
Information Processing Letters 110 (2010) 614–620
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Log′ version vector: Logging version vectors concisely
in dynamic replication ✩

Hyun-Gul Roh a,∗, Myeongjae Jeon b, Euiseong Seo c, Jinsoo Kim d, Joonwon Lee d

a Department of Computer Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
b Department of Computer Science, Rice University, Houston, TX, United States
c School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
d School of Information and Communication Engineering, Sungkyunkwan University, Suwon, Republic of Korea

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 December 2009
Received in revised form 29 April 2010
Accepted 30 April 2010
Available online 6 May 2010
Communicated by M. Yamashita

Keywords:
Distributed computing
Distributed systems
Version vector
log′ version vector
Replication system

In a replication system, version vectors are logged with replicas to detect conflicts among
operations. Dynamic replications where replicas are frequently created and destroyed
suffer from expensive logging overhead caused by inactive entries of version vectors.
Although the rigmarole of pruning vectors can delete inactive entries, the vectors may
be incompatible without additional information, which also causes another overhead. This
paper proposes a novel version vector called log′ (log-prime) consisting of only three
entries. By encoding based on the characteristics of prime numbers, log′ version vectors
of fixed size can be logged concisely with no pruning technique at a little sacrifice in
accuracy. Simulation studies show that log′ version vectors are accurate enough to detect
almost all conflicts in the replication systems where all replicas are fully synchronizing.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

In diverse replication systems [1–5], replicas operate
version vectors to enumerate distributed operations and
log a large number of vector values, each of which captures
individual operation, in order to track updates of replicas
or to detect/resolve conflicts arising from distributed exe-
cution. Therefore, many replication systems have been suf-
fering from the logging overhead by version vectors [3–5].
The transmission overhead can be reduced by some meth-
ods [6,7] primarily devised for the vector clock, which
is inherently similar to the version vector in the operat-
ing rules and detecting mechanisms [8,9]. However, these
methods have no effect on reducing the logging overhead
of version vectors that is intrinsically related to the vec-

✩ This work was supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MEST) (No. 2010-
0000829)

* Corresponding author.
E-mail address: hgroh@calab.kaist.ac.kr (H.-G. Roh).
0020-0190/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2010.04.026
tor sizes. Even though the approaches in [3] and [4] claim
to reduce the logging overhead, they are ineffective when
vectors are to contain many inactive entries in dynamic
replications in which replicas are frequently created and
destroyed.

Indeed, for the compatibility of vectors, the entries rep-
resenting destroyed (retired) replicas should be preserved,
though they will remain inactive. To reduce the logging
overhead however, some research efforts have tried to re-
move inactive entries through the vector pruning, but reck-
less pruning results in serious side-effects, as explained
in [10]. Fig. 1 shows a simple case where an inactive en-
try is deleted immediately. If vectors are anonymous ar-
rays, they might be corrupted due to the incompatibility of
the vectors. To avoid such incompatibility, several systems
[11–13] enforce an agreement on the vector pruning usu-
ally through distributed consensus protocols, which involve
great cost and complexity. Although replicas may manage
to update vectors without deleted entries by tagging each
vector entry, any two vectors representing different sets of

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:hgroh@calab.kaist.ac.kr
http://dx.doi.org/10.1016/j.ipl.2010.04.026

H.-G. Roh et al. / Information Processing Letters 110 (2010) 614–620 615
Fig. 1. A case in which a replica is destroyed and created. The entry of
the destroyed replica is deleted immediately. If version vectors are in
the forms of anonymous arrays, there might be ambiguity to update v3

3
and v1

4.

replicas are still incompatible because the pruning makes
vectors lose necessary information after all.

To ensure compatibility of pruned vectors, Richard [14]
and Wang et al. [15] individually introduced vector prun-
ing techniques that prepare lists of final vector values of
the destroyed replicas. These techniques are lightweight
because they only require a retiring replica to notify others
of its own retirement instead of costly consensus protocols.
However, if a replica crashes without explicit notification,
it is impossible to prune vectors. Saito [10] suggested a
unilateral pruning technique that makes use of a physi-
cal clock for each entry. Although this can delete inactive
entries without notification after fairly long expiration pe-
riods (e.g., a month), maintaining physical clocks incurs
considerable overhead.

In fact, all pruning techniques demand additional infor-
mation, such as entry tags or vector descriptions, which
is another source of overhead. Reducing the logging over-
head through the pruning techniques is consequently not
always valid and practical, and thus vector sizes may grow
continuously throughout dynamic replication.

This paper proposes a novel version vector named log′
(log-prime). A log′ is obtained by taking logarithms on a
product of prime numbers which is derived from another
novel vector called prime version vector. Every log′ consists
of only three fixed-size entries regardless of the number
of replicas, thereby requiring no pruning. Meanwhile, we
can make a compromise between the data size of log′
and the accuracy in detecting conflicts. Log′ satisfies the
same property as the plausible clock, which was designed
to be less powerful and accurate than the vector clock for
scalability and efficiency [16]. Unlike the plausible clock,
log′s cannot be updated for themselves, and are used only
for the purpose of logging.

Our simulation studies show various characteristics of
log′ errors, which are controllable with respect to the
vector size. In the replication where all replicas synchro-
nize with each other, the error ratio is less than 2% for all
pairs of thousands of log′s even when only half bits of
conventional version vectors are used. Particularly, unlike
the plausible clocks yet proposed, no error occurs in char-
acterizing those log′s that are generated at around the
same time; i.e., error-free regions exist. Such error pattern
will allow replicas to use log′s for resolving conflicts.

Above all, in dynamic replication, the simulation shows
log′s can reduce the logging overhead considerably with
no vector pruning since they waste no space for inac-
tive entries. Thus, we expect that log′s can be employed
in those dynamic systems, such as multiplayer games
and collaborative applications [5], that replicate massive
amounts of objects and, at the same time, tolerate incor-
rect conflict detections to some extent.

2. Prime version vectors

Unlike the conventional version vector [1], we distin-
guish our version vector into an operating form and a log-
ging form. This paper assumes that every replica operates
a prime version vector as an operating form, whose cap-
tured values are transformed into log′ version vectors, i.e.,
the logging forms. The purpose of such decoupling is to
achieve the concise and accurate log′s since the prime
version vector can enhance the accuracy of log′s in de-
tecting conflicts by supplementing two more entries to the
conventional version vector.

For a replica Ri , its prime vector PVi is represented as
[pi,Li, �vi], where (1) pi is a prime number unique to Ri ,
(2) Li is an integer value shared by all replicas, and (3) �vi
is a vector that has one entry for ∀pk ∈ P such that P is
a set of prime numbers of all the replicas that have/had
participated in the replication.1 For the three operation
types generally considered in replication systems, i.e., in-
ternal, sync, and rsync operations [1], the operating rules
on PVi = [pi,Li, �vi] at Ri are as follows:

– Let isSent be an internal boolean variable.

Rule 0) Initial value:
1) pi := a prime number unique to Ri ,

Li := 0, ∀pk ∈ P: �vi[pk] := 0, isSent := false;
Rule 1) Before executing an internal operation:

1) Execute DA;
2) Li := Li + 1;

Rule 2) Before sending a sync operation:
1) Execute DA;
2) Li := Li + 1, isSent := true;

Rule 3) Before executing an rsync operation received from
R j with PV j = [p j,L j, �v j]:
1) Execute DA;
2) Li := max(Li,L j) + 1;

∀pk ∈ P: �vi[pk]
:=

{
max(�vi[pk], �v j[pk] + 1) for pk = p j,

max(�vi[pk], �v j[pk]) otherwise;

(DA) Delayed Addition,
if (isSent = true) {

�vi[pi] := �vi[pi] + 1;
isSent := false;

}

1 We assume the entry of a replica Rk is represented by �vi [pk], where
pk is the prime number of Rk instead of an integer index.

616 H.-G. Roh et al. / Information Processing Letters 110 (2010) 614–620
Fig. 2. An example of a replication system wherein three replicas partici-
pate using prime version vectors. The prime numbers of R1, R2, and R3

are assumed to be 2, 3, and 5, respectively.

Like a Lamport clock [17], Li is always renewed be-
fore executing every operation at any replica. Each entry,
i.e., �vi[pk], counts only sync operations invoked by Rk , but
the addition for the local entry, i.e., �vi[pi], is delayed un-
til the execution of the next operation. According to the
rules of the conventional vector [1], when Ri sends a sync
operation to R j , Ri and R j increase �vi[pi] and �v j[p j], re-
spectively. Due to the delayed addition however, a sync
operation allows only a single entry of �vi to increase. The
sync and its corresponding rsync operations are in domi-
nant relation by Definition 1 because the delayed addition
is also applied for a remote sync operation; in R3(2), the
maximum between �vi[p j] and �v j[p j]+1 (the added value)
is taken for �vi[p j]. In the meantime, the maximums for
other entries are taken as in the rule of the conventional
vector [1]. Fig. 2 shows an example of a replication system
using prime version vectors.

For two prime vectors PVi = [pi,Li, �vi] and PV j =
[p j,L j, �v j], their relations can be defined as follows.

Definition 1 (Dominant relation (PVi ≺ PV j)). PV j dominates
PVi , i.e., PVi ≺ PV j , iff: (1) for pi = p j , Li < L j , or (2) for
pi �= p j , Li < L j and ∀pk ∈ P: �vi[pk] � �v j[pk] and �vi[pi] <

�v j[pi].

Definition 2 (Conflict relation (PVi ⊥ PV j)). PVi and PV j are
in conflict, i.e., PVi ⊥ PV j , iff: neither PVi ≺ PV j nor PV j ≺
PVi .

Prime vectors are able to correctly detect all dominant
and conflict relations like the conventional vectors. How-
ever, since prime vectors have two more entries than con-
ventional vectors, they might incur insignificant extra over-
head. Nevertheless, the prime vector makes log′ version
vectors more concise and accurate than the conventional
vector because increments in �vi are suppressed. The next
section explains the reason.

3. Log′ version vectors

Given a prime version vector PVi = [pi,Li, �vi], its log′
version vector is as follows: LVi = [pi,Li,LPi], where

LPi :=
∑ (

logβ pk × �vi[pk]
)

for β > 1.
∀pk∈P
Hence, LPi should be a real number. For example, in Fig. 2,
the last log′ value of R2 becomes [3,8, logβ 213251].

For two log′s LVi = [pi,Li,LPi] and LV j = [p j,L j,LP j],
Definitions 1 and 2 are redefined as follows.

Definition 3 (Dominant relation (LVi ≺l LV j)). LV j dominates
LVi , i.e., LVi ≺l LV j , iff: (1) for pi = p j , Li < L j , or (2) for
pi �= p j , Li < L j and a discriminant �(LVi, LV j) = βδ ∈ N

for δ = LP j − LPi − logβ pi .

Definition 4 (Conflict relation (LVi ⊥l LV j)). LVi and LV j are
in conflict, i.e., LVi ⊥l LV j , iff: neither LVi ≺l LV j nor LV j ≺l
LVi .

In Definition 3, the discriminant is

�(LVi, LV j) = βδ = 1

pi

∀pk∈P∏
p

(�v j [pk]−�vi [pk])
k .

Clearly, if condition (2) of Definition 1 is satisfied,
� = βδ becomes a natural number. However, LPi of an ir-
rational number cannot be represented without errors in
digital systems, and the discriminant might be misjudged
as a result of these errors; note that the errors equally
occur to all replicas because they are mathematically de-
terministic. Hence, the error needs to be exactly predicted
and suppressed.

Let δ̃ be the value of a real number representation of a
positive irrational number δ. We assume that the error be-
tween the two, i.e., ε = δ− δ̃, is small enough to be close to
zero. Then, the error of the discriminant is |E| = |βδ − βδ̃ |,
which could be expanded as follows.

For δ̇ = min(δ, δ̃),

|E| = ∣∣βδ − βδ̃
∣∣ = ∣∣βδ̇+|ε| − βδ̇

∣∣
= βδ̇

∣∣β |ε| − 1
∣∣ = βδ̇

∣∣e|ε lnβ| − 1
∣∣.

If e|ε lnβ| is substituted by Maclaurin series, then

|E| = βδ̇

(
|ε lnβ| + |ε lnβ|2

2! + |ε lnβ|3
3! + · · ·

)
.

From this infinite series, the following inequality for |E|
is obtained:

βδ̇|ε lnβ| < |E| < βδ̇
(|ε lnβ| + |ε lnβ|2 + · · ·)

⇔ βδ̇|ε lnβ| < |E| < βδ̇ × |ε lnβ|
1 − |ε lnβ|

(
∵ |ε lnβ| < 1

)
.

The right term, |ε lnβ|
1−|ε lnβ| = 1

|ε lnβ|−1−1
≈ |ε ln β|, if |ε ln β|

is small enough. Hence,

βδ̇|ε lnβ| < |E| < βδ̇|ε lnβ|
⇔ |E| ≈ βδ̇|ε lnβ| for δ̇ = min(δ, δ̃). (1)

From formula (1), we can say that the following two
conditions can reduce the error in the discriminant.

1. |ε| = |δ − δ̃| must be small.
2. Since |E| is proportional to ln β , smaller β is better.

H.-G. Roh et al. / Information Processing Letters 110 (2010) 614–620 617
Based on these conditions, we make the following three
suggestions for implementing log′:

S1. Dividing LPi into integer and decimal parts.
S2. Fixing the precision of the decimal part.
S3. Letting β = 2.

Suggestions S1 and S2 make it possible to predict the
error of δ and ensure that every LPi has the same error
bound. We implement the decimal part of LPi using p-bit
raw array, i.e., with p precision. The most significant bit
of the array denotes 2−1, and the least pth one denotes
2−p . According to [18], since the rounding error from the
decimal part is less than or equal to 2−p−1, the error of δ

(say ε), i.e., the subtraction of three terms, becomes |ε| �
3 × 2−p−1.

By letting β = 2 (S3), S1 and S2 also facilitate the cal-
culation of the discriminant. In general, βδ for δ ∈ R+
is calculated by using the relationship βδ = eδ lnβ [19]. If
β = 2 and δ = δi + δ f , of which δi and δ f are the inte-
ger and decimal part, respectively, then the discriminant
� = 2δ = 2δi+δ f = 2δi × eδ f ln 2. After calculating eδ f ln 2, the
multiplication of 2δi can be emulated by shifting eδ f ln 2 to
the left by δi bits. This ensures better performance in de-
termining the discriminant.

The error in eδ f ln 2 is also predictable. Assume δ̃ f and
l̃n 2 are the decimal representations of δ f and ln 2 =
0.6931471 . . . , respectively. Letting ε1 and ε2 be the
rounding errors of δ f and ln 2, respectively, then |ε1| �
3 × 2−p−1 and |ε2| � 2−p−1 as stated above. Using these,
y = δ f × ln 2 can be written as follows.

y = δ f × ln 2 = (̃δ f + ε1)(l̃n 2 + ε2)

= δ̃ f l̃n 2 + ε1l̃n 2 + ε2δ̃ f + ε1ε2.

If δ̃ f and l̃n 2 are used to calculate y, the error of
ỹ = δ̃ f × l̃n 2 would be ε3 = ε2δ̃ f + ε1l̃n 2 + ε1ε2. Due
to 0 � δ f < 1, |ε1ε2| < |ε2δ̃ f | < |ε1l̃n 2|. Hence, |ε3| is
dominated by the term ε1l̃n 2 and bounded as |ε3| � 3 ×
2−p−1 ln 2 < 2−p+1.

From condition (1), the error bound of eδ f ln 2 is

|E| ≈ eδ̇ f
˙ln 2|ε3| ≈ 2δ̇ f |ε3|

< 2δ̇ f 2−p+1 < 2−p+2 (∵ 0 � δ̇ f < 1).

Hence, errors can appear in the two least significant bits.

1.b1b2 . . .bp1−3bp−2︸︷︷︸
the bit that should be rounded

the bits that might have errors︷ ︸︸ ︷
bp−1bp.

Only two bits are contaminated, while the fore bits
from b1 to bp−2 are trustworthy. Shifting the decimal point
to the right by δi bits produces the value corresponding to
the discriminant � = 2δ . However, due to the error of the
last two bits, the discriminant can be misjudged.

If LVi ≺l LV j , �(LVi, LV j) ∈ N; that is, all the bits of the
decimal part of � must be zeros. Due to the error, how-
ever, the trustworthy bits of � are all zeros if the error is
positive, while they are all ones if the error is negative. To
Fig. 3. The intervals of the decimal part of � in which the discriminant
determination is correct or not, with four trustworthy bits.

make up the error, we round eδ f ln 2 to the nearest on the
last trustworthy bit bp−2 so that all the bits of the decimal
part can be zeros [18]. This ensures that the discriminant
of the dominant relation is always determined correctly.

If LVi ⊥l LV j , �(LVi, LV j) /∈ N; this means that the bits
after the decimal point should be neither all zeros nor all
ones. However, if the value of the decimal part of � is
too close to either zero or one, the trustworthy bits might
be all zeros or all ones, respectively. This causes a conflict
relation to be identified incorrectly as a dominant relation.

As δ increases, the trustworthy bits of the discriminant
decrease, thereby causing the accuracy of the determina-
tion to decline. If δ � p − 1, the discriminant determi-
nation is unavailable because no trustworthy bits remain.
For example, assuming that p = 64 and 58 < δ < 59, only
four bits are trustworthy: 64 − 2 (the bits where an er-
ror appears) − 58 (δi , i.e., the bits that must be shifted
to the left) = 4. In this case, only when the decimal part
of the discriminant for a conflict relation has a value in
interval A = [1

16 , 15
16), as shown in Fig. 3, can the dis-

criminant be correctly determined. If it is in interval B =
(0, 1

16) ∪ [15
16 ,1), the four trustworthy bits would be either

‘0.0000’ or ‘0.1111’ in binary, resulting in an incorrect de-
termination that the discriminant of the conflict relation
is misconceived as a natural number after being rounded
on the last trustworthy bit. Nevertheless, we regard this
relation as a dominant one because dominant relations fre-
quently happen when two log′s are a long way off.

To this end, log′s have the following property.

V i ≺ V j ⇒ LVi ≺l LV j,

V i ⊥ V j ⇐ LVi ⊥l LV j.

This property is the same as that in the plausible clocks in-
troduced by Torres-Rojas and Ahamad [16], which likewise
sacrifice accuracy in detecting causality so as to achieve
constant size vectors. Although log′ is superior to typ-
ical plausible clocks [16] in terms of both accuracy and
logging overhead, this paper does not compare log′ with
them because log′s are obtained by the medium of prime
version vectors and inherently not designed to be vector
clocks but a concise logging form of version vectors. In-

Fig. 4. The design of log′ version vector simulations.

618 H.-G. Roh et al. / Information Processing Letters 110 (2010) 614–620
Fig. 5. Accuracy graphs: m = the number of masters, p = precision of decimal part of LPi , r = number of replicas, t = number of turns.
stead, with respect to various system models, this paper
focuses on showing the characteristics of log′ errors in
the following section.

4. Simulations

We implement log′ using the MPFR library, which sup-
ports a multi-precision floating-point calculation [20]. The
synchronization of replicas is simulated to examine the de-
tection accuracy of log′s. The simulations are designed as
shown in Fig. 4, in which four parameters are defined as
below:

1. R1, . . . , Rr : r replicas,
2. T1, . . . , Tt : t turns, at each of which a replica issues

either an internal or a sync operation, or receives an
rsync operation,

3. LV1, . . . , LVr∗t : log′s of operations O 1, . . . , O r∗t listed
in the order as shown in Fig. 4,
4. A sync operation is sent to another random replica
within an arbitrary delay (< 10 turns). If a replica is a
master, its sync operation is broadcast to all the other
replicas.

To show the detection accuracy of log′ , we present
accuracy graphs wherein every relation from a pair of dis-
tinct log′s is compared with its counterpart of conven-
tional version vectors. In Fig. 5, the x-axis represents a
set of x log′s, and the y-axis shows the ratios of con-
flict relations over all possible x(x−1)

2 pairs, depicted with
the dashed line graphs of legend (c). As evident in the
graphs of Fig. 5, the ratio of conflict relations declines as
the set size grows. The solid-line graphs of legend (e) rep-
resent the error ratios at which relations are incorrectly
detected, compared to the detection using conventional
version vectors. Note that with log′s, dominant relations
are always detected correctly, but conflict relations might
not be. Hence, the vertical difference between the two

H.-G. Roh et al. / Information Processing Letters 110 (2010) 614–620 619
Fig. 6. The error regions of the simulation of Fig. 5(b). If the relation between xth and yth log′s is detected incorrectly, it is colored. The error region of
smaller precision includes larger precision’s.
classes of graphs reveals the ratio of the conflict relations
being detected correctly. Overall, there are sets of log′s,
named error-free log′ sets, of a certain extent (600–4800
log′s) that contain no error despite very high ratios of
conflict relations.

Fig. 5(a) shows the accuracy graph with regard to syn-
chronization policies. In many real-world replication sys-
tems, replicas synchronize themselves mutually in order
to make all replicas consistent. For example, Coda allows
several master replicas to broadcast every sync opera-
tion [2], and in most collaborative editing systems, every
replica broadcasts sync operations for responsiveness [5].
To this end, four synchronization policies are devised with
25 replicas: (p2p) every replica synchronizes itself with
only one of other replicas, (m = 5 and 10) 5 and 10 mas-
ters of total 25 replicas broadcast their sync operations,
and (m = full) all the replicas broadcast their sync oper-
ations. Synchronization makes log′s of different replicas
have similar values, for which conflict relations tend to be
detected correctly as stated in Section 3; thus, as the num-
ber of masters increases, accuracy improves. The rest of
our simulations are done on m = full.

Obviously, the precision of the decimal parts affects ac-
curacy, as shown in Fig. 5(b). The accuracy is rapidly en-
hanced as more bits are used for the decimal parts. For
example, for 10000 log′s, the errors are about 9% for
p = 256 bits, but less than 2% for p = 512 bits. This re-
sult is evident because those log′s that are generated at
around the same time have a tendency to be in conflict
relation, and the error-free region, where all detections are
correct, is widened as more bits are used for decimal parts.
Fig. 6 shows the region where errors appear for all the
pairs of 10000 log′s; such errors are highlighted with
different colors. For instance, if some 4000th log′ is in
conflict relation with some 0th or 8000th log′s, the rela-
tions are correctly detected if 512 bits are used, but might
not be for 320 bits.

Fig. 5(c) evaluates the effects of the replica size (from
25 to 100 replicas) on accuracy. To fix the number of
log′s, we consider only 5000 log′s of the first 25 repli-
cas under the condition that all the replicas have actively
issued log′s. According to the definition of the conflict
relation, before two operations are generated at different
replicas, if only one of the replicas had received some
other operations from other replicas, the version vectors
of the two operations must be in conflict relation. For that
reason, as the replica size becomes larger, the conflict ra-
tio rises, as shown in Fig. 5(c). Meanwhile, for r = 25, the
error-free set has about 1800 log′s, but the set sizes are
kept up around 1000–1200 log′s for r = 50–100. How-
ever, as the replica size becomes larger, the error ratio
rises, since more operations out of the error-free set are
in conflict relation.

Finally, we simulate the effects of membership changes.
Amongst r = 20 replicas, the replica of the smallest prime
number retires every 6 turns, which means the retired
replica neither issues nor receives operations any more.
The retired replica is replaced with a new one that is as-
signed a new prime number and a new prime version vec-
tor. During 500 turns, a total of 80 replicas newly partici-
pate in the replication system, but only 20 replicas are at
the same time in the active status that allows a replica to
issue and receive operations. If conventional version vec-
tors are used, they will have a hundred entries in the end.

Fig. 5(d) is the accuracy graph, in which ‘static’ de-
scribes the replication with no membership change while
‘dynamic’ is the result of the replication designed above.
For log′s of 128-bit and 320-bit precisions, their con-
flict ratios are similar, but the error ratios of dynamic
replications are slightly higher than those of static repli-

620 H.-G. Roh et al. / Information Processing Letters 110 (2010) 614–620
cations because prime numbers being newly assigned in-
creases. Nevertheless, the increase in the error ratios is
not grave. On the assumption that entry sizes of log′
LVi = [pi,Li,LPi] are 2 bytes, 6 bytes, and 8 bytes + 320
bits (the integer part + the decimal part), respectively, and
that each entry of conventional vectors is a 4 byte-integer,
the error ratio of log′s is less than 2% with only about
23% of data overhead of conventional vectors. Obviously,
this logging overhead of log′s will be reduced further as
the replication ages. Hence, log′s are concise and accurate
in dynamic replication.

5. Conclusions

We propose the log′ version vector and its implemen-
tation. Log′ is obtained from its operating form, prime
version vector designed to enhance the detection accuracy
of log′ . The primary virtue of log′ is that it requires no
vector pruning. Hence, log′ is suitable to dynamic replica-
tion of limited membership. The simulation studies show
that log′s are logged concisely with few errors in the full
synchronization replication.

Errors in detecting conflicts with log′s equally appear
to all replicas because they are mathematically determin-
istic. Therefore, despite these errors, log′s can offer a
reasonable compromise for maintaining consistency among
replicas. Indeed, an operation’s being dominant over some
others can be interpreted that it has directly or indirectly
experienced them. Respecting experience, in general, the
effect of dominant operation is preferentially applied to
replicas while reconciled effects are taken for conflicting
operations. Even if two log′s of conflict relation are mis-
judged as a dominant relation, the dominant log′ must
have gained much more experience than the other. In
this regard, incorrect detection with log′s is acceptable
enough for some replication systems to adopt log′s.

References

[1] D.S. Parker, G.J. Popek, G. Rudisin, A. Stoughton, B.J. Walker, E. Wal-
ton, J.M. Chow, D. Edwards, S. Kiser, C. Kline, Detection of mutual
inconsistency in distributed systems, IEEE Transactions on Software
Engineering 9 (3) (1983) 240–247.

[2] M. Satyanarayanan, J.J. Kistler, P. Kumar, M.E. Okasaki, E.H. Siegel, D.C.
Steere, Coda: A highly available file system for a distributed work-
station environment, IEEE Transactions on Computers 39 (4) (1990)
447–459.
[3] D. Malkhi, D.B. Terry, Concise version vectors in WinFS, Distributed
Computing 20 (3) (2007) 209–219.

[4] Y.-W. Huang, P.S. Yu, Lightweight version vectors for pervasive com-
puting devices, in: Proceedings of International Workshop on Paral-
lel Processing (ICPP), IEEE Computer Society, Washington, DC, USA,
2000, p. 43.

[5] C. Sun, X. Jia, Y. Zhang, Y. Yang, D. Chen, Achieving convergence,
causality preservation, and intention preservation in real-time co-
operative editing systems, ACM Transactions on Computer–Human
Interaction 5 (1) (1998) 63–108.

[6] M. Singhal, A. Kshemkalyani, An efficient implementation of vector
clocks, Information Processing Letters 43 (1) (1992) 47–52.

[7] J. Fowler, W. Zwaenepoel, Causal distributed breakpoints, in: Pro-
ceedings of International Conference on Distributed Computing Sys-
tems (ICDCS), 1990, pp. 134–141.

[8] C. Fidge, Logical time in distributed computing systems, Com-
puter 24 (8) (1991) 28–33.

[9] F. Mattern, Virtual time and global states of distributed systems,
in: Proceedings of the International Workshop on Parallel and Dis-
tributed Algorithms, Elsevier, 1989, pp. 215–226.

[10] Y. Saito, Unilateral version vector pruning using loosely synchronized
clocks, Tech. Rep. HPL-2002-51, HP Labs, Storage Systems Depart-
ment, 2002.

[11] R.A. Golding, Weak-consistency group communication and member-
ship, Ph.D. thesis, University of California, Santa Cruz, citeseer.ist.psu.
edu/golding92weakconsistency.html, 1992.

[12] D. Ratner, P. Reiher, G. Popek, Roam: A scalable replication system
for mobile computing, in: International Workshop on Database and
Expert Systems Applications, 1999, p. 96.

[13] A. Schiper, K. Birman, P. Stephenson, Lightweight causal and atomic
group multicast, ACM Transactions on Computer System 9 (3) (1991)
272–314.

[14] G.G. Richard, Efficient vector time with dynamic process creation and
termination, Journal of Parallel and Distributed Computing 55 (1)
(1998) 109–120.

[15] X. Wang, J. Mayo, W. Gao, J. Slusser, An efficient implementation
of vector clocks in dynamic systems, in: International Conference
on Parallel and Distributed Processing Techniques and Applications
(PDPTA), 2006, pp. 593–599.

[16] F.J. Torres-Rojas, M. Ahamad, Plausible clocks: constant size logical
clocks for distributed systems, Distributed Computing 12 (4) (1999)
179–195.

[17] L. Lamport, Time, clocks, and the ordering of events in a dis-
tributed system, Communications of the ACM 21 (7) (1978) 558–
565.

[18] D. Goldberg, What every computer scientist should know about
floating-point arithmetic, ACM Computing Survey 23 (1) (1991) 5–
48.

[19] J.-M. Muller, Elementary Functions: Algorithms and Implementation,
Birkhäuser Boston, Inc., Secaucus, NJ, USA, 1997.

[20] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, P. Zimmermann, MPFR:
A multiple-precision binary floating-point library with correct round-
ing, ACM Transactions on Mathematical Software 33 (2) (2007)
13.

http://citeseer.ist.psu.edu/golding92weakconsistency.html
http://citeseer.ist.psu.edu/golding92weakconsistency.html

	Log´ version vector: Logging version vectors concisely in dynamic replication
	Introduction
	Prime version vectors
	Log' version vectors
	Simulations
	Conclusions
	References

