is different from
theirs in that they utilized user delays for DPM/DVS tech-
niques to reduce system energy consumption very effectively.

342

Gqview

LRU CFLRU
(30%)

E
ne

rg
y

(J
)

Kword Kspread Acrobat Mozilla

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Erase

Swap out

Swap in

LRU CFLRU
(30%)

LRU CFLRU
(30%)

LRU CFLRU
(30%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

LRU CFLRU
(30%)

Figure 5: Energy consumption comparison between LRU and CFLRU for NAND access

Figure 6: Normalized Energy • Delay for mozilla

Recently, Park et al. [10] demonstrated that NAND XIP
is a feasible solution even in multimedia applications with
soft real-time constraints. They took advantage of cache
controller to dynamically load the code page on demand.
Even though they show that NAND XIP is applicable to
multimedia applications, their approach is limited to code
only. However, we cover data and code storage as demand
paging target.

As for main memory energy reduction, Lebeck et al. [7]
studied OS support for exploiting the power management
feature offered by a new power-aware DRAM such as Ram-
bus RDRAM. Delaluz et al. [3] presented a scheduler-based
power-management policy to power down unused DRAM
banks using the bank usage table of executing processes.
In [4] and [2], page allocation algorithm was improved to
minimize the number of used banks and data migration in
multi-bank memory systems are described, respectively.

In the early Linux 2.4 kernels [13], not recently used (NRU)
pages are classified into the inactive dirty list and the in-
active clean list, and pages on the inactive clean list can
be immediately reused by the page allocation code. Unlike
CFLRU, however, the main objective of differentiating in-
active dirty pages from inactive clean pages is to delay and
accumulate dirty page writes in order to achieve better disk
I/O scheduling.

6. CONCLUSIONS
In this paper, we investigated the usefulness of the energy-

aware demand paging technique on NAND flash based em-
bedded storages. Through the CPU utilization analysis of

interactive applications, we showed the retention energy of
SDRAM overpasses the demand paging overhead. Further-
more, we proposed an improved page replacement policy,
CFLRU, which takes not only energy consumption saving,
but also the life cycle of NAND flash memory into consider-
ation. As a result, we presented the demand paging archi-
tecture with NAND flash memory can be an energy and cost
efficient solution for ever-increasing memory requirement in
mobile embedded systems.

In the near future, we plan to extend CFLRU, our flash
memory-aware page replacement policy, and to evaluate the
effectiveness of demand paging for multi-processing environ-
ment on real platforms.

7. REFERENCES
[1] http://www.flash-memory-store.com/ibmmicrodrives.html.

[2] V. Delaluz, M. Kandemir, and I. Kolcu. Automatic data
migration for reducing energy consumption in multi-bank
memory systems. In Proc. DAC, 2002.

[3] V. Delaluz et al. Scheduler-based DRAM energy management.
In Proc. DAC, 2002.

[4] H. Huang, P. Pillai, and K. G. Shin. Design and
implementation of power-aware virtual memory. In Proc.
USENIX Annual Technical Conference, 2003.

[5] Intel Corp. Intel flash memory data sheets and specification
updates.
http://www.intel.com/design/flash/datashts/index.htm.

[6] Intel Corp. Intel PXA26x Processor Family Electrical,
Mechanical, and Thermal Specification Datasheet. 2004.

[7] A. R. Lebeck et al. Power aware page allocation. In Proc.
ASPLOS, pages 105–116, 2000.

[8] H. Lee and N. Chang. Energy-aware memory allocation in
heterogeneous non-volatile memory systems. In Proc.
ISLPED, 2003.

[9] N. Nethercote and J. Seward. Valgrind: A program supervision
framework. Electronic Notes in Theoretical Computer
Science, 89(2), 2003.

[10] C. Park et al. A low-cost memory architecture with NAND
XIP for mobile embedded systems. In Proc. CODES+ISSS’03,
pages 138–143, 2003.

[11] Samsung Electronics. Mobile SDRAM (K4S56163LC) data
sheets, Dec. 2002.

[12] Samsung Electronics. NAND flash memory & SmartMedia
data book, 2002.

[13] R. van Riel. Page replacement in Linux 2.4 memory
management. In Proc. USENIX Annual Technical
Conference, 2001.

[14] L. Zhong and N. K. Jha. Dynamic power optimization of
interactive systems. In Proc. International Conference on
VLSI Design, 2004.

343

	Main Page
	ISLPED'04
	Front Matter
	Table of Contents
	Author Index

