
Information Processing Letters 66 (1998) 247-253

Rel axed barrier synchronization for the BSP model of
computation on message-passing architectures

Jin-Soo Kim *, Soonhoi Ha, Chu Shik Jhon
Seoul National University, Department qf Computer Engineering, Sir&mdong, Kwanak-gu, Seoul 151, South Korea

Received 1 August 1997; received in revised form 2 February 1998
Communicated by S.E. Hambrusch

Keywords: Bulk Synchronous Parallel (BSP) model; Barrier synchronization; Message-passing architectures; Parallel processing

1. Introduction

The Bulk Synchronous Parallel (BSP) model of
computation [9] was first proposed by Valiant as a
bridging model between hardware and software for
general-purpose parallel computation. The main ob-
jective of the model is to provide an abstract ma-
chine which allows the design of parallel programs
that can be executed efficiently on a variety of archi-
tectures. A BSP abstract machine consists of a collec-
tion of N identical processors, each with local mem-
ory, connected by an interconnection network whose
characteristics are modeled only by the barrier syn-
chronization overhead (L), and the worst rate at which
randomly-addressed data can continuously be deliv-
ered (g). Goudreau et al. [3] have already shown that
the BSP model can be used to develop efficient and
portable programs for a range of machines and appli-
cations.

In the BSP model, the computation is structured as
a sequence of supersteps, each followed by a barrier
synchronization. In each superstep, a processor per-
forms operations on local data and sends messages
to other processors. A message sent from one proces-

* Corresponding author. Email: jinsoo@comp.snu.ac.kr.

sor during a superstep is not visible to the destination
processor until the subsequent superstep.

The barrier synchronization used in the BSP model
can be implemented efficiently using locks, sem-
aphores or cache coherence protocols for shared-
memory architectures [4]. However, the cost of the
barrier synchronization on message-passing architec-
tures is relatively expensive because processors are
synchronized by exchanging messages. The cost usu-
ally grows as the number of processors increases.

In this paper, we relax the barrier synchronization
constraint in the BSP model for the efficient imple-
mentation on message-passing architectures. Direct
implementation of the barrier synchronization does
not allow any processor to proceed past the synchro-
nization point until all processors reach that point.
Instead, in our relaxed barrier synchronization, the
synchronization occurs at the time of accessing non-
local data only between the producer and the consumer
processors, eliminating the exchange of global infor-
mation.

2. A BSP programming model

Hill et al. have proposed BSPlib [5] as a standard li-
brary to integrate various approaches to BSP program-

OOZO-0190/98/$19.00 8 1998 Published by Elsevier Science B.V. All rights reserved
PII:SOO20-0190(98)00061-1

248 J.-S. Kim et al. /Information Processing Letters 66 (1998) 247-253

ming. One way of performing data communication in
BSPlib is to use a Direct Remote Memory Access
(DRMA) facility that provides operations to put/get
data into/from the memory of a remote processor. In

this section, we define a model for BSP programming
which is based on BSPlib by the following minimal

operations. ’
. SYNCi performs a barrier synchronization in Pi ;
l PUTi(j, r, v) puts data u in Pi into a region spec-

ified by r in Pj;

l PUSHREGi (r) registers a region r in Pi ;
l READi (r) reads a registered region r in Pi.

Assume that there are PO, . . , PN-I processors.

A region r defines contiguous memory locations,
which can be represented by a tuple r = (a, 6), cx

and 6 denote the start address of the region and its
size, respectively. Because the same data structure
is not necessarily stored at the same address in all

processors, PUSHREGi (r) registers a region r so that
it can be a target of data transfer between processors.

Such registration maps an individual region r to a
global index, denoted p(r), that is the same in all

processors. Once a region r is registered in Pi, it

becomes a registered region.

For two regions r = (a, S), r’ = (a’, 6’) in the same
processor, r is a subregion of r’, denoted r c r’, if and
only if CZ’ < a! and c~ + 6 < o’ + 6’. r and r’ are disjoint,

denoted r n r’ = 0, if and only if either o + S < a’ or

(Y’ + S’ < cr. Let Ri be a set of registered regions in
Pi. A region ri = (ai, Si) in Pi can be mapped to a

region rj in Pj by a mapping function yi,j (ri), where

rj=Yi,j(ri)=(~j+ni_czli,6i)fOrSOme~i=(~i,Si)

ERiand~j=(~j,8j)ERjsuchthatriCri,6”i=6j

and I = p(?j). The effect of PUTi(j, r, V) is to
transfer data u into the contiguous memory locations,

specified by a region yi,j (r) in Pj.

Generally, a processor can freely read or write its
registered regions like any other local data structures.
However, we assume that the contents of the registered
regions are changed only by PUT operations. We de-
fine an operation READj(?) to distinguish a proces-
sor’s read accesses to the registered regions. Although
there is no corresponding routine in BSPlib, in our
model, READj (r) operation is conceptually added be-

’ The first three correspond to bsp_sync () , bspqut ()
and bsp_push_reg () routines of BSPlib, respectively.

fore the first instruction which accesses any data in ?
for a superstep.

By executing SYNCi at a superstep s, Pi performs a
barrier synchronization and proceeds to the next super-
step s + 1. We use such notations as SYNC:, PUT: (j,

r, v), PUSHREG,” (r), and READ/(r), to specify oper-
ations at a specific superstep s. We say two operations,
PUT and READ, are dependent on Yj, denoted

PUT/(j, r, V) -+ READJ’(Fj),

if and only if READi’ is the first operation which

satisfies vi,j (r) c 7j and s < s’. ’

Because the BSP model imposes some restrictions
on the use of these operations, only the subset of
BSP programs is meaningful. In this paper, we are
interested in a class of BSP programs called well-
formed BSP programs (WFBP).

Definition 1. A BSP program is a well-formed BSP

program (WFBP), if it satisfies the following condi-
tions.

(1)
(2)

(3)

(4)

For all 7, r”’ E Ri , 7 fl r”’ = 0 if r # ?.

For all PUTi(j, r, V) in Pi, there exist ?i E Ri and
?j E Rj such that r C r”i and P(7i) = p(?j).
For all PUT: (j, r, v) in Pi, there exists a

READf’(I’,) in Pj such that PUT: (j, r, V) +

READs’(?j).

If PUT,: (j, ri, Vi) + READS’(?j) and PUTi(j,

rk,vk) + READf(rj), then Yi,j(ri> n yk,j(rk)

=0,wherei#korsi#sk.

Definition l(2) shows that for a PUTi(j, r, IJ) op-
eration, r should be a subregion of previously regis-
tered region ?i, which is unique by Definition l(1).
Moreover, the destination processors should have a
registered region with the same global index as p (Ti).
Each PUT operation should have a matching READ
operation at the later superstep, as specified in Defini-
tion l(3). Note that for a READ operation, there can be
more than one dependent PUT operations. However,
as shown in Definition l(4), the destination of those
PUT operations should be disjoint in ?j, so as not to
make some value lost or useless.

Now we define the consistency of a WFBP as
follows.

* Note that s’ need not be s + 1, the next superstep of s

J.-S. Kim et al. /Information Processing Letters 66 (1998) 247-253 249

Definition 2. An execution of a WFBP is consistent

if the value returned on READ operation is always the
same value written by the dependent PUT operation.
That is, between two dependent operations such that
PUTi (j, r, v) + READj(rj), the value in a region
n,j(r) in Pj should be v at the time of READ

operation.

The main purpose of the barrier synchronization

in the BSP model is to ensure the consistency by
proceeding to the next superstep only when all the

processors finish the current superstep. For a PUT: (j,

r, v) operation, Pi does not start the superstep s + 1

unless the value v is transferred to Pj. Therefore,

it can be easily shown that READ”‘@) operation in
the subsequent superstep always accesses the correct
value.

3. Relaxed barrier synchronization

For message-passing architectures, single-sided op-
eration such as PUT can not be satisfied without the

service of the destination processor, because there is
no facility to access the remote memory directly. On

the other hand, a processor does not know how many
PUT operations it has to serve for other processors be-
fore proceeding to the next superstep.

To solve this problem, the current implementation
of SYNC operation for message-passing architectures
consists of two phases [8]. In the first phase, all
processors exchange information about the number of
PUT operations and their destination regions. This ex-

change phase also serves as a barrier synchronization
for the superstep. After the first phase, each processor
knows how many messages to receive from the other

processors. Actual data communication is performed
in the second phase.

The exchange phase generates a large number of
messages in every superstep. Even when a processor
does not have any PUT operation, it should inform
the other processors of the fact explicitly. Therefore,
the overhead of the exchange phase is significant on
message-passing architectures, especially when there
is a large number of processors to synchronize and
when the communication is slow compared to the
computation,

Our approach is to relax the barrier synchronization
constraint in the BSP model so that the exchange
phase can be eliminated and the synchronization can
occur at the time of reading registered regions only
between the dependent processors. Processors are not
globally synchronized any more, and each processor
may execute a different superstep according to its
relative speed and synchronization requirements.

We change the semantics of READ operation slightly
and add an argument n such as READj (U, n) to guar-

antee the consistency of a WFBP without resort to
barrier synchronization. n is the number of dependent
PUT operations for the READ operation, and it means

that the registered region 7 should be updated n times
before being read. We associate a count value with
each registered region r”, denoted o(r), which is ini-

tially set to zero. As the content of the registered re-
gion is updated via a message, o(U) is increased by 1.

To prevent a registered region from being over-
written incorrectly, we use a handshaking mechanism
using special control messages called req and ack.

A message m sending from Pi to Pj is denoted by m =

(i,j,t I4,d2,. . . , d,), where t E T = (req, ack, data}

denotes a message type and dl, d2, . . . , d,,, the body of
m. Before sending a data message, a processor issues
a req message to the destination processor and receives

an ack message. A req message holds the current su-
perstep number of the sender, say s’. The destination
processor accepts the request by sending an ack mes-
sage back, if s’ is less than its own superstep number.
Otherwise, the acknowledgement is delayed until the

destination processor reaches the superstep s’. Hence,
the superstep number is used as a timestamp which
represents the speed of each individual processor.

Fig. 1 outlines an implementation of the relaxed
barrier synchronization on message-passing architec-
tures. In Fig. 1, MO and MI are used to record the

requests issued from the current superstep and the
requests from the other processors that wait to be
acknowledged, respectively. Incoming messages are
handled either in SYNC or in READ operation. Note
that a request from the same superstep is not accepted
in READ operation.

Theorem 1. For a given WFBP P, let PI be a

BSP program constructed by replacing READj(?)
in P with READj (?, n), where n is the number of

dependent PUT operations for the READ operation.

2.50 J.-S. Kim et al. /Information Processing Letters 66 (1998) 247-253

l PUTIF(j,r, u) .

Sendmr=(i,j,reqIreqid,s,p(?).a-G,S)toPj,

wherer=(a,S)~i:=(ir,~),forsome?ER~;

MO t Mg U ((reqid, u)); .
reqid t reqid + 1;

. SYNC;
For each tni = {k, i, req I id, s’, p’, A, 8’) f MI

such that s = s’,

RECENEi(k,id,p’,A,6’);

MI +-Ml - Imil;

While (MO # 0)

HA NDLE_MESSAG& (s , 1) ;
S+S+l;
reqid t 0; .

. READ!@, n)

WLhile (a(?) <n)

HANDLE_MESSAGEi (s, 0);

a(F) t 0;

PUSHREG,! (r)

Ri + Ri U (~1;

HANDLE_MESSAGEi (s, e)

For an incoming M = (k, i, req 1 id, s’, p’, A, 6’)

if ((s’ < S) V (e = 1 A s = s’))

RECEIVEi(k,id,p’, A,S’);

else

MI + MIUI~};

For an incoming m = (k, i, ack 1 id)

send rnd = (i, k, data 1 u) to Pk.

where (id, u) E MO;

MO + MO - {(id, u)l;

RECEIVE; (k, id, p’ , A, 6’)
Send m, = (i, k, ack 1 id) to Pk;

Receive m,j = (k, i, data 1 U) from Pk;

r’ + u, where r’ = (& + A, 8’) and p(F) = p’,

for some F = (c?, 8) E Ri ;
a(F) +a(?)+l;

Fig. 1. An implementation of relaxed barrier synchronization.

(a) si < sj 5 sk (b) sk < si < sj

Fig. 2. Cases for accessing incorrect value in READY (?j, nj).

Then, an execution of P’ under the relaxed barrier

synchronization in Fig. 1 is consistent.

Proof. Consider a pair of dependent operations such
that PUTS’ (j, ri, Q) + READ; (‘lj, rtj). TO be incon-

sistent, READY (?j , nj) should receive nj messages,

amona which one is sent from another PUT? (i,
Q, vk) operation, where yi,j(i”i> fl yk,j(rk) 2 ii,

PlJT;k(j, rk, Uk) ft READ: (fj, ilj> alId yk, j (rk) C

?j. If sk ki between Si and Sj, that is, Si < Sk < Sj,

PUT,“k(j, rk, uk) and READY (fj, nj) will be depen-

dent each other. Therefore, there are two cases, either

Si < Sj < Sk or sk < si < Sj, as shown in Fig. 2. (The

dotted lines in Fig. 2 represent the dependency be-

tween PUT and READ operations.)

J.-S. Kim et al. /Information Processing Letters 66 (1998) 247-253 251

Communication Time (FT)
20

15

g

E
10

F

5

0

S=

I t I
Number 0::

32)

Communication T

:::r

3 32 6
‘rocessors Number

006 6

6

ime (LU) Communication Time IOcean)

0
6 16

Number of Process

Fig. 3. The reduction in the communication time

Case (1): si < Sj < Sk. In this case, although the req
message of PlJT,“k(j, rk, vk) may arrive at Pj before
the superstep sj, the ack message is delayed until
the SYNCj operation at the superstep Sk, as shown in

Fig. 1. Therefore, it is impossible for READY (Fj , nj)

operation to read Vk .
Case (2): Sk -c si -c Sj. Without loss of general-

ity, we assume that READY (Yj, nj) is the first incon-

sistent READ operation in Pj . For PUT: (j, rk, Vk),

there exists a READ? (fj , n)) such that

puT,“k(j,rk, Vk) + READ$(Fj,n;).

sj should be less than Sj , because otherwise PUT: (j,

rk, vk) and READY (Fj, nj) will be dependent each
I

other. Then, READ:(Fj, n)) is also inconsistent be-
cause it fails to receive the value Vk from its depen-
dent PUT: (j, rk, vk) operation. This contradicts the

assumption that READY (Fj , nj) is the first inconsis-
tent READ operation in Pj .

From the cases (1) and (2), any READ operation
reads the correct value under the relaxed barrier
synchronization. 0

4. Experimental evaluation

4.1. Results

Fig. 3 shows the average time spent for the commu-

nication in each processor where the left and the right

column denote the performance of the original imple-

mentation (ORG) and that of the relaxed barrier syn-

chronization (RBS), respectively. They are measured

by the sum of the time spent in SYNC for ORG, and in

SYNC and READ for RBS. Note that they include not

only the synchronization time but also the data transfer
time. Numbers in parentheses represent the number of

supersteps executed. In any case, the communication
times were significantly reduced by using the relaxed

barrier synchronization. For the system consisting of
32 processors, 61.5% of the original communication

3 It is freely available by anonymous ftp at ftp://ftp.comlab.

ox.ac.uk/pub/Packages/BSP/.
We have implemented and verified the relaxed bar- 4 For details, refer to http://meny.comlab.ox.ac.uk/oucl/users/

rier synchronization on IBM SP2 by modifying the hyaric/doc/BSP/NASfromMPItoBSP/.

Oxford BSP toolset, version 0.72~~. 3 Three bench-

mark programs, FT, LU and Ocean, were used in our
experiments. FT and LU are parts of NAS Parallel

Benchmark (NPB) 2.1. The original MPI version was

converted to the BSP version by Antoine Le Hyaric

in Oxford University.4 Ocean is one of the barrier-

intensive applications in SPLASH benchmark and was

used for the BSP model in [3].

For the relaxed barrier synchronization, we have

added a special primitive in BSPlib which corresponds

to the READ operation. As we mentioned before, we
insert this primitive just before the first statement
which accesses a registered region in a superstep.

252 J.-S. Kim et al. /Information Processing Letters 66 (1998) 247-253

16 64 256 1K 4K 16K 64K P56K

m &We)

All-to-all exchange (RSS)

16 64 256 1K 4K 16K 64K 256K

m We)

Fig. 4. BSP parameter g.

time was reduced for FT, 28.6% for LU, and 45.9%
for Ocean with the relaxed barrier synchronization.

4.2. Impact on the BSP cost model

For a given BSP program consisting of S super-
steps, the execution time is given by

S-l S-l

L-l -Y

i=O i=O

where wi is the largest amount of work performed, and
mi the maximum size of messages generated for a su-
perstep i. 5 Traditional implementation allows us to
calculate the cost of a series of supersteps simply by
summing the cost of each separate superstep. In the re-
laxed barrier synchronization, however, the communi-
cation occurs only between dependent processors and
this will affect the cost model in several ways.

The most obvious effect is the elimination of the
barrier synchronization cost L, because the relaxed
barrier synchronization does not perform any global
barrier synchronization. This cost, L . S, can be sub-
stantial if there is a large number of processors or if S
is large as in the case of LU. Normally, programmers
attempt to compromise (1) the amount of local compu-
tation (W), (2) the size of messages (M), and (3) the
number of supersteps (S), to minimize the execution
time. However, under the relaxed barrier synchroniza-
tion, S does not incur any overhead and programmers
need not consider the number of supersteps.

5 In this paper, we do not normalize g and L with respect to the

processor speed.

Our scheme also affects the data transfer time. Fig. 4

plots g(m), a unit cost to transmit a byte, as a function

of message size m. It is measured using a microbench-
mark in which each processor sends a single message

of size m to all other processors. In both cases, g(m)

shows a saturated value g(o0) for large messages as

expected in the BSP model. g(m) is a good measure
of the lower-bound rate of communication and it can

be regarded as the BSP parameter g, because the BSP

model defines g under conditions of continuous and
bulk traffics. From Fig. 4, it is noted that the relaxed
barrier synchronization slightly lowers the value of g.

This means that our implementation is more efficient

for the exchange of large messages, possibly due to the

reduction in congestion delays. Actually, the improve-

ment of FT in Fig. 3 mostly comes from the decrease
in the data transfer time, because S is small compared

with other applications.

In Fig. 4, the product g(m) . m remains roughly
constant for small messages, which means that the

startup cost dominates for short message transfers. In

this case, although g(m) of RBS is larger than that of
ORG mainly due to the overhead of handshaking, the

elimination of L can offset the overhead.
On the other hand, W includes the waiting time

caused by the variation of the completion times of the
computation steps. Because each processor starts its
own computation as soon as data become available,

the relaxed barrier synchronization can reduce W to
some extent. However, this reduction of the waiting
time is hard to characterize and varies from application
to application.

J.-S. Kim et al. /Information Processing Letters 66 (1998) 247-253 253

5. Related work

Our approach is similar to a message counting
scheme used in Split-C [6]. Split-C also has a single-
sided store operation which stores a value into a global
location, and a barrier operation called al 1-s tore_
sync () which ensures all the store operations are
complete. Because all_store_sync () incurs
communication overhead, and prevents processors

from working ahead on their computation until all
other processors are ready, Split-C provides another
operation called s t ore_sync (x) , which waits only
until x bytes have been stored locally.

Recently, a similar message counting scheme has
been adopted for the BSP model to trigger the be-
ginning of new supersteps [2,1]. However, a simple
message counting scheme has a potential to produce
inconsistent results if it just counts the number of
incoming messages without considering their super-

step numbers. Consider a situation where PO expects a
message from P1 at superstep s, and another from P2
at superstep s + 2. If the message of P2 arrives at PO

before the message of PI, the simple message count-
ing scheme will fail to satisfy the consistency. This is-
sue has not been addressed in the previous works for
the BSP model. In [6], it is mentioned for Split-C that
the higher level program protocol must avoid potential
confusion because store-sync () does not indicate
which data has been deposited.

MPI-2 also has a mechanism for providing regions
of memory on which a processor waits until a one-
sided communication accesses that memory [7]. To
solve the aforementioned problem, MPI-2 uses the
notion of epoch. A target memory region can be

accessed only within an exposure epoch and there
is a one-to-one matching between access epochs of
origin processors and exposure epochs of destination
processors. Because an exposure epoch is started and
completed by synchronization calls executed in the
target processor, the destination should be explicitly
involved in the communication.

Another important distinction from [2, I] is that they
still synchronize on the basis of supersteps, while the
relaxed barrier synchronization does on the basis of
each data structure. Let us assume that a processor
needs two messages for a superstep. In the relaxed bar-
rier synchronization, the processor can start the cor-
responding computation as soon as it receives one of
those messages unless they belong to the same regis-

tered region. In this way, the relaxed barrier synchro-
nization maximizes the overlap of communication and
computation. However, the processor should wait until
both of messages arrive in the previous works. In ad-
dition, their works are not presented in the framework

of the proposed standard, BSPlib.

6. Concluding remarks

In this paper, we have presented the relaxed barrier
synchronization for the efficient implementation of

the BSP model on message-passing architectures.
The relaxed barrier synchronization preserves the
consistency of a BSP program without global barrier
synchronization.

Although BSPlib defines another DRMA operation
GET, we have paid attention to the PUT operation
only. We believe that any GET operation can be
replaced with equivalent PUT operation without much
effort.

We are currently evaluating the relaxed barrier
synchronization on other platforms including shared-
memory architectures and network of workstations.

References

[l] R.D. Alpert, J.F. Philbin, cBSP: Zero-cost synchronization in

a modified BSP model, Tech. Rept., NEC Research Institute,

1997.

[2] A. Fahmy, A. Heddaya, Communicable memory and lazy

barriers for bulk synchronous parallelism in BSPk, Tech. Rept.

BU-CS-96-012, Boston University, 1996.

[3] M. Goudreau et al., Towards efficient and portability: Program-

ming with the BSP model, in: Proc. 8th ACM Symp. on Parallel

Algorithms and Architectures, 1996, pp. 1-12.

[4] J.M.D. Hill, D.B. Skillicom, Practical barrier synchronization,

Tech. Rept. PRG-TR-16-96, Oxford University Computing

Laboratory, 1996.

[5] J.M.D. Hill et al., BSPlib: The BSP programming library.

Available at http://www.bsp-worldwide.org/, 1997.

[6] A. Krishnamurthy, D.E. Culler, A. Dusseau, S.C. Goldstein,

S. Lumetta, T. von Eicken, K. Yelick, Parallel Programming in

Split-C, in: Proc. of Supercomputing, 1993, pp. 262-273.

[7] Message Passing Interface Forum, MPI-2: Extensions to the

message-passing interface, 1997. Available at http://www.mpi-

forum.org/.

[8] D.B. Skillicom, J.M.D. Hill, W.F. McCall, Questions and an-

swers about BSP, Tech. Rept. PRG-TR-15-96, Oxford Univer-

sity Computing Laboratory, 1996.

[9] L.G. Valiant, A bridging model for parallel computing, Comm.

ACM 33 (1990) 103-111.

