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1. Introduction 

The Bulk Synchronous Parallel (BSP) model of 
computation [9] was first proposed by Valiant as a 
bridging model between hardware and software for 
general-purpose parallel computation. The main ob- 
jective of the model is to provide an abstract ma- 
chine which allows the design of parallel programs 
that can be executed efficiently on a variety of archi- 
tectures. A BSP abstract machine consists of a collec- 
tion of N identical processors, each with local mem- 
ory, connected by an interconnection network whose 
characteristics are modeled only by the barrier syn- 
chronization overhead (L), and the worst rate at which 
randomly-addressed data can continuously be deliv- 
ered (g). Goudreau et al. [3] have already shown that 
the BSP model can be used to develop efficient and 
portable programs for a range of machines and appli- 
cations. 

In the BSP model, the computation is structured as 
a sequence of supersteps, each followed by a barrier 
synchronization. In each superstep, a processor per- 
forms operations on local data and sends messages 
to other processors. A message sent from one proces- 
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sor during a superstep is not visible to the destination 
processor until the subsequent superstep. 

The barrier synchronization used in the BSP model 
can be implemented efficiently using locks, sem- 
aphores or cache coherence protocols for shared- 
memory architectures [4]. However, the cost of the 
barrier synchronization on message-passing architec- 
tures is relatively expensive because processors are 
synchronized by exchanging messages. The cost usu- 
ally grows as the number of processors increases. 

In this paper, we relax the barrier synchronization 
constraint in the BSP model for the efficient imple- 
mentation on message-passing architectures. Direct 
implementation of the barrier synchronization does 
not allow any processor to proceed past the synchro- 
nization point until all processors reach that point. 
Instead, in our relaxed barrier synchronization, the 
synchronization occurs at the time of accessing non- 
local data only between the producer and the consumer 
processors, eliminating the exchange of global infor- 
mation. 

2. A BSP programming model 

Hill et al. have proposed BSPlib [5] as a standard li- 
brary to integrate various approaches to BSP program- 
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ming. One way of performing data communication in 
BSPlib is to use a Direct Remote Memory Access 
(DRMA) facility that provides operations to put/get 
data into/from the memory of a remote processor. In 

this section, we define a model for BSP programming 
which is based on BSPlib by the following minimal 

operations. ’ 
. SYNCi performs a barrier synchronization in Pi ; 
l PUTi(j, r, v) puts data u in Pi into a region spec- 

ified by r in Pj; 

l PUSHREGi (r) registers a region r in Pi ; 
l READi (r) reads a registered region r in Pi. 

Assume that there are PO, . . , PN-I processors. 

A region r defines contiguous memory locations, 
which can be represented by a tuple r = (a, 6), cx 

and 6 denote the start address of the region and its 
size, respectively. Because the same data structure 
is not necessarily stored at the same address in all 

processors, PUSHREGi (r) registers a region r so that 
it can be a target of data transfer between processors. 

Such registration maps an individual region r to a 
global index, denoted p(r), that is the same in all 

processors. Once a region r is registered in Pi, it 

becomes a registered region. 

For two regions r = (a, S), r’ = (a’, 6’) in the same 
processor, r is a subregion of r’, denoted r c r’, if and 
only if CZ’ < a! and c~ + 6 < o’ + 6’. r and r’ are disjoint, 

denoted r n r’ = 0, if and only if either o + S < a’ or 

(Y’ + S’ < cr. Let Ri be a set of registered regions in 
Pi. A region ri = (ai, Si) in Pi can be mapped to a 

region rj in Pj by a mapping function yi,j (ri), where 

rj=Yi,j(ri)=(~j+ni_czli,6i)fOrSOme~i=(~i,Si) 

ERiand~j=(~j,8j)ERjsuchthatriCri,6”i=6j 

and I = p(?j). The effect of PUTi(j, r, V) is to 
transfer data u into the contiguous memory locations, 

specified by a region yi,j (r) in Pj. 

Generally, a processor can freely read or write its 
registered regions like any other local data structures. 
However, we assume that the contents of the registered 
regions are changed only by PUT operations. We de- 
fine an operation READj(?) to distinguish a proces- 
sor’s read accesses to the registered regions. Although 
there is no corresponding routine in BSPlib, in our 
model, READj (r) operation is conceptually added be- 

’ The first three correspond to bsp_sync () , bspqut () 
and bsp_push_reg ( ) routines of BSPlib, respectively. 

fore the first instruction which accesses any data in ? 
for a superstep. 

By executing SYNCi at a superstep s, Pi performs a 
barrier synchronization and proceeds to the next super- 
step s + 1. We use such notations as SYNC:, PUT: (j, 

r, v), PUSHREG,” (r), and READ/(r), to specify oper- 
ations at a specific superstep s. We say two operations, 
PUT and READ, are dependent on Yj, denoted 

PUT/(j, r, V) -+ READJ’(Fj), 

if and only if READi’ is the first operation which 

satisfies vi,j (r) c 7j and s < s’. ’ 

Because the BSP model imposes some restrictions 
on the use of these operations, only the subset of 
BSP programs is meaningful. In this paper, we are 
interested in a class of BSP programs called well- 
formed BSP programs (WFBP). 

Definition 1. A BSP program is a well-formed BSP 

program (WFBP), if it satisfies the following condi- 
tions. 

(1) 
(2) 

(3) 

(4) 

For all 7, r”’ E Ri , 7 fl r”’ = 0 if r # ?. 

For all PUTi(j, r, V) in Pi, there exist ?i E Ri and 
?j E Rj such that r C r”i and P(7i) = p(?j). 
For all PUT: (j, r, v) in Pi, there exists a 

READf’(I’,) in Pj such that PUT: (j, r, V) + 

READs’(?j). 

If PUT,: (j, ri, Vi) + READS’(?j) and PUTi(j, 

rk,vk) + READf(rj), then Yi,j(ri> n yk,j(rk) 

=0,wherei#korsi#sk. 

Definition l(2) shows that for a PUTi(j, r, IJ) op- 
eration, r should be a subregion of previously regis- 
tered region ?i, which is unique by Definition l(1). 
Moreover, the destination processors should have a 
registered region with the same global index as p (Ti). 
Each PUT operation should have a matching READ 
operation at the later superstep, as specified in Defini- 
tion l(3). Note that for a READ operation, there can be 
more than one dependent PUT operations. However, 
as shown in Definition l(4), the destination of those 
PUT operations should be disjoint in ?j, so as not to 
make some value lost or useless. 

Now we define the consistency of a WFBP as 
follows. 

* Note that s’ need not be s + 1, the next superstep of s 
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Definition 2. An execution of a WFBP is consistent 

if the value returned on READ operation is always the 
same value written by the dependent PUT operation. 
That is, between two dependent operations such that 
PUTi (j, r, v) + READj(rj), the value in a region 
n,j(r) in Pj should be v at the time of READ 

operation. 

The main purpose of the barrier synchronization 

in the BSP model is to ensure the consistency by 
proceeding to the next superstep only when all the 

processors finish the current superstep. For a PUT: (j, 

r, v) operation, Pi does not start the superstep s + 1 

unless the value v is transferred to Pj. Therefore, 

it can be easily shown that READ”‘@) operation in 
the subsequent superstep always accesses the correct 
value. 

3. Relaxed barrier synchronization 

For message-passing architectures, single-sided op- 
eration such as PUT can not be satisfied without the 

service of the destination processor, because there is 
no facility to access the remote memory directly. On 

the other hand, a processor does not know how many 
PUT operations it has to serve for other processors be- 
fore proceeding to the next superstep. 

To solve this problem, the current implementation 
of SYNC operation for message-passing architectures 
consists of two phases [8]. In the first phase, all 
processors exchange information about the number of 
PUT operations and their destination regions. This ex- 

change phase also serves as a barrier synchronization 
for the superstep. After the first phase, each processor 
knows how many messages to receive from the other 

processors. Actual data communication is performed 
in the second phase. 

The exchange phase generates a large number of 
messages in every superstep. Even when a processor 
does not have any PUT operation, it should inform 
the other processors of the fact explicitly. Therefore, 
the overhead of the exchange phase is significant on 
message-passing architectures, especially when there 
is a large number of processors to synchronize and 
when the communication is slow compared to the 
computation, 

Our approach is to relax the barrier synchronization 
constraint in the BSP model so that the exchange 
phase can be eliminated and the synchronization can 
occur at the time of reading registered regions only 
between the dependent processors. Processors are not 
globally synchronized any more, and each processor 
may execute a different superstep according to its 
relative speed and synchronization requirements. 

We change the semantics of READ operation slightly 
and add an argument n such as READj (U, n) to guar- 

antee the consistency of a WFBP without resort to 
barrier synchronization. n is the number of dependent 
PUT operations for the READ operation, and it means 

that the registered region 7 should be updated n times 
before being read. We associate a count value with 
each registered region r”, denoted o(r), which is ini- 

tially set to zero. As the content of the registered re- 
gion is updated via a message, o(U) is increased by 1. 

To prevent a registered region from being over- 
written incorrectly, we use a handshaking mechanism 
using special control messages called req and ack. 

A message m sending from Pi to Pj is denoted by m = 

(i,j,t I4,d2,. . . , d,), where t E T = (req, ack, data} 

denotes a message type and dl, d2, . . . , d,,, the body of 
m. Before sending a data message, a processor issues 
a req message to the destination processor and receives 

an ack message. A req message holds the current su- 
perstep number of the sender, say s’. The destination 
processor accepts the request by sending an ack mes- 
sage back, if s’ is less than its own superstep number. 
Otherwise, the acknowledgement is delayed until the 

destination processor reaches the superstep s’. Hence, 
the superstep number is used as a timestamp which 
represents the speed of each individual processor. 

Fig. 1 outlines an implementation of the relaxed 
barrier synchronization on message-passing architec- 
tures. In Fig. 1, MO and MI are used to record the 

requests issued from the current superstep and the 
requests from the other processors that wait to be 
acknowledged, respectively. Incoming messages are 
handled either in SYNC or in READ operation. Note 
that a request from the same superstep is not accepted 
in READ operation. 

Theorem 1. For a given WFBP P, let PI be a 

BSP program constructed by replacing READj(?) 
in P with READj (?, n), where n is the number of 

dependent PUT operations for the READ operation. 
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l PUTIF(j,r, u) . 

Sendmr=(i,j,reqIreqid,s,p(?).a-G,S)toPj, 

wherer=(a,S)~i:=(ir,~),forsome?ER~; 

MO t Mg U ((reqid, u)); . 
reqid t reqid + 1; 

. SYNC; 
For each tni = {k, i, req I id, s’, p’, A, 8’) f MI 

such that s = s’, 

RECENEi(k,id,p’,A,6’); 

MI +-Ml - Imil; 

While (MO # 0) 

HA NDLE_MESSAG& (s , 1) ; 
S+S+l; 
reqid t 0; . 

. READ!@, n) 

WLhile (a(?) <n) 

HANDLE_MESSAGEi (s, 0); 

a(F) t 0; 

PUSHREG,! (r) 

Ri + Ri U (~1; 

HANDLE_MESSAGEi (s, e) 

For an incoming M = (k, i, req 1 id, s’, p’, A, 6’) 

if ((s’ < S) V (e = 1 A s = s’)) 

RECEIVEi(k,id,p’, A,S’); 

else 

MI + MIUI~}; 

For an incoming m = (k, i, ack 1 id) 

send rnd = (i, k, data 1 u) to Pk. 

where (id, u) E MO; 

MO + MO - {(id, u)l; 

RECEIVE; (k, id, p’ , A, 6’) 
Send m, = (i, k, ack 1 id) to Pk; 

Receive m,j = (k, i, data 1 U) from Pk; 

r’ + u, where r’ = (& + A, 8’) and p(F) = p’, 

for some F = (c?, 8) E Ri ; 
a(F) +a(?)+l; 

Fig. 1. An implementation of relaxed barrier synchronization. 

(a) si < sj 5 sk (b) sk < si < sj 

Fig. 2. Cases for accessing incorrect value in READY (?j, nj). 

Then, an execution of P’ under the relaxed barrier 

synchronization in Fig. 1 is consistent. 

Proof. Consider a pair of dependent operations such 
that PUTS’ (j, ri, Q) + READ; (‘lj, rtj). TO be incon- 

sistent, READY (?j , nj) should receive nj messages, 

amona which one is sent from another PUT? (i, 
Q, vk) operation, where yi,j(i”i> fl yk,j(rk) 2 ii, 

PlJT;k(j, rk, Uk) ft READ: (fj, ilj> alId yk, j (rk) C 

?j. If sk ki between Si and Sj, that is, Si < Sk < Sj, 

PUT,“k(j, rk, uk) and READY (fj, nj) will be depen- 

dent each other. Therefore, there are two cases, either 

Si < Sj < Sk or sk < si < Sj, as shown in Fig. 2. (The 

dotted lines in Fig. 2 represent the dependency be- 

tween PUT and READ operations.) 
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Fig. 3. The reduction in the communication time 

Case (1): si < Sj < Sk. In this case, although the req 
message of PlJT,“k(j, rk, vk) may arrive at Pj before 
the superstep sj, the ack message is delayed until 
the SYNCj operation at the superstep Sk, as shown in 

Fig. 1. Therefore, it is impossible for READY (Fj , nj) 

operation to read Vk . 
Case (2): Sk -c si -c Sj. Without loss of general- 

ity, we assume that READY (Yj, nj) is the first incon- 

sistent READ operation in Pj . For PUT: (j, rk, Vk), 

there exists a READ? (fj , n)) such that 

puT,“k(j,rk, Vk) + READ$(Fj,n;). 

sj should be less than Sj , because otherwise PUT: (j, 

rk, vk) and READY (Fj, nj) will be dependent each 
I 

other. Then, READ:(Fj, n)) is also inconsistent be- 
cause it fails to receive the value Vk from its depen- 
dent PUT: (j, rk, vk) operation. This contradicts the 

assumption that READY (Fj , nj) is the first inconsis- 
tent READ operation in Pj . 

From the cases (1) and (2), any READ operation 
reads the correct value under the relaxed barrier 
synchronization. 0 

4. Experimental evaluation 

4.1. Results 

Fig. 3 shows the average time spent for the commu- 

nication in each processor where the left and the right 

column denote the performance of the original imple- 

mentation (ORG) and that of the relaxed barrier syn- 

chronization (RBS), respectively. They are measured 

by the sum of the time spent in SYNC for ORG, and in 

SYNC and READ for RBS. Note that they include not 

only the synchronization time but also the data transfer 
time. Numbers in parentheses represent the number of 

supersteps executed. In any case, the communication 
times were significantly reduced by using the relaxed 

barrier synchronization. For the system consisting of 
32 processors, 61.5% of the original communication 

3 It is freely available by anonymous ftp at ftp://ftp.comlab. 

ox.ac.uk/pub/Packages/BSP/. 
We have implemented and verified the relaxed bar- 4 For details, refer to http://meny.comlab.ox.ac.uk/oucl/users/ 

rier synchronization on IBM SP2 by modifying the hyaric/doc/BSP/NASfromMPItoBSP/. 

Oxford BSP toolset, version 0.72~~. 3 Three bench- 

mark programs, FT, LU and Ocean, were used in our 
experiments. FT and LU are parts of NAS Parallel 

Benchmark (NPB) 2.1. The original MPI version was 

converted to the BSP version by Antoine Le Hyaric 

in Oxford University.4 Ocean is one of the barrier- 

intensive applications in SPLASH benchmark and was 

used for the BSP model in [3]. 

For the relaxed barrier synchronization, we have 

added a special primitive in BSPlib which corresponds 

to the READ operation. As we mentioned before, we 
insert this primitive just before the first statement 
which accesses a registered region in a superstep. 
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Fig. 4. BSP parameter g. 

time was reduced for FT, 28.6% for LU, and 45.9% 
for Ocean with the relaxed barrier synchronization. 

4.2. Impact on the BSP cost model 

For a given BSP program consisting of S super- 
steps, the execution time is given by 

S-l S-l 

L-l -Y 

i=O i=O 

where wi is the largest amount of work performed, and 
mi the maximum size of messages generated for a su- 
perstep i. 5 Traditional implementation allows us to 
calculate the cost of a series of supersteps simply by 
summing the cost of each separate superstep. In the re- 
laxed barrier synchronization, however, the communi- 
cation occurs only between dependent processors and 
this will affect the cost model in several ways. 

The most obvious effect is the elimination of the 
barrier synchronization cost L, because the relaxed 
barrier synchronization does not perform any global 
barrier synchronization. This cost, L . S, can be sub- 
stantial if there is a large number of processors or if S 
is large as in the case of LU. Normally, programmers 
attempt to compromise (1) the amount of local compu- 
tation (W), (2) the size of messages (M), and (3) the 
number of supersteps (S), to minimize the execution 
time. However, under the relaxed barrier synchroniza- 
tion, S does not incur any overhead and programmers 
need not consider the number of supersteps. 

5 In this paper, we do not normalize g and L with respect to the 

processor speed. 

Our scheme also affects the data transfer time. Fig. 4 

plots g(m), a unit cost to transmit a byte, as a function 

of message size m. It is measured using a microbench- 
mark in which each processor sends a single message 

of size m to all other processors. In both cases, g(m) 

shows a saturated value g(o0) for large messages as 

expected in the BSP model. g(m) is a good measure 
of the lower-bound rate of communication and it can 

be regarded as the BSP parameter g, because the BSP 

model defines g under conditions of continuous and 
bulk traffics. From Fig. 4, it is noted that the relaxed 
barrier synchronization slightly lowers the value of g. 

This means that our implementation is more efficient 

for the exchange of large messages, possibly due to the 

reduction in congestion delays. Actually, the improve- 

ment of FT in Fig. 3 mostly comes from the decrease 
in the data transfer time, because S is small compared 

with other applications. 

In Fig. 4, the product g(m) . m remains roughly 
constant for small messages, which means that the 

startup cost dominates for short message transfers. In 

this case, although g(m) of RBS is larger than that of 
ORG mainly due to the overhead of handshaking, the 

elimination of L can offset the overhead. 
On the other hand, W includes the waiting time 

caused by the variation of the completion times of the 
computation steps. Because each processor starts its 
own computation as soon as data become available, 

the relaxed barrier synchronization can reduce W to 
some extent. However, this reduction of the waiting 
time is hard to characterize and varies from application 
to application. 
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5. Related work 

Our approach is similar to a message counting 
scheme used in Split-C [6]. Split-C also has a single- 
sided store operation which stores a value into a global 
location, and a barrier operation called al 1-s tore_ 
sync ( ) which ensures all the store operations are 
complete. Because all_store_sync ( ) incurs 
communication overhead, and prevents processors 

from working ahead on their computation until all 
other processors are ready, Split-C provides another 
operation called s t ore_sync (x) , which waits only 
until x bytes have been stored locally. 

Recently, a similar message counting scheme has 
been adopted for the BSP model to trigger the be- 
ginning of new supersteps [2,1]. However, a simple 
message counting scheme has a potential to produce 
inconsistent results if it just counts the number of 
incoming messages without considering their super- 

step numbers. Consider a situation where PO expects a 
message from P1 at superstep s, and another from P2 
at superstep s + 2. If the message of P2 arrives at PO 

before the message of PI, the simple message count- 
ing scheme will fail to satisfy the consistency. This is- 
sue has not been addressed in the previous works for 
the BSP model. In [6], it is mentioned for Split-C that 
the higher level program protocol must avoid potential 
confusion because store-sync ( ) does not indicate 
which data has been deposited. 

MPI-2 also has a mechanism for providing regions 
of memory on which a processor waits until a one- 
sided communication accesses that memory [7]. To 
solve the aforementioned problem, MPI-2 uses the 
notion of epoch. A target memory region can be 

accessed only within an exposure epoch and there 
is a one-to-one matching between access epochs of 
origin processors and exposure epochs of destination 
processors. Because an exposure epoch is started and 
completed by synchronization calls executed in the 
target processor, the destination should be explicitly 
involved in the communication. 

Another important distinction from [2, I] is that they 
still synchronize on the basis of supersteps, while the 
relaxed barrier synchronization does on the basis of 
each data structure. Let us assume that a processor 
needs two messages for a superstep. In the relaxed bar- 
rier synchronization, the processor can start the cor- 
responding computation as soon as it receives one of 
those messages unless they belong to the same regis- 

tered region. In this way, the relaxed barrier synchro- 
nization maximizes the overlap of communication and 
computation. However, the processor should wait until 
both of messages arrive in the previous works. In ad- 
dition, their works are not presented in the framework 

of the proposed standard, BSPlib. 

6. Concluding remarks 

In this paper, we have presented the relaxed barrier 
synchronization for the efficient implementation of 

the BSP model on message-passing architectures. 
The relaxed barrier synchronization preserves the 
consistency of a BSP program without global barrier 
synchronization. 

Although BSPlib defines another DRMA operation 
GET, we have paid attention to the PUT operation 
only. We believe that any GET operation can be 
replaced with equivalent PUT operation without much 
effort. 

We are currently evaluating the relaxed barrier 
synchronization on other platforms including shared- 
memory architectures and network of workstations. 
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